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Abstract

We survey general results on the boundedness of pseudodifferential operators in Lp(Rn). We mainly
consider operators with nonregular symbols which are general versions of Hörmander’s class Sm

ρ,δ. We
treat the theory in a rather classic and elementary manner.

To appear in Cubo Matemática Educacional

Résumé

On rappelle des résultats généraux sur la continuité des opérateurs pseudo-différentiels dans Lp(Rn),
surtout les opérateurs aux symboles non-réguliers qui généralisent la classe de Hörmander Sm

ρ,δ. La pré-
sentation est classique et élémentaire.
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1 Introduction

The theory of pseudodifferential operators was born in the early 1960’s and, thereafter, it evolved with the theory of
partial differential equations. Therefore, many topics in these two theories are closely related, like the hypoellipticity
of operators, the sharp form of G̊arding’s inequality, the parametrix of operators, and so on. In the theory of
pseudodifferential operators, one of the most interesting topics is to investigate the behavior of pseudodifferential
operators of Hörmander’s class, Sm

ρ,δ, in Lp(Rn) and Sobolev spaces. The behavior of operators in Lp(Rn) spaces
plays an essential role in the theory of linear and nonlinear partial differential equations. In the present paper, we
consider operators with nonregular symbols which are generalizations of Hörmander’s class Sm

ρ,δ.
We treat the theory of pseudodifferential operators in a rather classic manner, dealing mainly with their behavior in

Lp(Rn) spaces. We present very elementary results and methods for the proof of the boundedness of pseudodifferential
operators in Lp(Rn). We note that the results presented here may not be the best possible ones.

We do not treat symbols of the form p(x, ξ, y). In the case of smooth symbols there is no difference between the
cases p(x, ξ) and p(x, ξ, y). However, if we consider nonsmooth symbols, the behavior of the operators p(X,Dx) and
p(X,Dx, Y ) in Lp(Rn) may be slightly different. For example, when the symbol is of the form p(x, ξ, y), Hörmander’s
Theorem 3.1 in Section 3 is a little different (see [9]). Recently, many authors (see, for example [12], [7]) have treated
operators with symbols p(x, ξ, y) by using modulation spaces or Besov spaces.

In Section 2, we recall fundamental results on the algebra and the asymptotic expansion formulas of symbols of
pseudodifferential operators. In Section 3, we treat L2(Rn) boundedness. In Section 4, we list well-known fundamental
results on the behavior of pseudodifferential operators in Lp(Rn) spaces. However, the purpose of this section is to
present boundedness results for operators with symbols whose order is, in some sense, lower than the critical order
in Lp(Rn) spaces. In Section 5, we give a boundedness theorem from L∞(Rn) to BMO. For the case ρ = 1 the main
results of the present paper on the Lp(Rn) boundedness of pseudodifferential operators are given in Section 6. In the
last two sections, Sections 7 and 8, we consider symbols which may be useful when considering classes of pseudo (or
partial) differential operators with magnetic potentials. The results in Sections 7 and 8 can be found in [14].

2 Fundamental properties of pseudodifferential operators

We use the notation found in [10]. Moreover we use a lot of constants C which are not the same at each occasion. For
a point x ∈ Rn we write |x| =

√
x2

1 + · · ·+ x2
n and 〈x〉 =

√
1 + x2

1 + · · ·+ x2
n. For a multi-integer α = (α1, . . . , αn),

we denote

∂α
x = ∂α1

x1
· · · ∂αn

xn
=

∂|α|

∂α1
x1 · · · ∂αn

xn

,
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where |α| = α1 + · · ·+ αn, and we write Dx = (−i)∂x. Hence

Dα
x = Dα1

x1
· · ·Dαn

xn
=
(

1
i

)|α|
∂|α|

∂α1
x1 · · · ∂αn

xn

.

For a function f(x, ξ) on Rn
x × Rn

ξ and multi-integers α and β we write

f
(α)
(β) (x, ξ) = ∂α

ξ D
β
xf(x, ξ).

We begin with the definition of symbols of Hörmander’s class Sm
ρ,δ.

Definition 2.1. The set of smooth functions p(x, ξ) on Rx
n × Rξ

n which satisfy

|p(α)
(β)(x, ξ)| ≤ Cα,β〈ξ〉m−ρ|α|+δ|β|

for any α and β is denoted by Sm
ρ,δ.

For a function p(x, ξ) in Sm
ρ,δ, we define the pseudodifferential operator p(X,Dx) by

p(X,Dx)u(x) =
1

(2π)n/2

∫
Rn

eix·ξp(x, ξ)û(ξ) dξ,

where û(ξ) denotes the Fourier transform of the function u(x), that is,

û(ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξu(x) dx.

Hereafter, we denote integrals
∫

Rn

u(x) dx taken over Rn simply by
∫
u(x) dx.

In the present paper, we mainly treat the case δ < 1. A very interesting study by David and Journé [4] considers
pseudodifferential operators in Lp(Rn) for the case δ = ρ = 1.

Norms in Lp(Rn) are

‖u‖p =
[∫

|u(x)|p dx
]1/p

(1 ≤ p <∞),

and
‖u‖∞ = esssup{|u(x)| : x ∈ Rn} (p = ∞).

In order to define a new class of symbols we need to define basic weight functions.

Definition 2.2. A real valued smooth function, λ(x, ξ), which satisfies the two conditions:

(i) There exists a constant 0 ≤ σ ≤ 1 such that 1 ≤ λ(x, ξ) ≤ C〈x〉σ〈ξ〉.

