Image Compression with Multiresolution

Singular Value Decomposition and Other
Methods*

Ryuichi Ashino' Akira Morimoto *
Michihiro Nagase® Rémi Vaillancourt¥
CRM-2939

January 2004

*This research was partially supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid
for Scientific Research (B), 14340045(2002-2003), (C), 13640171(2001-2002), 15540170(2003) and the Natural Sciences and Engineering
Research Council of Canada and the Centre de recherche mathématique of the Université de Montréal.

TDivision of Mathematical Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan; ashino@cc.osaka-kyoiku.ac.jp

IDivision of Information Science, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan; morimoto@cc.osaka-kyoiku.ac. jp

§Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan;
nagase@math.wani.osaka-u.ac. jp

TDepartment of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; remiQuottawa.ca






Abstract

Digital image compression with multiresolution singular value decomposition is compared with discrete
cosine transform, discrete 9/7 biorthogonal wavelet transform, Karhunen-Loeve transform, and combina-
tions thereof. The coding methods used SPIHT and run-length with Huffmann coding. The performances
of these methods differ little from each other. Generally, the 9/7 biorthogonal wavelet transform is supe-
rior for most images that were tested for given compression rates. But for certain block transforms and
certain images other methods are slightly superior.
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decomposition
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Résumé

On compare la compression d’images numériques obtenue par les méthodes suivantes : multirésolution
par décomposition en valeurs singuliéres, transformation en cosinus discrete, transformation en ondelettes
discretes biorthogonales 9/7, transformation de Karhunen—Loéve et méthodes mixtes. Le codage se fait
par SPIHT et Huffman. La performance differe peu entre ces méthodes. En général, la transformation
en ondelettes biorthogonales 9/7 est supérieure pur la plupart des images testées & un taux de compres-
sion donné. Cependant pour certaines transformations blocs et certaines images, d’autres méthodes sont
quelque peu supérieures.






1 Introduction

Image compression is an important aspect of digital image processing [1]. It is used, for instance, for image trans-
mission, like television, and image storage, like fingerprints. Current research in this field is very active. In this
paper, image compression with multiresolution singular value decomposition [2] is compared with discrete cosine
transform, discrete 9/7 biorthogonal wavelet transform, Karhunen-Loeve transform, and combinations thereof [3].
The coding methods use Set Partitioning in Hierarchical Trees (SPIHT) [4] and run-length with Huffmann coding.
These methods are briefly reviewed and their performance is tested through numerical experiments on several well-
known images. It is found that these methods differ little from each other. Generally, the 9/7 biorthogonal wavelet
transform is superior for most images that were tested for given compression rates. But for certain block transforms
and certain images other methods are slightly superior.

Comparative studies of compression methods are found in [5] and [6]. This paper presents a comparative study
of compression methods including our new hybrid method which combines wavelet and SVD.

Section 2 considers images and linear transformations. Section 3 deals with two-sided orthogonal transforms.
Section 4 defines discrete wavelet transforms. Section 5 summarizes multiresolution analysis. Section 6 covers block
algorithms. Section 7 describes the coding methods. In Section 8, we propose a hybrid method using the 9/7 wavelets
with SVD. In Section 9, tables list the results of numerical experiments with these methods.

2 Images and Linear Transformations

Mathematically, a gray scale image is defined by an m x n matrix and a color image is defined by three m x n matrices
corresponding to red, green, and blue. In this paper, we only deal with gray scale images.

In image analysis, changing bases plays an important role, as in geometry where changing the origin and the
coordinate axes simplify equations of curves. Changing bases is the unified approach that explains all the transforms
that appear in this paper.

Let a matrix A € R™*"™ represent a linear transformation f from an n dimensional vector space V; with basis
X :={x1,...,2,} to an m dimensional vector space V5 with basis V := {y1,...,ym}. Then, A is called the matrix
of f with respect to the basis X. Let X’ := {af,...,2),} and V' := {yi,...,y.,} be other bases of Vi and V3,
respectively, and let the matrix B € R™*" represent the linear transformation f from V; with X’ to Vo with ).
Then, there exist unique nonsingular matrices P = (p;;) € R™*™ and Q = (¢;;) € R™*™ such that

n m
x;:z:pz_]xza jzl,...,ﬂ, yé:ZQkéyka ézlw"ama B:Q_lAP
i=1 k=1

Here, P and ) are called transition matrices from X to X’ and ) to ), respectively.

When f is a linear transformation on Vi, A the matrix of f with respect to the basis X', and P the transition
matrix from X to X’, then the matrix of f with respect to the basis X’ is P"1AP.

Square n x n matrices will be said to be of order n.

Definition 1. Two m X n matrices A and B are said to be equivalent if there exist nonsisngular matrices G and
H of orders m and n, respectively, such that B = GAH. If G and H are orthogonal, then A and B are said to be
orthogonally equivalent.

Definition 2. Two n x n matrices A and B are said to be similar if there exists a nonsisngular matrix H of order
n such that B = H'AH.

3 Two-sided Orthogonal Transforms

For simplicity, we assume that V; is R™ with canonical basis X := {e1,...,e,}, Vo is R™ with canonical basis
Y:={e1,...,em}, and that a given image A € R™*™ is the matrix of a linear transformation f from V; to V5. Our
purpose is to find a good pair of bases X’ of Vi and )’ of V5 so that the matrix B = Q ' AP of f enables us to
access information of interest about the original image A with the transition matrices P and @ from X to X’ and Y
to )', respectively.

