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Abstract

Digital image compression with multiresolution singular value decomposition is compared with discrete
cosine transform, discrete 9/7 biorthogonal wavelet transform, Karhunen–Loève transform, and combina-
tions thereof. The coding methods used SPIHT and run-length with Huffmann coding. The performances
of these methods differ little from each other. Generally, the 9/7 biorthogonal wavelet transform is supe-
rior for most images that were tested for given compression rates. But for certain block transforms and
certain images other methods are slightly superior.

Keywords : image compression, singular value decomposition, multiresolution analysis, wavelet, block
decomposition
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Résumé

On compare la compression d’images numériques obtenue par les méthodes suivantes : multirésolution
par décomposition en valeurs singulières, transformation en cosinus discrète, transformation en ondelettes
discrètes biorthogonales 9/7, transformation de Karhunen–Loève et méthodes mixtes. Le codage se fait
par SPIHT et Huffman. La performance diffère peu entre ces méthodes. En général, la transformation
en ondelettes biorthogonales 9/7 est supérieure pur la plupart des images testées à un taux de compres-
sion donné. Cependant pour certaines transformations blocs et certaines images, d’autres méthodes sont
quelque peu supérieures.





1 Introduction

Image compression is an important aspect of digital image processing [1]. It is used, for instance, for image trans-
mission, like television, and image storage, like fingerprints. Current research in this field is very active. In this
paper, image compression with multiresolution singular value decomposition [2] is compared with discrete cosine
transform, discrete 9/7 biorthogonal wavelet transform, Karhunen–Loève transform, and combinations thereof [3].
The coding methods use Set Partitioning in Hierarchical Trees (SPIHT) [4] and run-length with Huffmann coding.
These methods are briefly reviewed and their performance is tested through numerical experiments on several well-
known images. It is found that these methods differ little from each other. Generally, the 9/7 biorthogonal wavelet
transform is superior for most images that were tested for given compression rates. But for certain block transforms
and certain images other methods are slightly superior.

Comparative studies of compression methods are found in [5] and [6]. This paper presents a comparative study
of compression methods including our new hybrid method which combines wavelet and SVD.

Section 2 considers images and linear transformations. Section 3 deals with two-sided orthogonal transforms.
Section 4 defines discrete wavelet transforms. Section 5 summarizes multiresolution analysis. Section 6 covers block
algorithms. Section 7 describes the coding methods. In Section 8, we propose a hybrid method using the 9/7 wavelets
with SVD. In Section 9, tables list the results of numerical experiments with these methods.

2 Images and Linear Transformations

Mathematically, a gray scale image is defined by an m×n matrix and a color image is defined by three m×n matrices
corresponding to red, green, and blue. In this paper, we only deal with gray scale images.

In image analysis, changing bases plays an important role, as in geometry where changing the origin and the
coordinate axes simplify equations of curves. Changing bases is the unified approach that explains all the transforms
that appear in this paper.

Let a matrix A ∈ Rm×n represent a linear transformation f from an n dimensional vector space V1 with basis
X := {x1, . . . , xn} to an m dimensional vector space V2 with basis Y := {y1, . . . , ym}. Then, A is called the matrix
of f with respect to the basis X . Let X ′ := {x′1, . . . , x′n} and Y ′ := {y′1, . . . , y′m} be other bases of V1 and V2,
respectively, and let the matrix B ∈ Rm×n represent the linear transformation f from V1 with X ′ to V2 with Y ′.
Then, there exist unique nonsingular matrices P = (pij) ∈ Rn×n and Q = (qij) ∈ Rm×m such that

x′j =
n∑

i=1

pijxi, j = 1, . . . , n, y′` =
m∑

k=1

qk`yk, ` = 1, . . . ,m, B = Q−1AP.

Here, P and Q are called transition matrices from X to X ′ and Y to Y ′, respectively.
When f is a linear transformation on V1, A the matrix of f with respect to the basis X , and P the transition

matrix from X to X ′, then the matrix of f with respect to the basis X ′ is P−1AP .
Square n× n matrices will be said to be of order n.

Definition 1. Two m × n matrices A and B are said to be equivalent if there exist nonsisngular matrices G and
H of orders m and n, respectively, such that B = GAH. If G and H are orthogonal, then A and B are said to be
orthogonally equivalent.

Definition 2. Two n× n matrices A and B are said to be similar if there exists a nonsisngular matrix H of order
n such that B = H−1AH.

3 Two-sided Orthogonal Transforms

For simplicity, we assume that V1 is Rn with canonical basis X := {e1, . . . , en}, V2 is Rm with canonical basis
Y := {e1, . . . , em}, and that a given image A ∈ Rm×n is the matrix of a linear transformation f from V1 to V2. Our
purpose is to find a good pair of bases X ′ of V1 and Y ′ of V2 so that the matrix B = Q−1AP of f enables us to
access information of interest about the original image A with the transition matrices P and Q from X to X ′ and Y
to Y ′, respectively.