(ii) There exists a constant 0 ≤ δ < 1 such that, for any multi-indices α and β, we have

|λ(α)
(β)(x, ξ)| ≤ Cα,βλ(x, ξ)1−|α|+δ|β|

for some constant Cα,β,

is called a basic weight function.

Of course, the function 〈ξ〉 is a typical basic weight function. The function λ(x, ξ) =
√

1 + |x|2 + |ξ|2 is also a
typical example of a basic weight function (see [1]). This λ(x, ξ) can be used, for example, when we consider various
harmonic oscillator problems. In [1], Boggiatto and Rodino consider a weight function λ(x, ξ) which satisfies

c〈ξ〉ε ≤ λ(x, ξ).

Here, however, we assume that
1 ≤ λ(x, ξ)

for applications to quantized Hamiltonians problems with magnetic vector potentials.
Let a(x) =

(
a1(x), a2(x), . . . , an(x)

)
be an Rn valued function on Rn such that |∂αaj(x)| are bounded for any

α 6= 0 and j = 1, . . . , n. In Sections 7 and 8, we shall use a basic weight function of the form

λ(x, ξ) = 〈x− a(x)〉 =
√

1 + |ξ − a(x)|2.

A simple calculation gives the following lemma.
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Lemma 2.1. Let λ(x, ξ) be a basic weight function. Then we have

λ(x, ξ + η) ≤ C〈η〉λ(x, ξ).

Definition 2.3. Let λ(x, ξ) be a basic weight function and let m, ρ and δ be real numbers such that 0 ≤ δ ≤ ρ ≤ 1
and δ < 1. Then the symbol class Sm

ρ,δ,λ is defined by

Sm
ρ,δ,λ = {p(x, ξ) : |p(α)

(β)(x, ξ)| ≤ Cα,βλ(x, ξ)m−ρ|α|+δ|β| for any α and β}.

We denote S∞ρ,δ,λ =
⋃

m∈R S
m
ρ,δ,λ. For a symbol p(x, ξ) ∈ S∞ρ,δ,λ we define the pseudodifferential operator P =

p(X,Dx) as above and write p(X,Dx) ∈ S∞ρ,δ,λ, If the symbol p(x, ξ) belongs to Sm
ρ,δ,λ we write p(X,Dx) ∈ Sm

ρ,δ,λ.
The class S∞ρ,δ,λ forms an algebra in the following sense.

Theorem 2.1. Let λ(x, ξ) be a basic weight function and let 0 ≤ δ ≤ ρ ≤ 1 and δ < 1.
(a) If pj(X,Dx) ∈ Smj

ρ,δ,λ (j = 1, 2), then p1(X,Dx) + P2(X,Dx) ∈ Sm
ρ,δ,λ, where m = max{m1,m2}.

(b) If pj(X,Dx) ∈ Smj

ρ,δ,λ (j = 1, 2), then there exists a symbol p(x, ξ) ∈ Sm1+m2
ρ,δ,λ such that

p(X,Dx)u(x) = p1(X,Dx)p2(X,Dx)u(x) (u ∈ S),

and p(x, ξ) has the following asymptotic expansion:

p(x, ξ) ∼
∞∑

k=0

pk(x, ξ),

where

k(x, ξ) =
∑
|α|=k

1
α!
p
(α)
1 (x, ξ)p2(α)(x, ξ) ∈ S

m1+m2−(ρ−δ)k
ρ,δ,λ .

(c) If p(X,Dx) ∈ Sm
ρ,δ,λ, then there exists a symbol p∗(x, ξ) ∈ Sm

ρ,δ,λ such that

(p(X,Dx)u, v) = (u, p∗(X,Dx)v) (u, v ∈ S),

and p∗(x, ξ) has the following asymptotic expansion:

p∗(x, ξ) ∼
∞∑

k=0

pk(x, ξ),

where

pk(x, ξ) =
∑
|α|=k

(−1)k

α!
p
(α)
(α)(x, ξ) ∈ S

m1+m2−(ρ−δ)k
ρ,δ,λ .

3 Fundamental boundedness results in L2(R)

We denote the set of bounded linear operators on a Banach space E by L(E). In [8], Hörmander gives an interesting
result about the L2(Rn) and Lp(Rn) boundedness of pseudodifferential operators. We start with L2(Rn) boundedness
results.

Theorem 3.1. Let 0 ≤ ρ ≤ 1 and 0 ≤ δ ≤ 1. Then

Sm
ρ,δ ⊂ L

(
L2(Rn)

)
=⇒ m ≤ m0 = min

[
0,
n

2
(ρ− δ)

]
.

Hörmander shows that the converse is true if 0 ≤ δ < ρ ≤ 1. Moreover by Calderón and Vaillancourt [2], we have

Theorem 3.2 (Calderón and Vaillancourt). Let 0 ≤ δ < 1 and 0 ≤ ρ ≤ 1. Then the converse of Theorem 3.1
is true, that is, the inclusion Sm0

ρ,δ ⊂ L
(
L2(Rn)

)
holds.

The Calderón–Vaillancourt Theorem is generalized to the case of nonregular symbols.
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Theorem 3.3 (See, for example, [3]). Let 0 ≤ δ ≤ ρ ≤ 1 and δ < 1. We put κ = [n/2] + 1. If a symbol p(x, ξ)
satisfies

|p(α)
(β)(x, ξ)| ≤ Cα,β〈ξ〉−ρ|α|+δ|β|

for any |α| ≤ κ and |β| ≤ κ, then the operator p(X,Dx) is bounded in L2(Rn), that is, there is a constant C such
that

‖p(X,Dx)u‖2 ≤ C‖u‖2.