When we choose orthonormal bases for X’ and ), their transition matrices P and @ are orthogonal matrices,
that is, P~! = PT and Q= = Q7. The L? norm is invariant under orthogonal transformation, |[PAQ|s = || A||2 for
all A € R™*" hence, the energy of images is preserved, The same holds for the Frobenius norm which enters the



definition of mean square error,
m n

1 1
MSE = — ||A[|% =1 — 2.
—lAE = 3 fay

i=1 j=1

The original image A is transformed to B = QT AP by left and right multiplication by orthogonal matrices. For
this reason, we simply call this transformation a two-sided orthogonal transform. Because of those nice properties,
we mainly work with two-sided orthogonal transforms. One aim in using two-sided orthogonal transforms in image
processing is to pack in small regions points of the transformed image with large absolute values and in large regions
points with small absolute values. Thus, images can be compressed by setting the small pixels equal to 0.

When dealing with images represented by m x n complex matrices C"™*™, we use the Hermitian inner product.
As this is a routine change, we shall not mention it in the sequel.

3.1 Singular Value Decomposition
The following theorem is known as the singular value decomposition (SVD).

Theorem 1 (Singular Value Decomposition). Let A € R™*™. Then there exist orthogonal matrices U of order

m and V' of order n such that
1 0

T Y.
U AV—E.—{O 0

], A=UxVT,

where Y1 is a nonsisngular diagonal matriz of singular values o1 > o9 > -+ > 0. > 0 and r is the rank of A.

Note that A and ¥ are orthogonally equivalent.
Remark 1. SVD is nonlinear because the orthogonal matrices U and V' depend on A.

If A is a 256 gray scale image, then the representation of each pixel of A requires one byte, that is, eight bits of
memory. On the other hand, since U and V are orthogonal matrices, every pixel of U and V needs more than one
byte. For image compression, this fullsize SVD method is very costly.
3.2 Discrete Cosine Transform
Define the orthogonal matrix U of order m by

1 .
Ui, j) = ﬁcos(W), 2<i<m. (1)
The orthogonal matrix V' of order n is defined similarly with m replacing n in (1).
Definition 3. The discrete cosine transform (DCT) of an image matrix A € R™*" is defined by
X=UvAv"
and the inverse discrete cosine transform (IDCT) of X is defined by

A=UTXV.

Remark 2. The DCT is linear because the orthogonal matrices U and V are independent of A.

4 Discrete Wavelet Transform

We deal with real orthonormal wavelets. The one-dimensional scaling function ¢(x) is the solution of the following
two-scale equation:

L
p(z) = Z hn\/igo(2x —n), z€R, (2)
n=0

where {h,,} is a finite sequence of real numbers. The one-dimensional wavelet function ¥(z) is given by the two-scale
expression:

L
’(/)({E) = Z gnﬁ@(2m - n)v n = (_l)nthn‘ (3)
n=0



Let one-dimensional scaling function ¢(2) and one-dimensional wavelet function ¢)(z) be given. A two-dimensional
scaling function and three two-dimensional wavelet functions can be constructed from ¢(z) and ¢ (x) by tensor
product.

Definition 4. The function ¢(x)p(y) is called a two-dimensional scaling function. The functions ¥(z)¢(y),
e(z)Y(y), and ¥(z)Y(y) are called wvertical, horizontal, and diagonal wavelet functions, respectively. Scaling and
wavelet functions constructed by tensor product are said to be separable.

Remark 3. The three wavelet functions, ¥ (z)p(y), ¢(x)¥(y), and ¥ () (y) emphasize the vertical, horizontal, and
diagonal edges, respectively, because they correspond to a highpass filter in the z direction and lowpass filter in the
y direction, a lowpass filter in the z direction and highpass filter in the y direction, and highpass filters in the x and
y directions, respectively. The scaling function corresponds to a lowpass filter in the z and y directions.

In this section, we fix the dimensions m and n and consider images represented by m x n matrices A € R™*".
The orthogonal matrices U of order m and V of order n are defined by means of the coefficients h,, and g,, of (2)
and (3), respectively, by the following procedure.

Procedure 1.

1. Each row of the upper m/2 by m part of U consists of the sequence {h,,}. The first row is hg, h1,...,hr,0,..;
the second row is the first row shifted to the right by two places, that is, 0,0, hg, h1,...,hr,0,...; the third
row is the first row shifted to the right by four places, etc.

2. When hp, reaches the last column, the portion overflowing into the right end moves to the left end periodically.

3. Each row of the lower m/2 by m part of U consists of the sequence {g,}. As for the upper part, each row is
the double right shift of the previous row.

4. The orthogonal matrix V of order n is constructed in the same way.

Definition 5. The discrete wavelet transform of an image matrix A is defined by
X =UAvV".
In this case, we have periodic boundary conditions. The inverse wavelet transform is defined by
A=UTXV.

Remark 4. The DWT is linear. However, U and V' depend on the size of A and the length of the scaling and wavelet
coefficients.

