
Noise smoothing in the Fourier domain by

a multi-directional diffusion∗

Ryuichi Ashino† Steven J. Desjardins‡ §

A. A. Kolyshkin¶ Rémi Vaillancourt‡‖

CRM-2934

September 2003

∗This research was partially supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology, Grant-in-
Aid for Scientific Research (B), 14340045(2002–2003), (C), 13640171(2001-2002), 15540170(2003), the Natural Sciences and Engineering
Research Council of Canada and the Centre de recherches mathématiques of the Université de Montréal.

†Division of Mathematical Sciences, Osaka Kyoiku University, Kashiwara, Osaka 560-0043, Japan; ashino@cc.osaka-kyoiku.ac.jp
‡Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada K1N 6N5
§desjards@mathstat.uottawa.ca
¶Department of Engineering Mathematics, Riga Technical University, Riga, Latvia LV 1048; akoliskins@rbi.lv
‖remi@uottawa.ca





Abstract

Several noise removing methods are briefly surveyed. In the context of pseudodifferential operators, the
diffusion equation is applied to noisy images in the Fourier domain to slightly smooth out the noise in
many directions at once without oversmearing out edges and details.

Dedicated to Michihiro Nagase on the occasion of his 60th birthday

To appear in
Boundary Field Problems and Computer Simulation of the Scientific Proceedings of RTU in the series:

Computer Science.

Résumé.

On rappelle quelques méthodes pour le débruitage de l’image. Dans le cadre des opérateurs pseudo-
différentiels, on applique l’équation de la chaleur unidimensionnelle selon plusieurs directions dans le
domaine des fréquences pour débruiter l’image sans trop en endommager les arêtes et les détails.





1 Introduction

1.1 Noise and the Diffusion Equation

In today’s world, the storage and transmission of audio and visual data have become of paramount importance. But
the collecting, storage and transmission of digital data often introduce noise.

A greyscale image can be represented by the set: {(x1, x2, I(x1, x2))} where (x1, x2) represents the pixel coordi-
nates (1 ≤ x1 ≤ m, 1 ≤ x2 ≤ n, for integers m and n) and I(x1, x2) is the corresponding intensity value. Typically,
0 ≤ I(x1, x2) ≤ 255 for integer I(x1, x2) or 0 ≤ I(x1, x2) ≤ 1 for real I(x1, x2). Such an image can also be represented
by the matrix [I(i, j)], where I(i, j) represents the intensity at pixel (i, j). For comparison, a colour picture could be
represented by {(x1, x2, IR(x1, x2), IG(x1, x2), IB(x1, x2))}, where IR(x1, x2), IG(x1, x2) and IB(x1, x2) represent the
red, green and blue intensities, respectively.

Additive noise, N(x1, x2), distorts the intensity values: I(x1, x2) + N(x1, x2). Random and Gaussian noises will
be considered.

Human vision can often see the information in a noisy image though fine details may potentially be lost. If the
original image and/or a detailed knowledge of the noise process that has distorted the image is available, it may be
possible to remove the noise and restore the image. However, in real-world applications, the original clean image is
unknown and the noise process may not be well-understood. Thus, any attempt to remove the noise must proceed
with caution, lest more damage be done to the image.

One of the first problems encountered is how to identify the noise. Conceptually, the noise would correspond to
transient features in the image. But this is unhelpful since the edges (contours of regions in the image) and fine
details would also be of a transient nature and yet highly important. So, any procedure that aims to eliminate noise
by eliminating transient features may further damage the image.

Many different techniques have been used to de-noise images. One common method is to use a filter matrix.
Essentially, the image, as a matrix, is multiplied by another matrix, the filter. A simple example is an averaging
filter, where each pixel’s intensity is replaced by a (possibly weighted) average of its neighbours’ intensities.

The heat, or diffusion, equation in two dimensions,

ut = ux1x1 + ux2x2 , (1)

has been used in the reduction of noise, the rationale being that noise represents pertubations to the image. Applica-
tion of the diffusion equation will smooth over the pertubations, although it may smooth edge data and fine details,
further distorting the image.