In particular, in the case δ = ρ = 0, if a bounded symbol p(x, ξ) is such that |p(α)
(β)(x, ξ)| is bounded for any |α| ≤ κ

and |β| ≤ κ, then the operator p(X,Dx) is bounded in L2(Rn).

In the present paper, our starting point for the L2(Rn) boundedness is Theorem 3.3. Then we have the following
theorem.

Theorem 3.4. Let λ(x, ξ) be a basic weight function and assume that 0 ≤ δ ≤ ρ ≤ 1 and δ < 1. If the symbol
p(x, ξ) ∈ S−σ

ρ,δ,λ for a positive σ, then the operator p(X,Dx) is L2(Rn) bounded, that is, there is a constant C such
that

‖p(X,Dx)u‖2 ≤ C‖u‖2

holds for any u ∈ S.

Proof. If σ is greater than n, then, by Theorem 3.3, the operator p(X,Dx) is L2(Rn) bounded, because
∣∣∣p(α)

(β)(x, ξ)
∣∣∣

are bounded when |α| ≤ κ and |β| ≤ κ, where κ = [n/2] + 1. If the symbol p(x, ξ) belongs to S−σ
ρ,δ,λ for σ > n/2,

then, by Theorem 2.1, we have

‖p(X,Dx)u‖2
2 = (p(X,Dx)u, p(X,Dx)u)

= (u, p∗(X,Dx)p(X,Dx)u)
= (u, p̃(X,Dx)u),

where p∗(x, ξ) ∈ S−σ
ρ,δ,λ and p̃(x, ξ) ∈ S−2σ

ρ,δ,λ. Since 2σ > n, we have already seen that the operator p̃(X,Dx) is L2(Rn)
bounded. So by Schwarz’ inequality and the boundedness we have

‖p(X,Dx)u‖2
2 = (u, p̃(X,Dx)u)
≤ ‖u‖2‖p̃(X,Dx)u‖2

≤ C2‖u‖2

for any u ∈ S. Hence we get the boundedness of the operator p(X,Dx) with symbol p(x, ξ) ∈ S−σ
ρ,δ,λ, (σ > n/2).

Boundedness can be proved in a similar way when the symbol p(x, ξ) belongs to S−σ
ρ,δ,λ for σ > n/4. Repeating this

procedure we can prove the theorem for any positive σ.

Theorem 3.5. Let λ(x, ξ) be a basic weight function and 0 ≤ δ < ρ ≤ 1. If the symbol p(x, ξ) ∈ S0
ρ,δ,λ, then the

operator p(X,D) is L2(Rn) bounded.

Proof. Putting
|p|0 = sup{|p(x, ξ)| : (x, ξ) ∈ Rn × Rn}

and
q(x, ξ) =

√
2|p|0 − |p(x, ξ)|2,

we can see that q(x, ξ) ∈ S0
ρ,δ,λ. We have

0 ≤ ‖q(X,Dx)u‖2 =
(
q(X,Dx)u, q(X,Dx)u

)
=
(
u, q∗(X,Dx)q(X,Dx)u

)
.

By the expansion formula, we can see that the symbol of the operator q∗(X,Dx) can be written in the form

q∗(x, ξ) = q(x, ξ) + q1(x, ξ) := q̄(x, ξ) + q1(x, ξ)

where q1(x, ξ) ∈ S−(ρ−δ)
ρ,δ,λ and we write q̄(x, ξ) for q(x, ξ). Hence we have

q∗(X,Dx)q(X,Dx) = q̄(X,Dx)q(X,Dx) + q1(X,Dx)q(X,Dx)
= q̃(X,Dx) + q2(X,Dx),
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where q̃(x, ξ) = |q(x, ξ)|2 and q2(x, ξ) ∈ S−(ρ−δ)
ρ,δ,λ . So we can write

0 ≤ (u, q̃(X,Dx)u+ q2(X,Dx)u).

Setting p̃(x, ξ) = |p(x, ξ)|2, we have

‖p(X,Dx)u‖2
2 = (p(X,Dx)u, p(X,Dx)u) = (u, p∗(X,Dx)p(X,Dx)u)

= (u, p̃(X,Dx)u) + (u, p1(X,Dx)u),

where p1(x, ξ) ∈ S−(ρ−δ)
ρ,δ,λ . Moreover, since

q̃(X,Dx) = 2|p|02 − p̃(X,Dx),

we have

0 ≤ (u, 2|p|20u− p̃(X,Dx)u+ q2(X,Dx)u)

≤ 2|p|20‖u‖2
2 − ‖p(X,Dx)u‖2

2 + (u, p1(X,Dx)u) + (u, q2(X,Dx)u).

Thus we have
‖p(X,Dx)u‖2

2 ≤ 2|p|20‖u‖2
2 + (u, p1(X,Dx)u) + (u, q2(X,Dx)u).

Since ρ− δ > 0, by Theorem 3.4 we have

|(u, p1(X,Dx)u)| ≤ ‖u‖2‖p1(X,Dx)u‖2 ≤ C‖u‖2
2,

|(u, q2(X,Dx)u)| ≤ ‖u‖2‖q2(X,Dx)u‖2 ≤ C‖u‖2
2.

Combining these inequalities, we finally obtain

‖p(X,Dx)u‖2
2 ≤ C‖u‖2

2.