Note that the matrices U and V are not orthogonal for biorthogonal wavelets. Hence, the inverse wavelet transform
A =UTXV is done with other matrix filters U and V.

5 Multiresolution Processing

Wavelet multiresolution analysis is a powerful new approach which represents signal and image at several resolutions.
In this section, we explain briefly wavelet-based transforms from a multiresolution point of view.
In discrete wavelet transform, we have
X =UAV",

where the orthogonal matrices U and V consist of two parts. The upper half-parts of U and V correspond to the
lowpass filters, and the lower half-parts are the highpass filters. Note that U acts on the column vectors of the image
and V7 acts on the row vectors of the image. Therefore, the discrete wavelet transform divides the image into four
parts as follows.

Procedure 2.
1. The top left part is produced by the two-dimensional scaling function ¢(z)p(y).
2. The top right part is is produced by the vertical wavelet function ¥ (x)p(y).
3. The bottom left part is produced by the horizontal wavelet function p(z)y(y).

)
4. The bottom right part is is produced by the diagonal wavelet function ¥ (x)¥(y).



The top left part is called an approzimation because it is smooth and has large values. The other three parts are
called details because they emphasize horizontal, vertical, and diagonal edges, respectively. These three parts have
small absolute values except for the edges.

We have a multi-level decomposition by applying this decomposition to successive approximations. When we
apply this decomposition to approximations and details, we have a series of multi-level decompositions called wavelet
packet decompositions.

6 Block Algorithms

The analysis stage of a two-dimensional separable discrete wavelet transform decomposes an image into four parts,
namely, the smooth part, the vertical-edge part, the horizontal-edge part, and the diagonal-edge part. Similar
decompositions are achieved by the DCT and the SVD by means of the following block algorithm.

Algorithm 1 (Block Algorithm).

1. A given image matrix X € R™*" is divided into b x b submatrices

X (k.0 1<k<m/b, 1<0<n/b.

2. Each submatrix X *) is transformed into Xl(k’z) by the DCT or the SVD.
3. All (4,7) elements of X{k’a are collected to make an m/b x n/b matrix XQ(i’j).

4. The Xz(i’j ) matrices are put in the (4, ) position to produce the m x n matrix X3 which contains b? parts and
is similar to the matrix obtained by the DWT.

6.1 Karhunen-Loéve Transform

mn

Let an image matrix X € R™*" be given. Define the "™ x b data matrices X, and Xj by stacking the b x b

submatrices XUM)T and X9 in the form
xan? X
X, = : D : : (4)
x (m/bn/b)T X (m/bn/b)
Calculate R, and Ry, from the data matrices X, and X} by

b b
R,=—X!X,, R,=

= ——XIX,. 5
mn mn h h ()

Definition 6. The Karhunen-Loéve transform of each submatrix X *:) is defined by
X5 = KT XDk, (6)

where the columns of K, and K are eigenvectors of the vertical and horizontal covariance matrices R, and Ry,
respectively.

All the elements of the matrices X fk’e) are assembled into an m X n matrix.
The inverse KLT is X6 = Kvak’e)K};. The two b x b orthogonal matrices K, and Kj; must be kept for the

inverse KLT, because K, and K} depend on the image X.
6.2 Kakarala—Ogunbona’s Algorithm

Kakarala-Ogunbona’s algorithm [2] is a kind of multiresolution algorithm. We explain here the two-dimensional
algorithm for level 1.

Algorithm 2.

1. Each b x b submatrix X %) of matrix X is reshaped into a b* x 1 column vector.



2. These column vectors are collected into a b x (mn/b?) matrix 7.
3. T is factored into its singular value decomposition in the form 7= USVT.

4. Calculate the b x (mn/b?) matrix A = UTT = SVT.
5. Each column vector of A is reshaped into a b x b matrix ka,z).

6. All the matrices ka’é) are rearranged into an m x n matrix.

Figure 1 illustrates the algorithm for the level 1 singular value decomposition multiresolution analysis on a 32 x 32
matrix X.

Figure 2 illustrates the difference between svd and 9/7 wavelet multiresolutions at level 1 for the octagon figure.
One notices that the four isolated diagonal segments appear in the lower-left and lower-right detail parts of the svd
and wavelet multiresolutions, respectively. The singular values and left singular vectors for the level-1 SVD MRA of
the octagon image are in the vector S and the columns of U, respectively,

S = 4554.4 U = 0.5000 -0.0000 -0.7071 -0.5000

3524 .2 0.5000 0.7071  -0.0000 0.5000
3524.2 0.5000 -0.7071 0.0000 0.5000
2024.0 0.5000 0.0000 0.7071  -0.5000

One sees that the first column of U is a lowpass filter.

Remark 5. Note that the norm of the first row of A is equal to the largest singular value of T', and the norm of the
n-th row of A is equal to the n-th singular value of T', because the matrix V is orthogonal.

Remark 6. In the Kakarala-Ogunbona algorithm, the matrix U7 is used for the transform. When the inverse
transform is needed, the b x b? orthogonal matrix U and the singular values must be kept.

6.3 DCT
The DCT is applied to each b x b submatrix X **). The matrix U is the same as in (1) with m = b. Then

XM =ux®OyT,

Remark 7. In the DCT, U is fixed; hence the orthogonal matrix U does not have to be kept. The matrices Xl(k’e)
are rearranged into an m X n matrix.