Several attempts have been made to correct this limitation and to try to enhance edges by running diffusion
backwards in time in the vicinity of an edge. Perona and Malik [1] were the first to try such an approach. Their idea
was to replace the diffusion equation with an anisotropic diffusion equation,

ut = ∇ · (g(|∇u|)∇u),

where g(·) is a non-negative, monotonically decreasing function with g(0) = 1. Diffusion is controlled by the function
g(·). Along an edge or contour, the gradient is large in magnitude and normal to it. Diffusion is encouraged within
regions where ∇u is small, but not across the boundaries of regions (edges). So, g(·) is larger within smoothness
regions and smaller at edges. The goal is to smooth in directions parallel to the edge, but not perpendicularly to it
to preserve the edge and to try to run the diffusion backwards perpendicularly to the edge to enhance it.

Other researchers, including Alvarez, Lions and Morel [2, 3, 4, 5, 6, 7], have furthered this work and corrected
limitations in Perona and Malik’s scheme. They discovered that Perona and Malik’s scheme actually enhances and
does not remove some types of noise and it is unstable, as the solutions to slightly different initial conditions may
diverge. Also, Perona and Malik’s scheme requires pre-filtering in the case of noisy images. They suggested some
further extensions [7]:

ut = ∇ · (g(|∇Gσ ∗ u|)∇u), Gσ(x) = Cσ−1/2 exp(−|x|2/4σ),

where Gσ is a Gaussian with variance σ and ∗ is convolution, namely,

f ∗ g =
∫ ∞

−∞
f(x) g(t− x) dx.

This model is like Perona and Malik’s, with the function g(·) to control edge enhancement, but now there is a different
argument that is a superior estimator. The need for pre-filtering noise is eliminated. A more improved scheme is:

ut = g(|G ∗ ∇u|)|∇u|∇ · ∇u

|∇u|
,

1



where G is a smoothing kernel (like a Gaussian) [5]. The term

|∇u|∇ · ∇u

|∇u|

ensures that diffusion proceeds in directions orthogonal to ∇u. The term g(|G ∗∇u|) controls the edge enhancement
as in their previous scheme above. A set of axioms for image processing is formalized in [2, 3, 4].

Torkamani-Azar and Tait [8] have suggested

ut = ∇ · (g(∇[h ∗ u])∇u), where h(x1, x2) =
β

2
exp(−β(|x1|+ |x2|)),

and β is a constant. Their method was also developed to correct the limitations of Perona and Malik and to be
simpler to implement when discretized. Better smoothing is achieved than in Perona and Malik [8]. Torkamani-Azar
and Tait found that there was a trade-off between sharpening edges and removing noise when choosing the value of
the constant β. Smaller β led to better noise removal, whereas larger β preserved edges better. It was thus desirable
to run several iterations with small β for the first run and larger β for the rest to remove noise on the first pass and
then enhance the edges after.

The results from these schemes are good. Noise is significantly reduced and edges are preserved or enhanced. To
implement these schemes, the partial differential equations (PDE’s) have to be discretized into difference equations.
The intricacies in the above schemes stem from the desire to distinguish edges from noise and preserve or enhance
the edges while diffusing the noise away. The above methods attempt to control the direction of diffusion using the
gradient of the image and then diffuse a little in some areas, diffuse more in others and run the diffusion backwards
in time in other regions of the image.

Wavelets have also proven useful in the smoothing of noise in digital images [9]. In [10] Fontaine and Basu use
wavelets to solve the anisotropic diffusion equation for edge detection since wavelets can provide a better represen-
tation of singularities. An efficient scheme for solving the PDE is developed using the wavelet expansion of the
image, resulting in improved performance over the standard techniques. In [11], Mallat describes operations of signal
and image processing using wavelets for compression and denoising. In [12] a statistical model for images is used
in denoising by means of an overcomplete wavelet representation. The coefficients are modelled statistically as a
Gaussian scale mixture and a local Wiener estimator is used. Gaussian white noise is removed from the Barbara
image very well. In [13], multiwavelet filter banks are used in image compression and denoising, with results that are
superior to scalar wavelet techniques. Multiwavelets offer orthogonality, symmetry and short support. A new family
of multiwavelets, called constrained pairs, is developed for the applications. The books by Strang and Nguyen [14]
and Mallat [15] cover image denoising with wavelets.