When we choose orthonormal bases for X ′ and Y ′, their transition matrices P and Q are orthogonal matrices,
that is, P−1 = PT and Q−1 = QT . The L2 norm is invariant under orthogonal transformation, ‖PAQ‖2 = ‖A‖2 for
all A ∈ Rm×n, hence, the energy of images is preserved, The same holds for the Frobenius norm which enters the
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definition of mean square error,

MSE =
1
mn

‖A‖2
F =:

1
mn

m∑
i=1

n∑
j=1

|aij |2.

The original image A is transformed to B = QTAP by left and right multiplication by orthogonal matrices. For
this reason, we simply call this transformation a two-sided orthogonal transform. Because of those nice properties,
we mainly work with two-sided orthogonal transforms. One aim in using two-sided orthogonal transforms in image
processing is to pack in small regions points of the transformed image with large absolute values and in large regions
points with small absolute values. Thus, images can be compressed by setting the small pixels equal to 0.

When dealing with images represented by m × n complex matrices Cm×n, we use the Hermitian inner product.
As this is a routine change, we shall not mention it in the sequel.

3.1 Singular Value Decomposition

The following theorem is known as the singular value decomposition (SVD).

Theorem 1 (Singular Value Decomposition). Let A ∈ Rm×n. Then there exist orthogonal matrices U of order
m and V of order n such that

UTAV = Σ :=
[
Σ1 0
0 0

]
, A = UΣV T ,

where Σ1 is a nonsisngular diagonal matrix of singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and r is the rank of A.

Note that A and Σ are orthogonally equivalent.

Remark 1. SVD is nonlinear because the orthogonal matrices U and V depend on A.

If A is a 256 gray scale image, then the representation of each pixel of A requires one byte, that is, eight bits of
memory. On the other hand, since U and V are orthogonal matrices, every pixel of U and V needs more than one
byte. For image compression, this fullsize SVD method is very costly.

3.2 Discrete Cosine Transform

Define the orthogonal matrix U of order m by

U(i, j) =


√

1
m , i = 1,√
2
m cos

(
π(2j−1)(i−1)

2m

)
, 2 ≤ i ≤ m.

(1)

The orthogonal matrix V of order n is defined similarly with m replacing n in (1).

Definition 3. The discrete cosine transform (DCT) of an image matrix A ∈ Rm×n is defined by

X = UAV T

and the inverse discrete cosine transform (IDCT) of X is defined by

A = UTXV.

Remark 2. The DCT is linear because the orthogonal matrices U and V are independent of A.

4 Discrete Wavelet Transform

We deal with real orthonormal wavelets. The one-dimensional scaling function ϕ(x) is the solution of the following
two-scale equation:

ϕ(x) =
L∑

n=0

hn

√
2ϕ(2x− n), x ∈ R, (2)

where {hn} is a finite sequence of real numbers. The one-dimensional wavelet function ψ(x) is given by the two-scale
expression:

ψ(x) =
L∑

n=0

gn

√
2ϕ(2x− n), gn = (−1)nhL−n. (3)
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Let one-dimensional scaling function ϕ(x) and one-dimensional wavelet function ψ(x) be given. A two-dimensional
scaling function and three two-dimensional wavelet functions can be constructed from ϕ(x) and ψ(x) by tensor
product.

Definition 4. The function ϕ(x)ϕ(y) is called a two-dimensional scaling function. The functions ψ(x)ϕ(y),
ϕ(x)ψ(y), and ψ(x)ψ(y) are called vertical, horizontal, and diagonal wavelet functions, respectively. Scaling and
wavelet functions constructed by tensor product are said to be separable.

Remark 3. The three wavelet functions, ψ(x)ϕ(y), ϕ(x)ψ(y), and ψ(x)ψ(y) emphasize the vertical, horizontal, and
diagonal edges, respectively, because they correspond to a highpass filter in the x direction and lowpass filter in the
y direction, a lowpass filter in the x direction and highpass filter in the y direction, and highpass filters in the x and
y directions, respectively. The scaling function corresponds to a lowpass filter in the x and y directions.

In this section, we fix the dimensions m and n and consider images represented by m× n matrices A ∈ Rm×n.
The orthogonal matrices U of order m and V of order n are defined by means of the coefficients hn and gn of (2)

and (3), respectively, by the following procedure.

Procedure 1.

1. Each row of the upper m/2 by m part of U consists of the sequence {hn}. The first row is h0, h1, . . . , hL, 0, . . .;
the second row is the first row shifted to the right by two places, that is, 0, 0, h0, h1, . . . , hL, 0, . . .; the third
row is the first row shifted to the right by four places, etc.

2. When hL reaches the last column, the portion overflowing into the right end moves to the left end periodically.

3. Each row of the lower m/2 by m part of U consists of the sequence {gn}. As for the upper part, each row is
the double right shift of the previous row.

4. The orthogonal matrix V of order n is constructed in the same way.

Definition 5. The discrete wavelet transform of an image matrix A is defined by

X = UAV T .