7 Coding Methods

7.1 SPIHT
The SPTHT [4] algorithm is based on the following two observations.

Observation 1. The pixels of the analyzed image having large absolute values are concentrated in the upper-left
corner.

Observation 2. The hierarchical edge structure, that is, when a wavelet coefficient has large absolute value, the points
at other levels corresponding to this coefficient also have large absolute values.

For the wavelet coefficient at level J, we define the children set of coefficients as the 2 x 2 block at level J — 1
corresponding to this coefficient. We also define the descendent set. See left Fig. 3.
SPIHT has three ordered lists:

e the list of significant pixels (LSP),
e the list of insignificant pixels (LIP),
e the list of insignificant sets (LIS).

LIP and LIS are searching areas. LSP lists the pixels whose absolute values are greater than 2V, thus requiring more
than N bits. Each pixel of LIP is tested to know whether its absolute value is less than 2V or not. Each pixel of LIS
is tested to know whether the absolute values of all its descendants are less than 2V. At first step, all the pixels of
LIS are type ‘A’. Some pixels of LIS will be changed from type ‘A’ to type ‘B’ in the following procedure.
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Figure 1: Level 1 SVD MRA for a 32 x 32 matrix.




log2(svd analyzed fig.) log2(wavelet analyzed fig.)

(N
T

Figure 2: Negative level 1 approximation and detail subimages of octagon figure produced with SVD and 9/7 wavelet
MR, respectively. The level 1 approximation is in the top left subimages.
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Figure 3: Left: Hierarchical structure. Right: Binary representation of the magnitude-ordered coeflicients.



Procedure 3.

1.

5.

LSP is taken as an empty list, LIP is the set of top level coefficients. LIS is the set of top level wavelet
coefficients and all the pixels of LIS are type ‘A’. N is set to the most significant bit of all coefficients.

Check all the pixels of LSP and output O if the Nth bit of this pixel is 0, and output 1 otherwise.

Check all the pixels of LIP and output 0 if the absolute value of this pixel is less than 2V. Otherwise, output 1
and, moreover, output 0 when the value of this pixel is negative and 1 if positive, and move this pixel to LSP.

. Check all the pixels of LIS.

(a) When a pixel is of type ‘A’, output 0 if the absolute value of all descendants of this pixel is less than 2.
Otherwise, output 1 and do the following:
i. Check all four children.

ii. When the absolute value of a child is greater than or equal to 2V, output 1 and, moreover, output 0
or 1 according to the sign of this child and add this child to LSP.

iii. When the absolute value of this child is less than 2%V, add this child to the end of LIP.
iv. When this pixel has grandchildren, move it to the end of LIS as a pixel of type ‘B’.

(b) When a pixel is of type ‘B’, output 0 if the absolute values of all descendants, apart from the children, are
less than 2V. Otherwise, output 1 and add each child to the end of LIS as type ‘A’ and delete this pixel
from LIS.

Set N to N — 1 and go to step (2).

6. When the number of output bits exceeds the threshold (which is decided by bpp), then stop this procedure.

7.2

Run-length and Huffmann Coding

The analyzed image can be quantized economically by the following procedure.

Procedure 4.

1.

8

Divide each block of the analyzed image by some integer which depends on the image and the block location.
Each pixel of this divided image is rounded to an integer. This quantized analyzed image has many 0 entries.

. Reshape this image into a long row vector. In this step, use the following two methods:

(a) Reshape each block into a vector and stack these vectors together.

(b) Use the hierarchical tree (0 tree) algorithm.
Compress the 0 entries of this long row vector by the run-length coding.

Compress the run-length coded image by gzip.

Hybrid Wavelet-SVD Method

We propose a hybrid method which combines wavelet and singular value decompositions. This method consists in
the following three steps.

Procedure 5.

1.

Transform the m x n image X into the analyzed image X; by the level-two DWT using the 9/7 biorthogonal
wavelets.

2. Decompose X7 into 2 x 2-block SVD MRA up to level six to get X5.

3. Compress Xy by SPIHT and compress the resulting image with gzip.

The synthesis procedure consists in the following three steps.

Procedure 6.

1.

Uncompress the gzip image with gunzip and decode the compressed code to X.



2. Take the inverse 2 x 2-block SVD transform to get the synthesized image X;.
3. Obtain the reconstructed image & from X, by the inverse DWT.

We have the following observation.

Observation 3.
1. Our hybrid wavelet-SVD method is better than SVD alone.
2. Our hybrid method is better than biorthogonal wavelet for the fp1 and barb images.
The above observation leads us to the following conclusion.

Conclusion 1.

1. The SVD decomposition depends on the data and cannot deal with data in time-frequency domain. Because
our hybrid method contains wavelet analysis, which is a kind of time-frequency analysis, our hybrid method
performs better.

2. The blocking effect in our hybrid method is weaker than with SVD, because we use long-filter wavelets in the
last synthesis step.

9 Numerical Experiments

The following methods have been used to obtain compression from 8 bits per pixel (bpp) to 1, 0.5 and 0.25 bpp.
e bior4.4 is the biorthogonal wavelet filter with 9/7 taps of [10].

db2 is Daubechies’ compactly supported wavelet filter with N = 2.