4 Lp boundedness of pseudodifferential operators with lower order sym-
bols

In this section, we treat the case of the basic weight function λ(x, ξ) = 〈ξ〉. So the symbols p(x, ξ) may belong to
S∞ρ,δ or to the generalized (nonregular) class of S∞ρ,δ. In particular, the case ρ = 1, δ < 1 is important when we study
the general boundedness in Lp(Rn) in relation to the class of Calderón–Zygmund operators (see [3]). We begin with
results by Hörmander [8] and Fefferman [5].

For general 1 ≤ p ≤ ∞ we have the following theorem.

Theorem 4.1 (Hörmander [8]). Let 0 ≤ δ ≤ ρ ≤ 1 and δ < 1. Then

Sm
ρ,δ ⊂ L

(
Lp(Rd)

)
=⇒ m ≤ −n(1− ρ)

∣∣∣∣12 − 1
p

∣∣∣∣ .
Therefore we may consider that the order mp, defined by

mp = n(1− ρ)
∣∣∣∣12 − 1

p

∣∣∣∣ , (1)

is the critical decreasing order for the Lp(Rn) boundedness of pseudodifferential operators of Hörmander’s class S∞ρ,δ.
It is known that, for p = 1 and p = ∞, the converse to Hörmander’s theorem does not hold. For 1 < p <∞, C.

Fefferman proved the connverse of Hörmander’s theorem.

Theorem 4.2 (C. Fefferman [5]). Let 1 < p <∞, 0 ≤ δ ≤ ρ ≤ 1 and δ < 1 and set mp = n(1− ρ)
∣∣∣ 12 − 1

p

∣∣∣. Then

S
−mp

ρ,δ ⊂ L
(
Lp(Rn)

)
.

On the boundedness of pseudodifferential operators, it is easy to treat operators with lower order symbols. Here
“lower order” means that the decreasing order of the symbol at |x| → ∞ is greater than mp in some sense. We begin
with a very elementary boundedness lemma.
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Lemma 4.1. Let the symbol p(x, ξ) have support in {(x, ξ) : |ξ| ≤ R} for some R > 0, and suppose that

|p(α)(x, ξ)| ≤ Cα (2)

for |α| ≤ κ = [n/2] + 1. Then the operator p(X,Dx) is bounded in Lp(Rn) for 2 ≤ p ≤ ∞. If the symbol is
independent of the space variable x, that is, p(x, ξ) = p(ξ), then the operator p(X,Dx) = p(Dx) is bounded in Lp(Rn)
for 1 ≤ p ≤ ∞. Moreover, if inequality (2) holds for |α| ≤ n + 1, then the operator p(X,Dx) is bounded in Lp(Rn)
for 1 ≤ p ≤ ∞.

Proof. For any u ∈ S we can write

p(X,Dx)u(x) =
∫
K(x, x− y)u(y) dy,

where

K(x, z) =
1

(2π)n

∫
eiz·ξp(x, ξ) dξ.

If the symbol p(x, ξ) satisfies inequality (2) for α with |α| ≤ κ, then by Plancherel’s equality we have∫
|〈z〉κK(x, z)|2 dz =

∑
|α|≤κ

cα

∫
|zαK(x, z)|2 dz

=
∑
|α|≤κ

cα

∫
|p(α)(x, ξ)|2 dξ

≤ C2.

Therefore we have

‖p(X,Dx)u‖2
2 ≤

∫ ∣∣∣∣∫ |K(x, x− y)u(y)| dy
∣∣∣∣2 dx

≤
∫∫

〈x− y〉−2κ|u(y)|2 dy
∫
〈x− y〉2κ|K(x, x− y)|2 dy dx

=
∫∫

〈x− y〉−2κ|u(y)|2 dy
∫
〈z〉2κ|K(x, z)|2 dz dx

≤ C2

∫∫
〈x− y〉−2κ|u(y)|2 dy dx

= C2‖u‖2
2.

This means that the operator p(X,Dx) is L2 bounded. Moreover, we have

|p(X,Dx)u(x)| ≤
∫
|K(x, x− y)||u(y)| dy

≤
∫
|K(x, z)| dz ‖u‖∞

≤
[∫

〈z〉−2κ dz

]1/2 [∫
〈z〉2κ|K(x, z)|2 dz

]1/2

‖u‖∞.

Hence, the operator p(X,Dx) is L∞ bounded. So, by the Riesz–Thorin interpolation theorem, the operator p(X,Dx)
is Lp(Rn) bounded for 2 ≤ p ≤ ∞.

If the symbol is independent of the space variable x, we have

p(Dx)u(x) =
∫
K(x− y)u(y) dy,

where

K(z) =
1

(2π)n

∫
eiz·ξp(ξ) dξ.

6



Hence, changing the order of the integration, the L1(Rn) norm of p(Dx) is∫
|p(Dx)u(x)|dx ≤

∫∫
|K(x− y)u(y)| dy dx

≤
[∫

|K(z)| dz
] [∫

|u(y)| dy
]
.

As for the case of L∞(Rn) boundedness, we can prove that∫
|K(z)| dz ≤ C

by Plancherel’s formula. Hence we have
‖p(Dx)u‖1 ≤ C‖u‖1.

Thus, by the Riesz-Thorin Theorem we have Lp(Rn) boundedness for 1 ≤ p ≤ ∞.
If the symbol p(x, ξ) satisfies inequality (2) for α with |α| ≤ n+ 1, then for any |α| ≤ n+ 1 we have

|zαK(x, z)| = 1
(2π)n

∣∣∣∣∫ eiz·ξp(α)(x, ξ) dξ
∣∣∣∣

≤ 1
(2π)n

∫ ∣∣∣p(α)(x, ξ)
∣∣∣ dξ ≤ Cα.