In this case, we have periodic boundary conditions. The inverse wavelet transform is defined by

A = UTXV.

Remark 4. The DWT is linear. However, U and V depend on the size of A and the length of the scaling and wavelet
coefficients.

Note that the matrices U and V are not orthogonal for biorthogonal wavelets. Hence, the inverse wavelet transform
A = ŨTXṼ is done with other matrix filters Ũ and Ṽ .

5 Multiresolution Processing

Wavelet multiresolution analysis is a powerful new approach which represents signal and image at several resolutions.
In this section, we explain briefly wavelet-based transforms from a multiresolution point of view.

In discrete wavelet transform, we have
X = UAV T ,

where the orthogonal matrices U and V consist of two parts. The upper half-parts of U and V correspond to the
lowpass filters, and the lower half-parts are the highpass filters. Note that U acts on the column vectors of the image
and V T acts on the row vectors of the image. Therefore, the discrete wavelet transform divides the image into four
parts as follows.

Procedure 2.

1. The top left part is produced by the two-dimensional scaling function ϕ(x)ϕ(y).

2. The top right part is is produced by the vertical wavelet function ψ(x)ϕ(y).

3. The bottom left part is produced by the horizontal wavelet function ϕ(x)ψ(y).

4. The bottom right part is is produced by the diagonal wavelet function ψ(x)ψ(y).
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The top left part is called an approximation because it is smooth and has large values. The other three parts are
called details because they emphasize horizontal, vertical, and diagonal edges, respectively. These three parts have
small absolute values except for the edges.

We have a multi-level decomposition by applying this decomposition to successive approximations. When we
apply this decomposition to approximations and details, we have a series of multi-level decompositions called wavelet
packet decompositions.

6 Block Algorithms

The analysis stage of a two-dimensional separable discrete wavelet transform decomposes an image into four parts,
namely, the smooth part, the vertical-edge part, the horizontal-edge part, and the diagonal-edge part. Similar
decompositions are achieved by the DCT and the SVD by means of the following block algorithm.

Algorithm 1 (Block Algorithm).

1. A given image matrix X ∈ Rm×n is divided into b× b submatrices

X(k,`), 1 ≤ k ≤ m/b, 1 ≤ ` ≤ n/b.

2. Each submatrix X(k,`) is transformed into X(k,`)
1 by the DCT or the SVD.

3. All (i, j) elements of X(k,`)
1 are collected to make an m/b× n/b matrix X(i,j)

2 .

4. The X(i,j)
2 matrices are put in the (i, j) position to produce the m× n matrix X3 which contains b2 parts and

is similar to the matrix obtained by the DWT.

6.1 Karhunen–Loève Transform

Let an image matrix X ∈ Rm×n be given. Define the mn
b × b data matrices Xv and Xh by stacking the b × b

submatrices X(k,`)T
and X(k,`) in the form

Xv =


X(1,1)T

...
X(m/b,n/b)T

 , Xh =

 X(1,1)

...
X(m/b,n/b)

 . (4)

Calculate Rv and Rh from the data matrices Xv and Xh by

Rv =
b

mn
XT

v Xv, Rh =
b

mn
XT

h Xh. (5)

Definition 6. The Karhunen–Loève transform of each submatrix X(k,`) is defined by

X
(k,`)
1 = KT

v X
(k,`)Kh, (6)

where the columns of Kv and Kh are eigenvectors of the vertical and horizontal covariance matrices Rv and Rh,
respectively.

All the elements of the matrices X(k,`)
1 are assembled into an m× n matrix.

The inverse KLT is X(k,`) = KvX
(k,`)
1 KT

h . The two b × b orthogonal matrices Kv and Kh must be kept for the
inverse KLT, because Kv and Kh depend on the image X.

6.2 Kakarala–Ogunbona’s Algorithm

Kakarala–Ogunbona’s algorithm [2] is a kind of multiresolution algorithm. We explain here the two-dimensional
algorithm for level 1.

Algorithm 2.

1. Each b× b submatrix X(k,`) of matrix X is reshaped into a b2 × 1 column vector.
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2. These column vectors are collected into a b2 × (mn/b2) matrix T .

3. T is factored into its singular value decomposition in the form T = USV T .

4. Calculate the b2 × (mn/b2) matrix A = UTT = SV T .

5. Each column vector of A is reshaped into a b× b matrix X(k,`)
1 .

6. All the matrices X(k,`)
1 are rearranged into an m× n matrix.

Figure 1 illustrates the algorithm for the level 1 singular value decomposition multiresolution analysis on a 32×32
matrix X.

Figure 2 illustrates the difference between svd and 9/7 wavelet multiresolutions at level 1 for the octagon figure.
One notices that the four isolated diagonal segments appear in the lower-left and lower-right detail parts of the svd
and wavelet multiresolutions, respectively. The singular values and left singular vectors for the level-1 SVD MRA of
the octagon image are in the vector S and the columns of U , respectively,

S = 4554.4 U = 0.5000 -0.0000 -0.7071 -0.5000
3524.2 0.5000 0.7071 -0.0000 0.5000
3524.2 0.5000 -0.7071 0.0000 0.5000
2024.0 0.5000 0.0000 0.7071 -0.5000

One sees that the first column of U is a lowpass filter.