Lina, Turcotte and Goulard [16] have used complex-valued symmetric Daubechies wavelets to denoise and enhance
images. The complex representation of a real signal adds phase information that is exploited by projection onto convex
spaces (POCS). The POCS algorithm reconstructs the image through the coherency of the phase information. The
complex wavelet transform of a real image results in the presence of both a smoothing kernel and its Laplacian in
the scaling function. This information is used to synthesize a new image from the coefficients. The technique can be
applied to denoising, enhancement, restoration or estimation of images.

Naoki Saito [17] uses a minimum description length (MDL) principle to achieve simultaneous additive white
Gaussian noise suppression and signal compression. Because of the MDL criterion, this algorithm does not require
the user to specify any parameter or threshold values. The Coifman shift-denoise-average algorithm is applied with
the MDL based algorithm to reduce noise and Gibbs-like phenomena around edges so that the residual error becomes
closer to white Gaussian noise.

A non-linear algorithm based on singular value decomposition block processing has been proposed by Devčić and
Lončarić [18] for filtering noise in images. By filtering the singular values and the left and right singular vectors, a
gain of the order of 3.6 dB (decibels) is obtained for the Lena image which had been degraded by Gaussian noise to
a signal-to-noise ratio of 10 dB, which is 10 log10(SNR) with SNR defined by (2).

In this paper a simple multi-directional diffusion method is proposed to remove noise with PDE’s while preserving
edges and details by diffusing in all directions by a small amount in the Fourier domain, thereby reducing the distortion
caused by the noise and yet not damaging the image details too much at the same time [19, 20, 21].

The quality of a restored image is measure in decibels by the signal-to-noise ratio (SNR) [8]:

SNR =

∑m
i=1

∑n
j=1 u(i, j)2∑m

i=1

∑n
j=1 [u(i, j)− U(i, j)]2

=
‖u‖2

F

‖u− U‖2
F

, (2)

where [u(i, j)] and [U(i, j)] represent the original and noisy images, respectively, as m× n matrices and ‖ · ‖F is the
Frobenius matrix norm. Ideally, if noise were perfectly removed from a noisy image, the result would be u = U and

2



SNR = ∞. In general, higher SNR values signify a better result, though visual observation is the true measurement
especially at low bit per pixel.

1.2 Fourier Transforms

The continuous Fourier transform f̂(ξ) of a function f(x) defined over R2 and the inverse Fourier transform of f̂(ξ)
is

f̂(ξ) = F{f(x)} =
∫

e−iξ·xf(x) dx, f(x) = F−1{f̂(ξ)} =
1

(2π)2

∫
eix·ξ f̂(ξ) dξ. (3)

A fundamental result that is used in this paper is concerned with the Fourier transform of parallel straight lines
and parallel straight segments. The continuous Fourier transform of a line impulse distribution in R2 is a line impulse
distribution at a right angle with respect to the original line impulse distribution. It is enough to state this result
for a line impulse along the horizontal x1-axis.

Proposition 1. Let
f(x1, x2) = 1x1 ⊗ δ(x2)

be a line impulse distribution along the x1-axis. Then the Fourier transform

f̂(ξ1, ξ2) = 2πδ(ξ1)⊗ 1ξ2

is a line impulse distribution along the ξ2-axis. The Fourier transforms of parallel line impulse distributions differ
by the phase of their elements.

The discrete Fourier transform (DFT) X(k1, k2) of a sequence x(n1, n2) and the inverse Fourier transform of
X(k1, k2) are

X(k1, k2) =
N∑

n2=1

N∑
n1=1

x(n1, n2) e−2πi(k1−1)(n1−1)/N e−2πi(k2−1)(n2−1)/N (4)

and

x(n1, n2) =
1

N2

N∑
k2=1

N∑
k1=1

X(k1, k2) e−2πi(k1−1)(n1−1)/N e−2πi(k2−1)(n2−1)/N . (5)

A result similar to Proposition 1 holds for the discrete Fourier transform of a line impulse. Hereafter, the Matlab
convention of a colon, that is, 1 : N means 1, 2, . . . , N , will be used for convenience.