So, we have

|K(x, z)| ≤ C

〈z〉n+1
.

Therefore

‖p(X,Dx)u‖1 ≤
∫ ∫

|K(x, x− y)u(y)| dy dx

≤ C

∫∫
〈x− y〉−n−1|u(y)| dx dy

≤ C‖u‖1.

Thus, the operator p(X,Dx) is bounded on L1(Rn). So the operator p(X,Dx) is Lp(Rn) bounded for 1 ≤ p ≤ 2.

Remark 4.1. As we have seen in the proof of the Lemma 4.1, when we estimate the L∞(Rn) norm we need to
estimate the integral of the integral kernel K(x, z) with respect to z. On the other hand when we estimate the L1(Rn)
norm, we have to estimate the kernel K(x, z) itself, except for the case where it is independent of the variable x. This
is why we often have to change the assumptions when we treat the Lp(Rn) boundedness for 1 ≤ p ≤ 2 or 2 ≤ p ≤ ∞.

Theorem 4.3. Let 0 ≤ ρ ≤ 1 and 0 < σ ≤ 1, and suppose that the symbol p(x, ξ) satisfies

|p(α)(x, ξ)| ≤ Cω(〈ξ〉−σ)〈ξ〉−(n/2)(1−ρ)−ρ|α|

for any |α| ≤ κ = [n/2] + 1, where ω(t) is a nonnegative and nondecreasing function on [0,∞) which satisfies∫ 1

0

ω(t)2

t
dt <∞. (3)

Then the operator p(X,Dx) is L2(Rn) bounded, that is, there is a constant C such that

‖p(X,Dx)u‖2 ≤ C‖u‖2 for any u ∈ S.

Proof. By Lemma 4.1, we may assume that the support of the symbol p(x, ξ) is contained in {(x, ξ) : |ξ| ≥ 4}. We
take a nonnegative and smooth function f(t) on R such that∫ ∞

0

f(t)2

t
dt = 1, supp f ⊂

[
1
2
, 1
]
.

Then for any ξ 6= 0 we have ∫ ∞

0

f(t|ξ|)2

t
dt = 1.
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Hence we can write

p(X,Dx)u(x) =
1

(2π)n/2

∫
eix·ξp(x, ξ)û(ξ) dξ

=
1

(2π)n/2

∫ ∞

0

1
t
dt

∫
eix·ξp(x, ξ)f(t|ξ|)2û(ξ) dξ

=
1

(2π)n/2

∫ ∞

0

1
t
dt

∫
eix·ξp(x, ξ)f(t|ξ|)v̂t(ξ) dξ,

where vt(x) = f(t|Dx|)u(x), that is, v̂t(ξ) = f(t|ξ|)û(ξ). Noting that the support of p(x, ξ) is contained in {ξ : |ξ| ≥
4}, we can write

p(X,Dx)u(x) =
1

(2π)n

∫ 1/4

0

1
t
dt

∫ (∫
ei(x−y)·ξp(x, ξ)f(t|ξ|) dξ

)
vt(y) dy

=
∫ 1/4

0

1
t
dt

∫
Kt(x, z)vt(x− tz) dz,

where

Kt(x, z) =
1

(2π)n

∫
eiz·ξp

(
x,

1
t
ξ

)
f(|ξ|) dξ.

Now we split the integral in two parts:

p(X,Dx)u(x) =
∫ 1/4

0

1
t
dt

∫
|z|≤tρ−1

Kt(x, z)vt(x− tz) dz

+
∫ 1/4

0

1
t
dt

∫
|z|≥tρ−1

Kt(x, z)vt(x− tz) dz

= A(x) +B(x).

Then by Schwarz’ inequality we have

|A(x)|2 ≤

[∫ 1/4

0

1
t1−n(1−ρ)

dt

∫
|z|≤tρ−1

|vt(x− tz)|2 dz

]

×

[∫ 1/4

0

1
t1+n(1−ρ)

dt

∫
|z|≤tρ−1

|Kt(x, z)|2 dz

]
.

From the Plancherel formula and the assumption on p(x, ξ) we have∫
|Kt(x, z)|2 dz =

1
(2π)n

∫ ∣∣∣∣p(x, 1t ξ
)
f(|ξ|)

∣∣∣∣2 dξ
≤ C

∫
{1/2≤|ξ|≤1}

ω

(
|ξ|−σ

t−σ

)2( |ξ|
t

)−n(1−ρ)

dξ

≤ Cω
(
(2t
)σ)2tn(1−ρ).

Thus, we have ∫
|A(x)|2 dx ≤

∫ [∫ 1/4

0

1
t1−n(1−ρ)

dt

∫
|z|≤tρ−1

|vt(x− tz)|2 dz

]

×

[∫ 1/4

0

1
t1+n(1−ρ)

dt

∫
|z|≤tρ−1

|Kt(x, z)|2 dz

]
dx

≤ C

∫ 1/4

0

ω
(
(2t)σ

)2
t

dt

×
∫ [∫ 1/4

0

1
t1−n(1−ρ)

dt

∫
|z|≤tρ−1

|vt(x− tz)|2 dz

]
dx.
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Therefore, from the assumption on ω(t) we have∫
|A(x)|2 dx ≤ C

∫ [∫ 1/4

0

1
t1−n(1−ρ)

dt

∫
|z|≤tρ−1

|vt(x− tz)|2 dz

]
dx

≤ C

∫ 1/4

0

1
t1−n(1−ρ)

dt

∫
|z|≤tρ−1

[∫
|vt(x− tz)|2 dx

]
dz

= C

∫ 1/4

0

1
t
dt

∫
|vt(x)|2 dx.