2by2SVDMR and 4by4SVDMR are the SVD multiresolutions with block size 2 and 4, respectively.

JPEG is MATLAB’s imwrite function.

e 2by2KLTMR and 4by4KLTMR are the KLT multiresolutions with block size 2 and 4, respectively.

bior4.4+SVD consists of the following two steps. In the first step, the image is transformed by bior4.4 wavelet
to level 2. In the second step, the transformed image is decomposed by 2by2SVDMR to level 6.

Remark 8. The SPIHT algorithm [1] is used for coding the MRA methods.

Definition 7. Peak Signal to Noise Ratio (PSNR) and Signal to Noise Ratio (SNR) for an original m x n image,
X, and the reconstructed image, &, are defined as follows:

2552mn 2552mn
PSNR =101 =101 _— 7
. (z;’; S X () - f:(zpj)]Q) ow (1 7z @

and

ok ity Yy X(0,9)? 0k 1X 13
SN = 1010810 <2?11 S X (i) fc(i,j)]?) = 1000 (= o7 ) )

In this work, bpp is the number of bits in the gzip file divided by the number of bits in the original image.

The six well-known images listed below and shown in Fig. 4 have been tested.

512 x 512 Lena 512 x 512 Boats
512 x 512 Barb 512 x 512 Yogi
512 x 640 Goldhill 768 x 768 fpl

Here the fpl image is a sample of the FBI WSQ FINGERPRINT COMPRESSION DEMOS 4.2.5.
The numerical results are listed in Tables 1 to 3.



Figure 4: The six original figures.
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Observation 4. Peak Signal to Noise Ratio (PSNR) with the bior4.4 method is generally higher except for the Yogi
image at 1 and 0.5 bpp where 2by2SVDMR and 2by2KLTMR are superior.

Conclusion 2.

1.

2.
3.

/.

In case of high compression ratio, that is, low bpp, block effects appeared for SVD, KLT, and JPEG, especially
remarkable for SVD2by2 and KLT2by2. On the other hand, in case of wavelet with long filters, images were out
of focus. Our hybrid method using 9/7 wavelet with SVD lies between these two opposite cases.

For the fingerprint, our hybrid method using 9/7 wavelet with SVD was superior to the other methods.

Since Yogi has fewer grey levels, SVD2by2 and KLT2by2 performed better in our experiment because these
transforms have short filters.

For other images, our hybrid method performed a little bit inferior to wavelet bior4.4, but superior to SVD,
KLT, and JPEG.

Every experiment was run four times successively under the same conditions, and the CPU, as measured with
the MATLAB profile function, was taken to be the mean value of the last three runs. The computations were done
on a portable PC with the following specifications: Pentium III 866 Mhz, 512 MB memory, Microsoft Windows 2000
and MATLAB R13.
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Visual Inspection of Goldhill Image at 0.25 bpp.

At high compression ratio, that is, low bit per pixel, visual inspection is necessary to ascertain the quality of
synthesized images. Here, we comment on several aspects of the goldhill image which has been compressed to 0.25
bpp with the following six algorithms: bior4.4, db2, 2by2SVDMR, 4by4SVDMR, 4by4KLTMR, and bior4.4+SVD.

e The sky: good with bior4.4 and db2; blocking effects with 2by2SVDMR, 4by4SVDMR, and 4by4KLTMR; stripes

with bior4.4+SVD.

e Boundary between sky and skyline: although the boundary is clear and smooth in the original image, it

is smooth but out of focus with bior4.4 and db2; it is close to the original with 2by2SVDMR, 4by4SVDMR, and
4by4KLTMR but has blocking effects; it is close to the original with bior4.4+SVD.

Roofs’ shingles: The original shingles have clear rectangular forms. They are smooth but the rectangular
forms cannot be seen with bior4.4 and db2. They can be seen with 2by2SVDMR, 4by4SVDMR, and 4by4KLTMR
but there are significant blocking effects. An interpolated result between the above two results is obtained with
bior4.4+SVD.

Road’s cobble-stones: As for the roof with bior4.4 and db2; the road looks like a mud road. Small stones,
not in the original, have been added with 2by2SVDMR, 4by4SVDMR, and 4by4KLTMR. With bior4.4+SVD, they
are closed to the original.
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Appendix

The appendix contains Tables 1-3 and Figs. 7-11 which present detailed numerical results on the compression
methods applied to the six figures considered in this paper.
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Figure 6: PSNR curve against bpp for lena with: (left) bior4.4+SVD, bior4.4, db2, k1t2by2; (right) bior4.4+SVD,

jpeg, k1t4by4, and svd2by?2.
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Figure 7: PSNR curve against bpp for boats with: (left) bior4.4+SVD, bior4.
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Table 1: Results for 512 x 512 Lena (top) and Boats (bottom) images at pbb = 1, 0.5 and 0.25 except for JPEG.