Proposition 2. Let

x(n1, n2) =

{
1, n1 = 1, n2 = 1 : N,

0, otherwise.

be a line impulse along the first row of an N ×N matrix. Then the discrete Fourier transform

X(k1, k2) =

{
1, k1 = 1 : N, k2 = 1,

0, otherwise.

is a line impulse along the first column of the matrix. The Fourier transforms of parallel line impulses differ by the
phase of their elements.

1.3 Pseudodifferential Operators

Given a function f(x) and a symbol g(x, ξ), defined over R2 and R2×R2, respectively, the classical pseudodifferential
operator G is defined by the formula

Gf(x) =
1

(2π)2

∫
eix·ξg(x, ξ)f̂(ξ) dξ, (6)

or
Gf(x) =

1
(2π)2

∫∫
ei(x−y)·ξg(x, ξ)f(y) dy dξ.

If we define the kernel
k(x, y) =

1
(2π)2

∫
eiy·ξg(x, ξ) dξ,

3



then G has the integral operator representation

Gf(x) =
∫

k(x, x− y)f(y) dy.

Friedrichs [22], p. 15, has introduced the so-called cokernel

γ(χ, ξ) =
∫

e−ix·χg(x, ξ) dx

to define
Gf(x) =

1
(2π)4

∫∫
eix·χγ(χ− ξ, ξ)f̂(ξ) dξ dχ.

Finally, harmonic analysts [23], p. 304–305, consider the operator G as a time-frequency operator with weight, or
spreading function,

σ(χ, y) =
∫

e−ix·χk(x, y) dx.

Thus

Gf(x) =
1

(2π)2

∫∫
σ(χ, x− y) eix·χf(y) dy dχ

=
1

(2π)2

∫∫
σ(χ, u) eix·χf(x− u) du dχ

=
1

(2π)2

∫∫
σ(χ, u)(MχTuf)(x) du dχ,

where the translation operator T and the modulation operator M are defined by the formulae

Tyf(x) = f(x− y), Mωf(x) = eix·ωf(x).

In the context of this paper, the representation (6) is the most convenient. Taking the Fourier transform of the
diffusion equation (1) for u(x1, x2, t), one has

ût = −ξ · ξ û,

which admits the solution, in the frequency domain,

û(ξ, t) = û(ξ, 0) e−ξ·ξ t

or, in the time domain,

u(x, t) =
1

(2π)2

∫
eix·ξ e−ξ·ξ tû(ξ, 0) dξ. (7)

This is a pseudodifferential operator representation of the solution to (1), with symbol exp(−ξ · ξ t2), independent
of x. Since the heat equation is a hypoelliptic equation, to give a meaning to this pseudodifferential operator over
L2(R2) when the equation has variable coefficients, one needs to appeal to the Calderón-Vaillancourt theorem [24].
However, in this paper, the discretized versions of these pseudodifferential operators (6) and (7) have meaning over
a finite matrix even if its symbol depends also on x. The discretization of more general pseudodifferential operators
may be done by means of pseudodifference operators [25, 26].

The product filter, introduced in Section 2, applies the diffusion equation in the form (7) in many directions
simultaneously to a matrix representing a noisy image.

2 The Product Filter

The product matrix filter uses a one-dimensional version of equation (1) to diffuse minimally, but in many directions.
In other words, it is a blind diffusion process that proceeds without any restrictions with regards to position in the
image or the nature of the point (be it a noisy point or an edge point), under the belief that the diffusion is strong
enough to smooth some of the noise, but not so strong as to ruin image details.

To apply the diffusion equation in a specific direction, a change of variable is required. Diffusion in the x1-direction
is governed by ut = ux1x1 and in the x2-direction by ut = ux2x2 . To diffuse in the direction of a line that makes an
angle of θ with the x1-axis, the governing equation is

ut = cos2 θ ux1x1 + 2 sin θ cos θ ux1x2 + sin2 θ ux2x2 . (8)

4



The Fourier transform of (8) is

ût = −ξ2
1 cos2 θ û− 2 ξ1 ξ2 sin θ cos θ û− ξ2

2 sin2 θ û

= −[ξ1 cos θ + ξ2 sin θ]2 û.