Remark 5. Note that the norm of the first row of A is equal to the largest singular value of T , and the norm of the
n-th row of A is equal to the n-th singular value of T , because the matrix V is orthogonal.

Remark 6. In the Kakarala–Ogunbona algorithm, the matrix UT is used for the transform. When the inverse
transform is needed, the b2 × b2 orthogonal matrix U and the singular values must be kept.

6.3 DCT

The DCT is applied to each b× b submatrix X(k,`). The matrix U is the same as in (1) with m = b. Then

X
(k,`)
1 = UX(k,`)UT .

Remark 7. In the DCT, U is fixed; hence the orthogonal matrix U does not have to be kept. The matrices X(k,`)
1

are rearranged into an m× n matrix.

7 Coding Methods

7.1 SPIHT

The SPIHT [4] algorithm is based on the following two observations.

Observation 1. The pixels of the analyzed image having large absolute values are concentrated in the upper-left
corner.

Observation 2. The hierarchical edge structure, that is, when a wavelet coefficient has large absolute value, the points
at other levels corresponding to this coefficient also have large absolute values.

For the wavelet coefficient at level J , we define the children set of coefficients as the 2 × 2 block at level J − 1
corresponding to this coefficient. We also define the descendent set. See left Fig. 3.

SPIHT has three ordered lists:

• the list of significant pixels (LSP),

• the list of insignificant pixels (LIP),

• the list of insignificant sets (LIS).

LIP and LIS are searching areas. LSP lists the pixels whose absolute values are greater than 2N , thus requiring more
than N bits. Each pixel of LIP is tested to know whether its absolute value is less than 2N or not. Each pixel of LIS
is tested to know whether the absolute values of all its descendants are less than 2N . At first step, all the pixels of
LIS are type ‘A’. Some pixels of LIS will be changed from type ‘A’ to type ‘B’ in the following procedure.
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Figure 1: Level 1 SVD MRA for a 32× 32 matrix.
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log2(svd analyzed fig.) log2(wavelet analyzed fig.)

Figure 2: Negative level 1 approximation and detail subimages of octagon figure produced with SVD and 9/7 wavelet
MR, respectively. The level 1 approximation is in the top left subimages.
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Figure 3: Left: Hierarchical structure. Right: Binary representation of the magnitude-ordered coefficients.
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Procedure 3.

1. LSP is taken as an empty list, LIP is the set of top level coefficients. LIS is the set of top level wavelet
coefficients and all the pixels of LIS are type ‘A’. N is set to the most significant bit of all coefficients.

2. Check all the pixels of LSP and output 0 if the Nth bit of this pixel is 0, and output 1 otherwise.

3. Check all the pixels of LIP and output 0 if the absolute value of this pixel is less than 2N . Otherwise, output 1
and, moreover, output 0 when the value of this pixel is negative and 1 if positive, and move this pixel to LSP.

4. Check all the pixels of LIS.

(a) When a pixel is of type ‘A’, output 0 if the absolute value of all descendants of this pixel is less than 2N .
Otherwise, output 1 and do the following:

i. Check all four children.
ii. When the absolute value of a child is greater than or equal to 2N , output 1 and, moreover, output 0

or 1 according to the sign of this child and add this child to LSP.
iii. When the absolute value of this child is less than 2N , add this child to the end of LIP.
iv. When this pixel has grandchildren, move it to the end of LIS as a pixel of type ‘B’.

(b) When a pixel is of type ‘B’, output 0 if the absolute values of all descendants, apart from the children, are
less than 2N . Otherwise, output 1 and add each child to the end of LIS as type ‘A’ and delete this pixel
from LIS.

5. Set N to N − 1 and go to step (2).

6. When the number of output bits exceeds the threshold (which is decided by bpp), then stop this procedure.

7.2 Run-length and Huffmann Coding

The analyzed image can be quantized economically by the following procedure.

Procedure 4.

1. Divide each block of the analyzed image by some integer which depends on the image and the block location.
Each pixel of this divided image is rounded to an integer. This quantized analyzed image has many 0 entries.

2. Reshape this image into a long row vector. In this step, use the following two methods:

(a) Reshape each block into a vector and stack these vectors together.

(b) Use the hierarchical tree (0 tree) algorithm.

3. Compress the 0 entries of this long row vector by the run-length coding.

4. Compress the run-length coded image by gzip.

8 Hybrid Wavelet-SVD Method

We propose a hybrid method which combines wavelet and singular value decompositions. This method consists in
the following three steps.

Procedure 5.

1. Transform the m× n image X into the analyzed image X1 by the level-two DWT using the 9/7 biorthogonal
wavelets.

2. Decompose X1 into 2× 2-block SVD MRA up to level six to get X2.

3. Compress X2 by SPIHT and compress the resulting image with gzip.

The synthesis procedure consists in the following three steps.