’ bpp \ Method \ Level \ PSNR \ MSE \ MaxErr \ SNR \ CPU ‘

1 bior4.4 6 39.9248 6.616 13.766 | 34.2438 | 5.74

db2 6 39.0081 | 8.1709 13.9631 | 33.3271 | 5.11
by2SVDMR 6 37.5542 11.42 25.1442 | 31.8731 | 3.81
by4SVDMR 4 38.1503 | 9.9552 22.4506 | 32.4693 | 3.96
1.02 JPEG 37.9285 | 10.4769 32 32.2474 | 1.00
2by2KLTMR 37.181 | 12.4445 | 24.8446 31.5 34.55
4by4dKLTMR 38.1987 | 9.8448 | 24.6576 | 32.5177 | 9.68
bior4.44+SVD | 246 | 39.1869 | 7.8413 15.7794 | 33.5059 | 6.35

(=)

W~

0.5 bior4.4 6 36.6857 | 13.9479 | 27.1368 | 31.0047 | 5.13
db2 6 35.3878 | 18.806 | 25.0413 | 29.7068 | 4.76
2by2SVDMR 6 33.6065 | 28.3417 | 49.3352 | 27.9255 | 3.43
4by4SVDMR 4 34.3695 | 23.7756 | 49.9308 | 28.6884 | 3.47

0.50 JPEG 34.6181 | 22.4528 o6 28.937 | 0.97
2by2KLTMR 33.4096 | 29.6567 | 45.7465 | 27.7285 | 34.12
4by4dKLTMR 34.3619 | 23.8175 | 50.0632 | 28.6808 | 9.32
bior4.44+-SVD | 246 | 35.7576 | 17.271 36.5254 | 30.0766 | 5.85

(=)

S

0.25 bior4.4 6 33.4193 | 29.5901 | 41.9485 | 27.7383 | 4.96
db2 6 32.0355 | 40.6943 | 44.8188 | 26.3544 | 4.64
2by2SVDMR 6 30.3235 | 60.3568 | 64.4865 | 24.6425 | 3.14
4by4SVDMR 4 30.8061 | 54.0094 | 73.974 | 25.1251 | 3.24

0.26 JPEG 30.7576 | 54.6158 82 25.0766 | 0.97
2by2KLTMR 30.2218 | 61.7871 | 61.0016 | 24.5408 | 34.74
4by4dKLTMR 30.7977 | 54.1135 | 63.7171 | 25.1167 | 9.17
bior4.44+SVD | 246 | 32.2857 | 38.416 | 52.0023 | 26.6046 | 5.55

(=}

S

1 biord.4 6 36.0533 | 16.1342 | 22.5899 | 30.7107 | 5.41
db2 6 35.321 19.0977 | 22.4977 | 29.9784 | 5.13
2by2SVDMR 6 34.2964 | 24.1792 | 25.2346 | 28.9538 | 3.88
4by4SVDMR 4 34.7409 | 21.827 | 26.9606 | 29.3983 | 3.95

1.01 JPEG 34.524 | 22.9445 42 29.1814 | 1.01
2by2KLTMR 34.2954 | 24.1845 | 24.7067 | 28.9528 | 34.56
4by4dKLTMR 34.8359 | 21.3544 | 26.5875 | 29.4933 | 9.64
bior4.44+SVD | 246 | 35.4574 | 18.5071 | 24.9773 | 30.1148 | 6.23

(=

>

0.5 bior4.4 6 32.6529 | 35.3013 | 40.2116 | 27.3103 | 5.12
db2 6 31.826 | 42.7051 | 39.3889 | 26.4834 | 4.73
2by2SVDMR 6 30.6503 | 55.9823 | 51.3853 | 25.3077 | 3.51
4by4SVDMR 4 30.9919 | 51.747 | 51.7476 | 25.6493 | 3.48

0.51 JPEG 30.9622 | 52.1028 76 25.6196 | 0.98
2by2KLTMR 30.6895 | 55.4793 | 48.4687 | 25.3469 | 34.03
4by4dKLTMR 31.0816 | 50.6898 | 53.2124 | 25.739 | 9.27
bior4.44+SVD | 246 | 31.855 | 42.4207 | 59.3783 | 26.5124 | 5.72

=

>

0.25 biord.4 6 29.4905 | 73.1191 80.172 | 24.1479 | 4.98
db2 6 28.6923 | 87.8713 | 75.3258 | 23.3497 | 4.53
2by2SVDMR 6 27.5786 | 113.5583 | 81.147 | 22.236 | 3.27
4by4SVDMR 4 27.8278 | 107.2269 | 87.8259 | 22.4852 | 3.23

0.25 JPEG 27.3174 | 120.5969 109 21.9748 | 0.99
2by2KLTMR 27.658 | 111.5017 | 82.5188 | 22.3154 | 34.10
4by4dKLTMR 27.9562 | 104.1012 | 87.8324 | 22.6136 | 9.17
bior4.44+SVD | 246 | 28.5882 | 90.0041 | 78.3846 | 23.2456 | 5.43

(=

e
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Table 2: Results for 512 x 640 Goldhill at pbb = 1, 0.5 and 0.25 (top), and 512 x 512 Barb at pbb = 2.5, 1.5 and 1
(bottom), except for JPEG.