This equation is easily solved in the Fourier domain:

û(ξ1, ξ2, t) = û(ξ1, ξ2, 0) exp(−[ξ1 cos θ + ξ2 sin θ]2 t). (9)

Applications of (9) to an image in the Fourier domain require multiplications, as compared, say, to finite differences
in x-space.

Now, if diffusion is applied in many directions at once, specified by angles θk, (8) and (9) become

ut =
∑

k

[cos2 θk ux1x1 + 2 sin θk cos θk ux1x2 + sin2 θk ux2x2 ],

and

ût = −
(∑

k

[ξ1 cos θk + ξ2 sin θk]2
)

û, (10)

respectively. Equation (10) has solution

û(ξ1, ξ2, t) = û(ξ1, ξ2, 0) exp
(
−

∑
k

[ξ1 cos θk + ξ2 sin θk]2 t

)
. (11)

So, if the initial condition, û(ξ1, ξ2, 0), is taken to be the Fourier transform of a noisy image,

û(ξ1, ξ2, 0) = F{I(x1, x2) + N(x1, x2)},

then (11) reduces to matrix multiplication with an appropriately chosen value of t, as will be explained below.
The Fourier transform of an image, which is represented by a matrix, say of size m × n, will also be an image

of the same dimensions in Matlab. The origin of the ξ1ξ2 coordinate system in the Fourier domain will be at the
centre of the image matrix, (

(m + 1)/2, (n + 1)/2
)
,

with the ξ1-axis running downwards and the ξ2-axis to the right (this corresponds to the matrix coordinate system
of Matlab). And so, the (ξ1, ξ2) coordinates of matrix element (i, j) are

(ξ1, ξ2) =
(
i− (m + 1)/2, j − (n + 1)/2

)
.

The algorithm to apply (11) proceeds in the following manner. The number of directions, p, is chosen defining
the p angles {θk | 0 ≤ k ≤ p− 1}, where

θ0 = 0, θ1 = π/p, θ2 = 2π/p, . . . , θp−1 = (p− 1)π/p.

For each θk, a matrix with (i, j)th elements

[(i− (m + 1)/2) cos θk + (j − (n + 1)/2) sin θk]2

is generated. These matrices are summed to produce a matrix with elements

p−1∑
k=0

[(i− (m + 1)/2) cos θk + (j − (n + 1)/2) sin θk]2.

This matrix is multiplied by the chosen value of t (typically of the order of 10−4, as will be explained below),
normalized by dividing by p, and negated. The resulting matrix is exponentiated elementwise to produce the matrix
with elements

exp
(
−

p−1∑
k=0

[(i− (m + 1)/2) cos θk + (j − (n + 1)/2) sin θk]2 t/p

)
, (12)

which is the product filter matrix for the algorithm.
The fast Fourier transform (FFT) (using Matlab’s fft2 function) of the noisy image is multiplied elementwise

by (12). Matlab’s fftshift is used to move the DC to the centre of the matrix. The inverse Fourier transform
(Matlab’s ifft2) is calculated to produce the smoothed image. Matlab’s fftshift is used to move the DC to
the centre of the matrix.

5



Lemma 1. Filtering along orthogonal directions, θ and θ + π/2, amounts to filtering in all directions.

Proof. Since
cos(θ + π/2) = − sin θ, sin(θ + π/2) = cos θ,

we have [
ξ1 cos θ + ξ2 sin θ

]2+[
ξ1 cos(θ + π/2) + ξ2 sin(θ + π/2)

]2
=

[
ξ1 cos θ + ξ2 sin θ

]2 +
[
−ξ1 sin θ + ξ2 cos θ

]2
= ξ2

1 + ξ2
2 .

Thus the inverse Fourier transform of
ût =

(
ξ2
1 + ξ2

2

)
û

is
ut = ux1x1 + ux2x2 .