Then, since ∫ ∞

0

1
t
dt

∫
|vt(x)|2 dx =

∫ ∞

0

1
t
dt

∫
|v̂t(ξ)|2dξ

=
∫ [∫ ∞

0

f(t|ξ|)2

t
dt

]
|û(ξ)|2 dξ

= ‖u‖2
2,

we have ∫
|A(x)|2 dx ≤ C‖u‖2

2.

In order to estimate the L2 norm of the term B(x), for |α| = κ we need

zαKt(x, z) =
i|α|

(2π)n

∫
eiz·ξ∂α

ξ

[
p

(
x,

1
t
ξ

)
f(|ξ|)

]
dξ

=
iκ

(2π)n

∑
α′≤α

(
α′

α

)∫
eiz·ξt−|α

′|p(α′)

(
x,

1
t
ξ

)
∂α−α′

ξ {f(|ξ|)} dξ.

Therefore, we have

|zαKt(x, z)| ≤ C
∑

α′≤α

t−|α
′|
∣∣∣∣∫ eiz·ξp(α′)

(
x,

1
t
ξ

)
∂α−α′

ξ {f(|ξ|)} dξ
∣∣∣∣

and ∫
|zαKt(x, z)|2 dz ≤ C

∑
α′≤α

t−2|α′|
∫ ∣∣∣∣p(α′)

(
x,

1
t
ξ

)
∂α−α′

ξ {f(|ξ|)}
∣∣∣∣2 dξ.

Since the support of the function f(|ξ|) is contained in 1/2 ≤ |ξ| ≤ 1, we have∣∣∣∣p(α′)

(
x,

1
t
ξ

)∣∣∣∣ ≤ C

∣∣∣∣ξt
∣∣∣∣−n(1−ρ)/2−ρ|α′|

ω

(∣∣∣∣ξt
∣∣∣∣−σ
)

≤ Ct(n−2κ)(1−ρ)/2+|α′|ω
(
(2t)σ

)
in the support of the integration. So we get∫

|zαKt(x, z)|2 dz ≤ Ct(n−2κ)(1−ρ)ω
(
(2t)σ

)2 ∑
α′≤α

∫
{1/2≤|ξ|≤1}

dξ

≤ Ct(n−2κ)(1−ρ)ω
(
(2t)σ

)2
.

Thus we have ∫
|z|2κ|Kt(x, z)|2 dz ≤ Ct(n−2κ)(1−ρ)ω

(
(2t)σ

)2
.

Writing m = (n− 2κ)(1− ρ)(≥ 0), we have∫
|B(x)|2 dx ≤

∫ [∫ 1/4

0

1
t1−m

dt

∫
|z|≥tρ−1

|z|−2κ|vt(x− tz)|2 dz

]

×

[∫ 1/4

0

1
t1+m

dt

∫
|z|≥tρ−1

|z|2κ|Kt(x, z)|2 dz

]
dx.
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From the estimate of the L2 norm of the kernel |z|κ|Kt(x, z)| we have∫
|B(x)|2 dx ≤ C

∫ [∫ 1/4

0

1
t1−m

dt

∫
|z|≥tρ−1

|z|−2κ|vt(x− tz)|2 dz

]

×

[∫ 1/4

0

ω
(
(2t)σ

)2
t

dt

]
dx

≤ C

∫ [∫ 1/4

0

1
t1−m

dt

∫
|z|≥tρ−1

|z|−2κ|vt(x− tz)|2 dz

]
dx.

So, changing the order of integration, we have∫
|B(x)|2 dx ≤ C

∫ 1/4

0

1
t1−m

[∫
|z|≥tρ−1

|z|−2κ

(∫
|vt(x− tz)|2 dx

)
dz

]
dt

≤ C

∫ 1/4

0

1
t

[∫
|vt(x)|2 dx

]
dt

≤ C‖u‖2
2.

Combining the L2 norm of A(x) we have

‖p(X,Dx)u‖2 ≤ C‖u‖2.

Remark 4.2. We note that the order n(1− ρ)/2 of the symbols in Theorem 4.3 is equal to m∞ = m1 as defined in
(1). Moreover we note that in this theorem we do not need the continuity of the symbols p(x, ξ) in the variable x.

When ρ = 1, we see that mp = 0 for 1 ≤ p ≤ ∞. Therefore, combining the Calderón–Vaillancourt Theorem with
Theorem 4.3 we have the following corollary.

Corollary 4.1. Let 0 ≤ δ < 1. If the symbol p(x, ξ) satisfies

|p(α)(x, ξ)| ≤ C〈ξ〉−|α|,
|p(α)(x, ξ)− p(α)(y, ξ)| ≤ Cω(|x− y|〈ξ〉δ)〈ξ〉−|α|

for |α| ≤ κ = [n/2] + 1, where ω(t) is the same as in Theorem 4.3, then the operator p(X,Dx) is L2(Rn) bounded.

Proof. We take a smooth function ϕ(x) with support in {x : |x| ≤ 1} and with integral∫
ϕ(x) dx = 1.

We define a new symbol q(x, ξ) by

q(x, ξ) = 〈ξ〉nδ′
∫
ϕ
(
〈ξ〉δ

′
(x− y)

)
p(y, ξ) dy

=
∫
ϕ(z)p

(
x− 〈ξ〉−δ′z, ξ

)
dz

where δ < δ′ < 1. Then it is not difficult to see that q(x, ξ) satisfies

|q(α)
(β)(x, ξ)| ≤ C〈ξ〉−|α|+δ′|β|

for any |α| ≤ κ and any β. Hence by the Calderón–Vaillancourt Theorem, the operator q(X,Dx) is L2(Rn) bounded.
Moreover, from the assumption we can see that

r(x, ξ) = p(x, ξ)− q(x, ξ)

satisfies the conditions in Theorem 4.3. Hence the operator r(X,Dx) is also L2(Rn) bounded. Therefore the operator
p(X,Dx) = q(X,Dx) + r(X,Dx) is L2(Rn) bounded.