’ bpp \ Method \ Level \ PSNR \ MSE \ MaxErr \ SNR \ CPU

1 bior4.4 6 36.3622 | 15.0265 | 23.7688 | 29.3989 | 6.67

db2 6 35.7136 | 17.4472 | 27.0927 | 28.7503 | 5.99
2by2SVDMR 6 35.0861 | 20.1591 | 23.9787 | 28.1228 | 4.53
4by4SVDMR 3 35.7573 | 17.2721 | 23.1946 | 28.7941 | 4.43
0.99 JPEG 35.5888 | 17.9557 36 28.6255 | 1.14
2by2KLTMR 35.3328 | 19.0461 | 23.8781 | 28.3695 | 43.58
4by4dKLTMR 36.0887 | 16.0033 | 22.8738 | 29.1254 | 11.80
bior4.44+SVD | 246 | 35.9328 | 16.5882 | 30.1457 | 28.9695 | 7.19

(=)

w

0.5 bior4.4 6 32.9613 | 32.8817 | 40.0127 | 25.998 | 6.45
db2 6 32.2567 | 38.6729 | 43.5024 | 25.2935 | 5.66
2by2SVDMR 6 31.7024 | 43.9384 | 43.1178 | 24.7391 | 4.04
4by4SVDMR 3 32.3218 | 38.0975 | 43.6338 | 25.3586 | 3.86

0.51 JPEG 32.5053 | 36.5218 48 25.542 | 1.16
2by2KLTMR 31.9307 | 41.6877 | 42.567 | 24.9674 | 43.30
4by4dKLTMR 32.525 | 36.3563 | 41.976 | 25.5617 | 11.35
bior4.44+SVD | 246 | 32.532 | 36.2975 | 45.177 | 25.5688 | 6.61

(=)

w

0.25 bior4.4 6 30.5292 | 57.5658 | 51.2446 | 23.5659 | 6.33
db2 6 29.77 68.5611 | 64.5146 | 22.8068 | 5.34
2by2SVDMR 6 29.3633 | 75.2917 | 73.4238 | 22.4001 | 3.74
4by4SVDMR 3 29.6741 | 70.0923 | 66.1833 | 22.7108 | 3.65

0.26 JPEG 29.6083 | 71.1619 70 22.6451 | 1.15
2by2KLTMR 29.5023 | 72.9213 | 74.7445 | 22.539 | 43.05
4by4dKLTMR 29.8132 | 67.8827 | 60.2749 | 22.8499 | 11.07
bior4.44+SVD | 246 | 29.9528 | 65.7348 68.479 | 22.9896 | 6.24

(=)

w

2.5 bior4.4 6 35.0219 | 20.4593 | 23.9209 | 28.746 | 6.26
db2 6 34.7532 | 21.7652 | 24.0993 | 28.4773 | 6.15
2by2SVDMR 6 33.9956 | 25.9134 | 24.3521 | 27.7197 | 4.64
4by4SVDMR 4 34.5174 | 22.9797 22.07 | 28.2415 | 4.50

2.51 JPEG 31.3679 | 47.4558 36 25.092 | 1.04
2by2KLTMR 33.9714 | 26.0578 | 25.3355 | 27.6955 | 34.80
4by4dKLTMR 34.6531 | 22.2725 | 22.7902 | 28.3772 | 10.08
bior4.44+SVD | 246 | 35.0748 | 20.2116 | 23.3207 | 28.7989 | 7.06

=)

S

1.5 bior4.4 6 30.3506 | 59.9822 | 34.2253 | 24.0747 | 5.94
db2 6 30.0205 | 64.7188 37.389 | 23.7446 | 5.56
2by2SVDMR 6 29.4611 | 73.6165 39.915 | 23.1852 | 4.14
4by4SVDMR 4 29.8336 | 67.565 37.9863 | 23.5577 | 4.11

1.51 JPEG 28.2041 | 98.3269 ol 21.9282 | 1.01
2by2KLTMR 29.4167 | 74.3729 | 40.5208 | 23.1408 | 34.47
4by4dKLTMR 29.9307 | 66.0707 | 39.6838 | 23.6548 | 9.76
bior4.44+-SVD | 246 | 30.4038 | 59.252 38.8405 | 24.1279 | 6.51

(=

>

1 bior4.4 6 28.3242 | 95.6439 | 45.1589 | 22.0483 | 5.22
db2 6 27.9396 | 104.5002 | 47.2902 | 21.6637 | 4.91
2by2SVDMR 6 27.3752 | 119.0046 | 47.9829 | 21.0993 | 3.79
4by4SVDMR 4 27.6971 | 110.5011 | 49.2355 | 21.4212 | 3.90

1.00 JPEG 26.9836 | 130.2339 99 20.7077 | 1.02
2by2KLTMR 27.3426 | 119.8991 | 48.3912 | 21.0668 | 34.57
4by4dKLTMR 27.8701 | 106.186 | 48.9431 | 21.5942 | 9.43
bior4.44+SVD | 246 | 28.2997 | 96.1849 | 55.6651 | 22.0238 | 6.14

=

>~
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Table 3: Results for 512 x 512 Yogi (top) and 768 x 768 fpl (bottom) images at pbb = 1, 0.5 and 0.25 except for
JPEG.

bpp Method Level PSNR MSE MaxErr SNR CPU
1 bior4.4 6 40.4154 | 5.9093 20.4526 | 33.8765 | 5.33
db2 6 40.1399 | 6.2963 21.1893 | 33.601 | 5.04
2by2SVDMR 6 51.1502 | 0.49895 7.3822 | 44.6113 | 3.96
4by4dSVDMR 4 36.7073 | 13.8788 | 36.7056 | 30.1684 | 3.94