Let p = 2 and θ1 = θ0 +φ in (12). If φ = 0, the level lines of function (12) are parallel lines orthogonal to the line
with slope θ0. As φ increases, the level curves are ellipses with major axes orthogonal to the line with slope θ1 +φ/2.
If φ = π/2, the level curves are circles.

3 Properties of the Product Filter

A quantitative study of the effect of the value of the t parameter in (11) proceeded in the following manner [19].
Two images, a constant and Barbara, were subjected to both random and Gaussian noises and the product filter was
applied with several values of t and several values of p not all reported here. The SNR ratio of the processed image
to the SNR of the noisy image was calculated. Since Barbara is a 256× 256 image with mean intensity 118.8125, the
constant image was taken to be 256× 256 with all entries equal to 120 for a fair comparison.

Figure 1 presents the results for random noise of the form 50 rand(m,n) and p = 256. In Matlab, rand(m,n)
generates a matrix of size m× n where all values are random numbers between 0 and 1 with a uniform distribution
(i.e. all values are equally likely). Noise of the form 50 rand(m,n) has a mean of 25 and a standard deviation of
approximately 14.5. The SNR ratio increases for the constant image because more smoothing produces a smoother
image. For Barbara, the SNR ratio increases to a peak at approximately t = 10−4 and then decreases. So, numerically,
the optimal t value is near 10−4.

These calculations were repeated for Gaussian noise of the form 25 randn(m,n). In Matlab, randn(m,n) produces
a matrix of size m × n, whose elements are normally distributed with mean 0 and variance 1. If randn(m,n) is
multiplied by a constant C, the result is a matrix with elements with mean 0 and standard deviation C (verified
numerically). So, 25 randn(m,n) produces Gaussian white noise with mean 0 and standard deviation 25. In the
case of Gaussian noise, the SNR ratio for the constant image increased rapidly with t. For Barbara, the same basic
shape that was seen with the uniformly distributed random noise was seen with the Gaussian noise — the SNR ratio
increased to a maximum at t = 2 × 10−4 and then decreased. Numerically, t = 0.0002 was seen to be the optimum
here.

A visual study of the value of the t parameter was conducted by varying t over 28 values from 0.00001 to 0.01
and applying the product filter with p = 256 directions to the Barbara, Caneraman, Moon and Saturn images with
noise of the form 50 rand(m,n). The SNR values are reported in Table 1.

In all cases, it was seen that as t increased, there was more smoothing of the images. For the smaller values
of t, the filter does not do anything visibly noticable. For the larger values of t, there is significant smoothing and
loss of detail. The optimal numerical value was found to be around t = 10−4. This visual study indicates that the
optimum range for all four images is t = 0.0001 to t = 0.0005. In this range, there is some smoothing of the noise
without a significant loss of detail. Careful visual inspection of all four images in this range determined that a value
of t = 0.0003 seems to be optimal. In this case, optimal means the best compromise between noise reduction, detail
preservation and differences for the four images.

The times required to do standard calculations with the product filter have been measured. The 256 × 256
Barbara image and the 512 × 512 Full Barbara image had 50 rand(m,n) noise added to them and were processed
with t = 0.0003 and p = 256. The times required for the various steps in the algorithm’s calculations were measured
using Matlab’s tic and toc commands and are reported in Table 2.

The times required to apply Matlab’s built-in filters, averaging and median, to these sizes of images are also
given. The total times for the product filter calculations are approximately 20.2 s and 78.7 s, respectively, on a Sun

6



10−6 10−5 10−4 10−3 10−2
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Parameter t

S
N

R
 R

at
io

 (P
ro

ce
ss

ed
/N

oi
sy

)

Figure 1: A graph of the SNR ratio of the processed image to the SNR of the noisy image with p = 256 directions
and random noise, 50 rand(m,n), for the constant image (◦) and Barbara (∗).