Under a slightly stronger condition than the one in Theorem 4.3, we have the following L∞(Rn) boundedness.
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Theorem 4.4. Let 0 ≤ ρ ≤ 1 and 0 < σ ≤ 1, and suppose that the symbol p(x, ξ) satisfies

|p(α)(x, ξ)| ≤ Cω
(
〈ξ〉−σ

)
〈ξ〉−(n/2)(1−ρ)−ρ|α|

for any |α| ≤ κ = [n/2] + 1, where ω(t) is a nonnegative and nondecreasing function on [0,∞) which satisfies∫ 1

0

ω(t)
t

dt <∞. (4)

Then the operator p(X,Dx) is L∞(Rn) bounded, that is, there is a constant C such that

‖p(X,Dx)u‖∞ ≤ C‖u‖∞ for any u ∈ S.

Proof. As in the proof of Theorem 4.3 we may assume that the support of the symbol p(x, ξ) is contained in
{ξ : |ξ| ≥ 4}. We take a nonnegative and smooth function f(t) such that∫ ∞

0

f(t)
t

dt = 1, supp f ⊂
[
1
2
, 1
]
.

Then as before, for any ξ 6= 0 we have ∫ ∞

0

f(|ξ|t)
t

dt = 1.

Then we can write

p(X,Dx)u(x) =
∫ 1/4

0

1
t
dt

∫
Kt(x, z)u(x− tz) dz,

where

Kt(x, z) =
1

(2π)n

∫
eiz·ξp

(
x,

1
t
ξ

)
f(|ξ|) dξ.

We divide the integral of Kt(x, z) in two parts:∫
|Kt(x, z)| dz =

∫
|z|≤tρ−1

|Kt(x, z)| dz +
∫
|z|≥tρ−1

|Kt(x, z)| dz = A(x) +B(x).

Then we have

A(x) ≤

[∫
|z|≤tρ−1

dz

]1/2 [∫
|z|≤tρ−1

|Kt(x, z)|2 dz

]1/2

≤ Ctn(ρ−1)/2

[∫ ∣∣∣∣p(x, 1t ξ
)∣∣∣∣2 f(|ξ|)2 dξ

]1/2

≤ Ctn(ρ−1)/2

∫
{1/2≤|ξ|≤1}

∣∣∣∣1t ξ
∣∣∣∣n(ρ−1)

ω

(∣∣∣∣ξt
∣∣∣∣−σ
)2

dξ

1/2

≤ Cω
(
(2t)σ

)
.

For κ = [n/2] + 1 we have

B(x) ≤

[∫
|z|≥tρ−1

|z|−2κ dz

]1/2 [∫
|z|≥tρ−1

|z|2κ|Kt(x, z)|2 dz

]1/2

≤ Ct(n−2κ)(ρ−1)/2

∫ ∑
|α|=κ

t−2κ

∣∣∣∣p(α)

(
x,

1
t
ξ

)∣∣∣∣2 f(|ξ|)2 dξ

1/2

≤ Ct(n−2κ)(ρ−1)/2

∫
{1/2≤|ξ|≤1}

t−2κ

∣∣∣∣1t ξ
∣∣∣∣n(ρ−1)−2κρ

ω

(∣∣∣∣ξt
∣∣∣∣−σ
)2

dξ

1/2

≤ Cω
(
(2t)σ

)
.
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Hence ∫
|Kt(x, z)| dz ≤ Cω

(
(2t)σ

)
.

Therefore we have

|p(X,Dx)u(x)| ≤
∫ 1/4

0

1
t
dt

∫
|Kt(x, z)| |u(x− tz)| dz

≤ C

∫ ∞

0

ω
(
(2t)σ

)
t

dt‖u‖∞

≤ C‖u‖∞.

Remark 4.3. The condition in Theorem 4.4 is a little stronger than the one in Theorem 4.3. In fact it is easy to
see that inequality (4) implies inequality(3).

We have the following corollary to Theorem 4.4.

Corollary 4.2. Under the condition in Theorem 4.4, the operator p(X,Dx) is Lp(Rn) bounded for 2 ≤ p ≤ ∞, and
we have

‖p(X,Dx)u‖p ≤ C‖u‖p (u ∈ S),

where the constant C is independent of 2 ≤ p ≤ ∞.

For the L1(Rn) boundedness we have to put a stronger condition than in the case of the L2(Rn) and L∞(Rn)
boundedness.

Theorem 4.5. Let 0 ≤ ρ ≤ 1 and σ > 0. Assume that the symbol p(x, ξ) satisfies the inequality

|p(α)(x, ξ)| ≤ Cω(〈ξ〉−σ)〈ξ〉−n(1−ρ)−ρ|α|

for any |α| ≤ n+1, where ω(t) satisfies the same condition as in Theorem 4.4. Then the operator p(X,Dx) is L1(Rn)
bounded.