1.01 JPEG 36.6607 | 14.0286 42 30.1218 | 0.93
2by2KLTMR 6 47.9938 | 1.0321 5.5872 | 41.4549 | 34.78
4bydKLTMR, 4 37.6329 | 11.2146 | 36.2385 | 31.0941 | 9.54

bior4.44+-SVD 2+6 35.8276 | 16.9948 | 36.2836 | 29.2887 | 5.99

0.5 bior4.4 6 31.431 | 46.7712 | 66.2005 | 24.8921 | 5.06
db2 6 30.3525 | 59.9555 | 71.4808 | 23.8136 | 4.63
2by2SVDMR 6 34.1772 | 24.8517 61.563 | 27.6384 | 3.37
4by4SVDMR 4 28.8366 | 85.0009 | 127.6891 | 22.2977 | 3.35

0.51 JPEG 28.8926 | 83.9116 112 22.3537 | 0.96
2by2KLTMR 34.4421 | 23.3812 | 62.9133 | 27.9033 | 34.08
4bydKLTMR 29.2121 | 77.9592 | 126.2277 | 22.6732 | 9.07
bior4.44+-SVD 2+6 28.8919 | 83.9258 | 108.8086 | 22.353 | 5.65

[=p}

o~

0.25 bior4.4 6 25.9514 | 165.1729 | 115.3645 | 19.4125 | 4.76
db2 6 25.134 | 199.3799 | 133.0653 | 18.5951 | 4.42
2by2SVDMR 6 25.649 | 177.0857 | 182.0826 | 19.1101 | 3.17
4by4SVDMR 4 24.0952 | 253.2555 | 218.0407 | 17.5563 | 3.29

0.26 JPEG 24.5029 | 230.5646 182 17.964 | 1.00
2by2KLTMR 25.7329 | 173.696 | 179.1697 | 19.194 | 34.07
4bydKLTMR 24.3188 | 240.5475 | 190.2592 | 17.7799 | 8.93
bior4.44+-SVD 246 24.6841 | 221.1439 | 162.3407 | 18.1452 | 5.48

[=p}

N

1 bior4.4 6 39.6836 | 6.9939 14.7271 | 37.2212 | 10.30
db2 6 38.1298 | 10.0024 | 22.6324 | 35.6674 | 9.72
2by2SVDMR 6 36.5685 | 14.3293 | 21.8489 | 34.1062 | 6.29
4by4ASVDMR 4 38.0429 | 10.2044 18.848 | 35.5806 | 6.33
1.00 JPEG 37.8249 | 10.7297 22 35.3626 | 1.70
2by2KLTMR 6 35.7928 | 17.1316 | 22.3083 | 33.3305 | 76.86
4bydKLTMR 4 38.2215 | 9.7934 17.411 | 35.7591 | 20.23
bior4.44+-SVD 246 40.2211 | 6.1798 14.963 | 37.7587 | 11.93
0.5 bior4.4 6 35.7242 | 17.4044 | 32.5514 | 33.2619 | 9.76
db2 6 33.8344 | 26.893 35.0699 | 31.3721 | 9.04
2by2SVDMR 6 31.4826 | 46.2189 | 44.0702 | 29.0202 | 5.46
4by4SVDMR | 4 33.6328 | 28.1708 | 37.6675 | 31.1704 5.59
0.50 JPEG 33.9999 | 25.8873 37 31.5376 | 1.68
2by2KLTMR 6 31.1654 | 49.7211 | 43.4191 | 28.703 | 76.19
4by4dKLTMR 4 33.7659 | 27.3208 | 38.3423 | 31.3035 | 19.51

bior4.44-SVD 246 35.9536 | 16.5091 28.774 | 33.4912 | 11.04

0.25 bior4.4 6 32.5333 | 36.2869 | 44.5788 | 30.0709 | 9.30
db2 6 30.5249 | 57.6221 | 53.0734 | 28.0626 | 8.73
2by2SVDMR 6 28.1966 | 98.4971 | 67.8917 | 25.7342 | 5.14
4by4SVDMR 4 29.5129 | 72.7427 | 65.4109 | 27.0505 | 5.16

0.25 JPEG 28.9897 | 82.0562 84 26.5273 | 1.68
2by2KLTMR 6 28.0517 | 101.8381 | 70.4279 | 25.5893 | 75.78
4by4dKLTMR 4 29.6661 | 70.2217 | 73.4828 | 27.2037 | 19.16

bior4.44-SVD 246 32.4364 | 37.1059 | 42.7483 | 29.974 | 10.56
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Figure 8: PSNR curve against bpp for goldhill with:

bior4.4+SVD, jpeg, klt4by4, and svd2by2.
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Figure 9: PSNR curve against bpp for barb with: (left) bior4.4+SVD, bior4.4, db2, k1t2by?2; (right) bior4.4+SVD,
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Figure 10: PSNR curve against bpp for yogi with: (left) bior4.4+SVD, bior4.4, db2, k1t2by?2; (right) bior4.4+SVD,
jpeg, klt4by4, and svd2by2.
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