Table 1: SNR for the product filter algorithm applied to the four images in the visual investigation of the parameter
t. The largest value of SNR for each image is indicated in boldface.

parameter t Barbara Cameraman Moon Saturn
(noisy image) 19.8893 21.4869 10.6686 9.4123

0.00005 21.4260 23.5620 12.9007 11.1157
0.00006 21.5138 23.8086 13.0589 11.2771
0.00007 21.5515 24.0124 13.1801 11.4080
0.00008 21.5475 24.1786 13.2746 11.5152
0.00009 21.5092 24.3118 13.3492 11.6039
0.0001 21.4430 24.4163 13.4087 11.6779
0.0002 20.1207 24.5233 13.6321 12.0245
0.0003 18.7483 23.9878 13.6379 12.1179
0.0004 17.6938 23.3696 13.5928 12.1418
0.0005 16.9139 22.7933 13.5315 12.1385

Ultra 5, running at 360 MHz, with 256 MB RAM. It can be seen from Table 2 that the bulk of the calculation time
required is to generate the filter matrix. So, if the appropriate size filter matrix already exists, the calculations is
quick — approximately 5 s and 9 s, respectively (which includes display time). So, real-time implementation could
be feasible in some applications.

4 Comparing the Product Filter

The performance of the product filter algorithm in denoising was evaluated and tested against other techniques,
including Matlab’s built-in filter averaging.

Figures 2 to 5 present sample results of the product filter applied to two images, with different noises. Figures

7



Table 2: Times required for steps in the product filter algorithm applied to the Barbara and Full Barbara images
with 50 rand(m,n) noise, t = 0.0003 and p = 256. The times are quoted in seconds. The times quoted for the
Matlab filters are the times required to apply the filters to the images.

calculation step 256× 256 image 512× 512 image
load image 0.0264 0.5004
display image 1.2044 1.3370
add noise to image 0.0299 0.1729
display noisy image 1.6728 2.6414
take FFT of noisy image 0.1522 0.6605
generate filter matrix 15.3350 69.1373
apply filter 0.0783 0.4719
take IFFT 0.1800 0.7051
display processed image 1.4559 2.7622
calculate and display SNR 0.0772 0.2980
Matlab’s averaging filter 0.2799 0.4047
Matlab’s median filter 0.5512 0.6180

2 and 3 show results obtained with the Barbara image and random noise of the form 50 rand(m,n). Figure 2 shows
the original and noisy images. Figure 3 shows the results of the product filter and Matlab’s averaging filter (which
replaces each pixel’s intensity with the average over a 3× 3 neighbourhood) applied to the noisy image. (SNR values
are given in the captions.) It can be seen, on comparison of the images in Figure 3, that the product filter and
matlab do a comparable job of noise smoothing and the product filter seems to preserve details a bit better. Figures
4 and 5 show results obtained with the Moon image and Gaussian noise of the form 25 randn(m,n). Figure 4 shows
the original and noisy images. Figure 5 shows the results of the product filter and Matlab. (SNR values are given
in the captions.) Again, the product filter seems to do better with detail preservation and, in this case, seems to be
slightly superior to Matlab in noise removal.

Figure 2: Left: the original Barbara image. Right: the Barbara image with random noise of intensity 50 added,
SNR = 19.8893.

The product filter has been found to be comparable in denoising ability to Matlab’s averaging filter and inferior
to the wavelet techniques [19]. However, the product filter does preserve image details reasonably well and is relatively
simple and quick to implement.

8



Figure 3: Left: the results of the product filter applied (t = 0.0003, p = 256) to the noisy image from Figure 2,
SNR = 18.7483. Right: the results of Matlab’s averaging filter, SNR = 15.6399.

References

[1] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal.
Mach. Intel., 12(7) (July 1990) 629–639.

[2] L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axiomes et équations fondamentales du traitement
d’images (Analyse multiéchelle et E.D.P.), C.R. Acad. Sci. Paris, 315 série I (1992) 135–138.

[3] L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axiomatisation et nouveaux opérateurs de la morphologie
mathématique, C.R. Acad. Sci. Paris, 315 série I (1992) 265–268.

[4] L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing,
Arch. Rational Mech. Anal., 123 (1993) 199–257.

[5] L. Alvarez, P.-L. Lions and J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion
II, SIAM J. Numer. Anal., 29(3) (1992) 845–866.

[6] L. Alvarez and L. Mazorra, Signal and image restoration using shock-filters and anisotropic diffusion, SIAM J.
Numer. Anal., 31(2) (1994) 590–605.