Procedure 6.

1. Uncompress the gzip image with gunzip and decode the compressed code to X̂2.
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2. Take the inverse 2× 2-block SVD transform to get the synthesized image X̂1.

3. Obtain the reconstructed image x̂ from X̂1 by the inverse DWT.

We have the following observation.

Observation 3.

1. Our hybrid wavelet-SVD method is better than SVD alone.

2. Our hybrid method is better than biorthogonal wavelet for the fp1 and barb images.

The above observation leads us to the following conclusion.

Conclusion 1.

1. The SVD decomposition depends on the data and cannot deal with data in time-frequency domain. Because
our hybrid method contains wavelet analysis, which is a kind of time-frequency analysis, our hybrid method
performs better.

2. The blocking effect in our hybrid method is weaker than with SVD, because we use long-filter wavelets in the
last synthesis step.

9 Numerical Experiments

The following methods have been used to obtain compression from 8 bits per pixel (bpp) to 1, 0.5 and 0.25 bpp.

• bior4.4 is the biorthogonal wavelet filter with 9/7 taps of [10].

• db2 is Daubechies’ compactly supported wavelet filter with N = 2.

• 2by2SVDMR and 4by4SVDMR are the SVD multiresolutions with block size 2 and 4, respectively.

• JPEG is Matlab’s imwrite function.

• 2by2KLTMR and 4by4KLTMR are the KLT multiresolutions with block size 2 and 4, respectively.

• bior4.4+SVD consists of the following two steps. In the first step, the image is transformed by bior4.4 wavelet
to level 2. In the second step, the transformed image is decomposed by 2by2SVDMR to level 6.

Remark 8. The SPIHT algorithm [4] is used for coding the MRA methods.

Definition 7. Peak Signal to Noise Ratio (PSNR) and Signal to Noise Ratio (SNR) for an original m × n image,
X, and the reconstructed image, x̂, are defined as follows:

PSNR = 10 log10

(
2552mn∑m

i=1

∑n
j=1 [X(i, j)− x̂(i, j)]2

)
= 10 log10

(
2552mn

‖X − x̂‖2
F

)
(7)

and

SNR = 10 log10

( ∑m
i=1

∑n
j=1 X(i, j)2∑m

i=1

∑n
j=1 [X(i, j)− x̂(i, j)]2

)
= 10 log10

(
‖X‖2

F

‖X − x̂‖2
F

)
. (8)

In this work, bpp is the number of bits in the gzip file divided by the number of bits in the original image.

The six well-known images listed below and shown in Fig. 4 have been tested.

512× 512 Lena 512× 512 Boats
512× 512 Barb 512× 512 Yogi

512× 640 Goldhill 768× 768 fp1

Here the fp1 image is a sample of the FBI WSQ FINGERPRINT COMPRESSION DEMOS 4.2.5.
The numerical results are listed in Tables 1 to 3.
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Figure 4: The six original figures.
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Observation 4. Peak Signal to Noise Ratio (PSNR) with the bior4.4 method is generally higher except for the Yogi
image at 1 and 0.5 bpp where 2by2SVDMR and 2by2KLTMR are superior.

Conclusion 2.

1. In case of high compression ratio, that is, low bpp, block effects appeared for SVD, KLT, and JPEG, especially
remarkable for SVD2by2 and KLT2by2. On the other hand, in case of wavelet with long filters, images were out
of focus. Our hybrid method using 9/7 wavelet with SVD lies between these two opposite cases.

2. For the fingerprint, our hybrid method using 9/7 wavelet with SVD was superior to the other methods.

3. Since Yogi has fewer grey levels, SVD2by2 and KLT2by2 performed better in our experiment because these
transforms have short filters.

4. For other images, our hybrid method performed a little bit inferior to wavelet bior4.4, but superior to SVD,
KLT, and JPEG.

Every experiment was run four times successively under the same conditions, and the CPU, as measured with
the Matlab profile function, was taken to be the mean value of the last three runs. The computations were done
on a portable PC with the following specifications: Pentium III 866 Mhz, 512 MB memory, Microsoft Windows 2000
and Matlab R13.

10 Visual Inspection of Goldhill Image at 0.25 bpp.

At high compression ratio, that is, low bit per pixel, visual inspection is necessary to ascertain the quality of
synthesized images. Here, we comment on several aspects of the goldhill image which has been compressed to 0.25
bpp with the following six algorithms: bior4.4, db2, 2by2SVDMR, 4by4SVDMR, 4by4KLTMR, and bior4.4+SVD.

• The sky: good with bior4.4 and db2; blocking effects with 2by2SVDMR, 4by4SVDMR, and 4by4KLTMR; stripes
with bior4.4+SVD.

• Boundary between sky and skyline: although the boundary is clear and smooth in the original image, it
is smooth but out of focus with bior4.4 and db2; it is close to the original with 2by2SVDMR, 4by4SVDMR, and
4by4KLTMR but has blocking effects; it is close to the original with bior4.4+SVD.