[7] F. Catté, P.-L. Lions, J.-M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear
diffusion, SIAM J. Numer. Anal., 29(1) (1992) 182–193.

[8] F. Torkamani-Azar and K. E. Tait, Image recovery using the anisotropic diffusion equation, IEEE Trans. Image
Processing, 5(11) (Nov. 1996) 1573–1578.

[9] R. Ashino, C. Heil, M. Nagase and R. Vaillancourt, Microlocal filtering with multiwavelets, Computers Math.
Applic., 41(1-2) (2001) 111–133.

[10] F. L. Fontaine and S. Basu, Wavelet-based solution to anisotropic diffusion equation for edge detection, Intl. J.
Imaging Systems and Technology, 9(5 Special Issue SI) (1998) 356–368.

[11] S. Mallat, Applied mathematics meets signal processing, Doc. Math. J. DMV Extra Volume ICM I (1998)
319–338.

[12] J. Portilla, V. Strela, M. J. Wainwright and E. P. Simoncelli, Adaptive Wiener denoising using a Gaussian scale
mixture model in the wavelet domain, Proc. 8th IEEE Int. Conf. Image Processing, Thessaloniki, Greece, Oct.
2001.

[13] V. Strela, P. N. Heller, G. Strang, P. Topiwala and C. Heil, The application of multiwavelet filterbanks to image
processing, IEEE Trans. Image Processsing, 8(4) (April 1999) 548–563.

9



Figure 4: Left: the original Moon image. Right: the Moon image with Gaussian noise of mean 0 and standard
deviation 25, SNR = 17.9926.

[14] G. Strang and T. Nguyen, Wavelets and filter banks, rev. ed., Wellesly-Cambridge Press, Wellesley MA 02181,
1997.

[15] S. Mallat, A wavelet tour of signal processing, 2nd edition, Academic Press, San Diego, CA, 1999.

[16] J.-M. Lina, P. Turcotte and B. Goulard, Complex dyadic multiresolution analyses, in Advances in Imaging and
Electron Physics, 109, 163–197, 1999.

[17] N. Saito, Local feature extraction and its applications using a library of bases, In R. Coifman, ed. Topics in
Analysis and its Applications. Selected Theses. World Scientific, Singapore, pp. 261-451, 2000.

[18] L’ Devčić and S. Lončarić, Non-linear image noise filtering algorithm based on SVD block processing, preprint.

[19] S. J. Desjardins, Image Analysis in Fourier Space, Ph.D. Thesis, University of Ottawa, May 2002.

[20] S. J. Desjardins and R. Vaillancourt, Image de-noising by a multi-directional diffusion equation, Math. Rep.
Acad. Sci. Canada, 24(2) 2002, 77–84.

[21] R. Ashino, S.J. Desjardins, C. Heil, M. Nagase et R. Vaillancourt, Microlocal analysis, smooth frames and
denoising in Fourier space, J. of Asian Information-Science-Life, 1(2) (2002) 153-160.

[22] K. O. Friedrichs, Pseudo-differential operators. An introduction, Notes prepared with the assistance of R. Vail-
lancourt, revised edition, April 1970, Courant Institute of Mathematical Sciences, New York University, New
York, 1970

[23] K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser, Boston, 2001.

[24] A. P. Calderón and R. Vaillancourt, On a class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci.
USA 69 (1972) 1185–1187.

[25] R. Vaillancourt, A Strong form of Yamaguti and Nogi’s stability theorem for Friedrichs’ scheme, Publ. RIMS,
Kyoto, 5 (1969) 113–117.

[26] R. Vaillancourt, On the stability of Friedrichs’ scheme and the modified Lax-Wendoff scheme, Math. Comput.
24 (1970) 767–770.

10



Figure 5: Left: the results of the product filter applied (t = 0.0003, p = 256) to the noisy image from Figure 4,
SNR = 225.9920. Right: the results of Matlab’s averaging filter, SNR = 141.5333.

11


	Introduction
	Noise and the Diffusion Equation
	Fourier Transforms
	Pseudodifferential Operators

	The Product Filter
	Properties of the Product Filter
	Comparing the Product Filter
	References