• Roofs’ shingles: The original shingles have clear rectangular forms. They are smooth but the rectangular
forms cannot be seen with bior4.4 and db2. They can be seen with 2by2SVDMR, 4by4SVDMR, and 4by4KLTMR
but there are significant blocking effects. An interpolated result between the above two results is obtained with
bior4.4+SVD.

• Road’s cobble-stones: As for the roof with bior4.4 and db2; the road looks like a mud road. Small stones,
not in the original, have been added with 2by2SVDMR, 4by4SVDMR, and 4by4KLTMR. With bior4.4+SVD, they
are closed to the original.
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Appendix

The appendix contains Tables 1–3 and Figs. 7–11 which present detailed numerical results on the compression
methods applied to the six figures considered in this paper.
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Figure 6: PSNR curve against bpp for lena with: (left) bior4.4+SVD, bior4.4, db2, klt2by2; (right) bior4.4+SVD,
jpeg, klt4by4, and svd2by2.
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Figure 7: PSNR curve against bpp for boats with: (left) bior4.4+SVD, bior4.4, db2, klt2by2; (right) bior4.4+SVD,
jpeg, klt4by4, and svd2by2.
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Table 1: Results for 512× 512 Lena (top) and Boats (bottom) images at pbb = 1, 0.5 and 0.25 except for JPEG.

bpp Method Level PSNR MSE MaxErr SNR CPU
1 bior4.4 6 39.9248 6.616 13.766 34.2438 5.74

db2 6 39.0081 8.1709 13.9631 33.3271 5.11
by2SVDMR 6 37.5542 11.42 25.1442 31.8731 3.81
by4SVDMR 4 38.1503 9.9552 22.4506 32.4693 3.96

1.02 JPEG 37.9285 10.4769 32 32.2474 1.00
2by2KLTMR 6 37.181 12.4445 24.8446 31.5 34.55
4by4KLTMR 4 38.1987 9.8448 24.6576 32.5177 9.68
bior4.4+SVD 2+6 39.1869 7.8413 15.7794 33.5059 6.35

0.5 bior4.4 6 36.6857 13.9479 27.1368 31.0047 5.13
db2 6 35.3878 18.806 25.0413 29.7068 4.76

2by2SVDMR 6 33.6065 28.3417 49.3352 27.9255 3.43
4by4SVDMR 4 34.3695 23.7756 49.9308 28.6884 3.47

0.50 JPEG 34.6181 22.4528 56 28.937 0.97
2by2KLTMR 6 33.4096 29.6567 45.7465 27.7285 34.12
4by4KLTMR 4 34.3619 23.8175 50.0632 28.6808 9.32
bior4.4+SVD 2+6 35.7576 17.271 36.5254 30.0766 5.85

0.25 bior4.4 6 33.4193 29.5901 41.9485 27.7383 4.96
db2 6 32.0355 40.6943 44.8188 26.3544 4.64

2by2SVDMR 6 30.3235 60.3568 64.4865 24.6425 3.14
4by4SVDMR 4 30.8061 54.0094 73.974 25.1251 3.24

0.26 JPEG 30.7576 54.6158 82 25.0766 0.97
2by2KLTMR 6 30.2218 61.7871 61.0016 24.5408 34.74
4by4KLTMR 4 30.7977 54.1135 63.7171 25.1167 9.17
bior4.4+SVD 2+6 32.2857 38.416 52.0023 26.6046 5.55

1 bior4.4 6 36.0533 16.1342 22.5899 30.7107 5.41
db2 6 35.321 19.0977 22.4977 29.9784 5.13

2by2SVDMR 6 34.2964 24.1792 25.2346 28.9538 3.88
4by4SVDMR 4 34.7409 21.827 26.9606 29.3983 3.95

1.01 JPEG 34.524 22.9445 42 29.1814 1.01
2by2KLTMR 6 34.2954 24.1845 24.7067 28.9528 34.56
4by4KLTMR 4 34.8359 21.3544 26.5875 29.4933 9.64
bior4.4+SVD 2+6 35.4574 18.5071 24.9773 30.1148 6.23

0.5 bior4.4 6 32.6529 35.3013 40.2116 27.3103 5.12
db2 6 31.826 42.7051 39.3889 26.4834 4.73

2by2SVDMR 6 30.6503 55.9823 51.3853 25.3077 3.51
4by4SVDMR 4 30.9919 51.747 51.7476 25.6493 3.48

0.51 JPEG 30.9622 52.1028 76 25.6196 0.98
2by2KLTMR 6 30.6895 55.4793 48.4687 25.3469 34.03
4by4KLTMR 4 31.0816 50.6898 53.2124 25.739 9.27
bior4.4+SVD 2+6 31.855 42.4207 59.3783 26.5124 5.72

0.25 bior4.4 6 29.4905 73.1191 80.172 24.1479 4.98
db2 6 28.6923 87.8713 75.3258 23.3497 4.53

2by2SVDMR 6 27.5786 113.5583 81.147 22.236 3.27
4by4SVDMR 4 27.8278 107.2269 87.8259 22.4852 3.23

0.25 JPEG 27.3174 120.5969 109 21.9748 0.99
2by2KLTMR 6 27.658 111.5017 82.5188 22.3154 34.10
4by4KLTMR 4 27.9562 104.1012 87.8324 22.6136 9.17
bior4.4+SVD 2+6 28.5882 90.0041 78.3846 23.2456 5.43
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Table 2: Results for 512× 640 Goldhill at pbb = 1, 0.5 and 0.25 (top), and 512× 512 Barb at pbb = 2.5, 1.5 and 1
(bottom), except for JPEG.

bpp Method Level PSNR MSE MaxErr SNR CPU
1 bior4.4 6 36.3622 15.0265 23.7688 29.3989 6.67

db2 6 35.7136 17.4472 27.0927 28.7503 5.99
2by2SVDMR 6 35.0861 20.1591 23.9787 28.1228 4.53
4by4SVDMR 3 35.7573 17.2721 23.1946 28.7941 4.43

0.99 JPEG 35.5888 17.9557 36 28.6255 1.14
2by2KLTMR 6 35.3328 19.0461 23.8781 28.3695 43.58
4by4KLTMR 3 36.0887 16.0033 22.8738 29.1254 11.80
bior4.4+SVD 2+6 35.9328 16.5882 30.1457 28.9695 7.19

0.5 bior4.4 6 32.9613 32.8817 40.0127 25.998 6.45
db2 6 32.2567 38.6729 43.5024 25.2935 5.66

2by2SVDMR 6 31.7024 43.9384 43.1178 24.7391 4.04
4by4SVDMR 3 32.3218 38.0975 43.6338 25.3586 3.86

0.51 JPEG 32.5053 36.5218 48 25.542 1.16
2by2KLTMR 6 31.9307 41.6877 42.567 24.9674 43.30
4by4KLTMR 3 32.525 36.3563 41.976 25.5617 11.35
bior4.4+SVD 2+6 32.532 36.2975 45.177 25.5688 6.61

0.25 bior4.4 6 30.5292 57.5658 51.2446 23.5659 6.33
db2 6 29.77 68.5611 64.5146 22.8068 5.34

2by2SVDMR 6 29.3633 75.2917 73.4238 22.4001 3.74
4by4SVDMR 3 29.6741 70.0923 66.1833 22.7108 3.65

0.26 JPEG 29.6083 71.1619 70 22.6451 1.15
2by2KLTMR 6 29.5023 72.9213 74.7445 22.539 43.05
4by4KLTMR 3 29.8132 67.8827 60.2749 22.8499 11.07
bior4.4+SVD 2+6 29.9528 65.7348 68.479 22.9896 6.24

2.5 bior4.4 6 35.0219 20.4593 23.9209 28.746 6.26
db2 6 34.7532 21.7652 24.0993 28.4773 6.15

2by2SVDMR 6 33.9956 25.9134 24.3521 27.7197 4.64
4by4SVDMR 4 34.5174 22.9797 22.07 28.2415 4.50

2.51 JPEG 31.3679 47.4558 36 25.092 1.04
2by2KLTMR 6 33.9714 26.0578 25.3355 27.6955 34.80
4by4KLTMR 4 34.6531 22.2725 22.7902 28.3772 10.08
bior4.4+SVD 2+6 35.0748 20.2116 23.3207 28.7989 7.06

1.5 bior4.4 6 30.3506 59.9822 34.2253 24.0747 5.94
db2 6 30.0205 64.7188 37.389 23.7446 5.56

2by2SVDMR 6 29.4611 73.6165 39.915 23.1852 4.14
4by4SVDMR 4 29.8336 67.565 37.9863 23.5577 4.11

1.51 JPEG 28.2041 98.3269 51 21.9282 1.01
2by2KLTMR 6 29.4167 74.3729 40.5208 23.1408 34.47
4by4KLTMR 4 29.9307 66.0707 39.6838 23.6548 9.76
bior4.4+SVD 2+6 30.4038 59.252 38.8405 24.1279 6.51

1 bior4.4 6 28.3242 95.6439 45.1589 22.0483 5.22
db2 6 27.9396 104.5002 47.2902 21.6637 4.91

2by2SVDMR 6 27.3752 119.0046 47.9829 21.0993 3.79
4by4SVDMR 4 27.6971 110.5011 49.2355 21.4212 3.90

1.00 JPEG 26.9836 130.2339 59 20.7077 1.02
2by2KLTMR 6 27.3426 119.8991 48.3912 21.0668 34.57
4by4KLTMR 4 27.8701 106.186 48.9431 21.5942 9.43
bior4.4+SVD 2+6 28.2997 96.1849 55.6651 22.0238 6.14
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Table 3: Results for 512 × 512 Yogi (top) and 768 × 768 fp1 (bottom) images at pbb = 1, 0.5 and 0.25 except for
JPEG.

bpp Method Level PSNR MSE MaxErr SNR CPU
1 bior4.4 6 40.4154 5.9093 20.4526 33.8765 5.33

db2 6 40.1399 6.2963 21.1893 33.601 5.04
2by2SVDMR 6 51.1502 0.49895 7.3822 44.6113 3.96
4by4SVDMR 4 36.7073 13.8788 36.7056 30.1684 3.94

1.01 JPEG 36.6607 14.0286 42 30.1218 0.93
2by2KLTMR 6 47.9938 1.0321 5.5872 41.4549 34.78
4by4KLTMR 4 37.6329 11.2146 36.2385 31.0941 9.54
bior4.4+SVD 2+6 35.8276 16.9948 36.2836 29.2887 5.99

0.5 bior4.4 6 31.431 46.7712 66.2005 24.8921 5.06
db2 6 30.3525 59.9555 71.4808 23.8136 4.63

2by2SVDMR 6 34.1772 24.8517 61.563 27.6384 3.37
4by4SVDMR 4 28.8366 85.0009 127.6891 22.2977 3.35

0.51 JPEG 28.8926 83.9116 112 22.3537 0.96
2by2KLTMR 6 34.4421 23.3812 62.9133 27.9033 34.08
4by4KLTMR 4 29.2121 77.9592 126.2277 22.6732 9.07
bior4.4+SVD 2+6 28.8919 83.9258 108.8086 22.353 5.65

0.25 bior4.4 6 25.9514 165.1729 115.3645 19.4125 4.76
db2 6 25.134 199.3799 133.0653 18.5951 4.42

2by2SVDMR 6 25.649 177.0857 182.0826 19.1101 3.17
4by4SVDMR 4 24.0952 253.2555 218.0407 17.5563 3.29

0.26 JPEG 24.5029 230.5646 182 17.964 1.00
2by2KLTMR 6 25.7329 173.696 179.1697 19.194 34.07
4by4KLTMR 4 24.3188 240.5475 190.2592 17.7799 8.93
bior4.4+SVD 2+6 24.6841 221.1439 162.3407 18.1452 5.48

1 bior4.4 6 39.6836 6.9939 14.7271 37.2212 10.30
db2 6 38.1298 10.0024 22.6324 35.6674 9.72

2by2SVDMR 6 36.5685 14.3293 21.8489 34.1062 6.29
4by4SVDMR 4 38.0429 10.2044 18.848 35.5806 6.33

1.00 JPEG 37.8249 10.7297 22 35.3626 1.70
2by2KLTMR 6 35.7928 17.1316 22.3083 33.3305 76.86
4by4KLTMR 4 38.2215 9.7934 17.411 35.7591 20.23
bior4.4+SVD 2+6 40.2211 6.1798 14.963 37.7587 11.93

0.5 bior4.4 6 35.7242 17.4044 32.5514 33.2619 9.76
db2 6 33.8344 26.893 35.0699 31.3721 9.04

2by2SVDMR 6 31.4826 46.2189 44.0702 29.0202 5.46
4by4SVDMR 4 33.6328 28.1708 37.6675 31.1704 5.59

0.50 JPEG 33.9999 25.8873 37 31.5376 1.68
2by2KLTMR 6 31.1654 49.7211 43.4191 28.703 76.19
4by4KLTMR 4 33.7659 27.3208 38.3423 31.3035 19.51
bior4.4+SVD 2+6 35.9536 16.5091 28.774 33.4912 11.04

0.25 bior4.4 6 32.5333 36.2869 44.5788 30.0709 9.30
db2 6 30.5249 57.6221 53.0734 28.0626 8.73

2by2SVDMR 6 28.1966 98.4971 67.8917 25.7342 5.14
4by4SVDMR 4 29.5129 72.7427 65.4109 27.0505 5.16

0.25 JPEG 28.9897 82.0562 84 26.5273 1.68
2by2KLTMR 6 28.0517 101.8381 70.4279 25.5893 75.78
4by4KLTMR 4 29.6661 70.2217 73.4828 27.2037 19.16
bior4.4+SVD 2+6 32.4364 37.1059 42.7483 29.974 10.56
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Figure 8: PSNR curve against bpp for goldhill with: (left) bior4.4+SVD, bior4.4, db2, klt2by2; (right)
bior4.4+SVD, jpeg, klt4by4, and svd2by2.
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Figure 9: PSNR curve against bpp for barb with: (left) bior4.4+SVD, bior4.4, db2, klt2by2; (right) bior4.4+SVD,
jpeg, klt4by4, and svd2by2.
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Figure 10: PSNR curve against bpp for yogi with: (left) bior4.4+SVD, bior4.4, db2, klt2by2; (right) bior4.4+SVD,
jpeg, klt4by4, and svd2by2.
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Figure 11: PSNR curve against bpp for fp1 with: (left) bior4.4+SVD, bior4.4, db2, klt2by2; (right) bior4.4+SVD,
jpeg, klt4by4, and svd2by2.
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