Proof. As in the proof of Theorem 4.4 we may assume that the support of the symbol p(x, ξ) is contained in
{(x, ξ) : |ξ| ≥ 4}. Then, taking a smooth function f(t) as before, we write

p(X,Dx)u(x) =
∫ 1/4

0

1
t
dt

∫
Kt(x, z)u(x− tz) dz,

where

Kt(x, z) =
1

(2π)n

∫
eiz·ξp

(
x,

1
t
ξ

)
f(|ξ|) dξ,

and write ∫
Kt(x, z)u(x− tz) dz =

∫
|z|≤t−(1−ρ)

Kt(x, z)u(x− tz) dz

+
∫
|z|≥t−(1−ρ)

Kt(x, z)u(x− tz) dz

= At(x) +Bt(x).

Since

|Kt(x, z)| ≤
∫ ∣∣∣∣p(x, 1t ξ

)∣∣∣∣ f(|ξ|) dξ

≤ C

∫
1
2≤|ξ|≤1

∣∣∣∣1t ξ
∣∣∣∣−n(1−ρ)

ω

(∣∣∣∣1t ξ
∣∣∣∣−σ
)
dξ

≤ Ctn(1−ρ)ω
(
(2t)σ

)
,
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we have ∫
|At(x)| dx ≤

∫ [∫
|z|≤t−(1−ρ)

|Kt(x, z)u(x− tz)| dz

]
dx

≤ Ctn(1−ρ)ω
(
(2t)σ

) ∫ [∫
|z|≤t−(1−ρ)

|u(x− tz)| dz

]
dx

≤ Ctn(1−ρ)ω
(
(2t)σ

) ∫
|z|≤t−(1−ρ)

∫
|u(x− tz)| dx dz

= Cω
(
(2t)σ

)
‖u‖1.

In order to estimate the L1 norm of B(x), for |α| = n+ 1 we have

|zαKt(x, z)| ≤ t−n−1

∫ ∣∣∣∣p(α)

(
x,

1
t
ξ

)∣∣∣∣ f (1
t
ξ

)
dξ

≤ Ct−n−1

∫
1/2≤|ξ|≤1

∣∣∣∣1t ξ
∣∣∣∣−n(1−ρ)−ρ(n+1)

ω

(∣∣∣∣1t ξ
∣∣∣∣−σ
)
dξ

≤ Ct−(1−ρ)ω
(
(2t)σ

)
.

Hence we have ∫
|Bt(x)| dx ≤

∫ [∫
|z|≥t−(1−ρ)

|z|−n+1|z|n+1|Kt(x, z)| |u(x− tz)| dz

]
dx

≤ Ct−(1−ρ)ω
(
(2t)σ

) ∫ [∫
|z|≥t−(1−ρ)

|z|−n−1|u(x− tz)| dz

]
dx

≤ Ct−(1−ρ)ω
(
(2t)σ

) ∫
|z|≥t−(1−ρ)

|z|−n−1

[∫
|u(x− tz)| dx

]
dz

≤ Cω
(
(2t)σ

)
‖u‖1.

Finally, we obtain ∫
|p(X,Dx)u(x)| dx ≤

∫ 1/4

0

1
t
dt

∫∫
|Kt(x, z)u(x− tz)| dz dx

≤
∫ 1/4

0

ω((2t)σ)
t

dt ‖u‖1

≤ C‖u‖1.

Again, by the Riesz–Thorin interpolation theorem, we can get the Lp(Rn) boundedness for 1 ≤ p ≤ 2.

Corollary 4.3. If the symbol p(x, ξ) satisfies the same condition as in Theorem 4.5, then the operator p(X,Dx) is
Lp(Rn) bounded for 1 ≤ p ≤ ∞, and we have

‖p(X,Dx)u‖p ≤ C‖u‖p (u ∈ S),

where the constant C is independent of 1 ≤ p ≤ ∞.

In the case 0 ≤ ρ < 1, the decreasing order, n(1− ρ), of the symbols in Theorem 4.5 does not coincide with the
optimal decreasing order m1 = n(1− ρ)/2. In this sense, the assumption of Theorem 4.5 is too strong. However, in
the case ρ = 1, since mp = 0, we can get the L1(Rn) boundedness without using the regularity of the symbols in the
space variable, x, for operators with symbols which have almost optimal decreasing order.

We give here the result for the case ρ = 1 as a corollary, which is only a special, but important, case of Corollary 4.3.

Corollary 4.4. Let σ > 0. Assume that the symbol p(x, ξ) satisfies∣∣∣p(α)(x, ξ)
∣∣∣ ≤ Cω(〈ξ〉−σ)〈ξ〉−|α|
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for |α| ≤ n+ 1, where ω(t) is a nonnegative and nondecreasing function on [0,∞) which satisfies∫ 1

0

ω(t)
t

dt <∞.

Then the operator p(X,Dx) is Lp(Rn) bounded for 1 ≤ p ≤ ∞ and there exists a constant C which is independent of
1 ≤ p ≤ ∞, such that

‖p(X,Dx)u‖p ≤ C‖u‖p (u ∈ S).

If the symbols p(x, ξ) are independent of the space variable, x, then we can get better results than the assertions
in Theorem 4.5 and Corollaries 4.3 and 4.4. In fact we have the following theorem.

Theorem 4.6. Let 0 ≤ ρ ≤ 1 and σ > 0 and assume that the symbol p(ξ) satisfies the inequality

|p(α)(ξ)| ≤ Cω(〈ξ〉−σ)〈ξ〉−n(1−ρ)/2−ρ|α|

for any |α| ≤ κ = [n/2] + 1, where ω(t) satisfies the same condition as in Theorem 4.4. Then the operator p(Dx) is
L1(Rn) bounded.

Proof. As usual, by Lemma 4.1 we may assume that the support of the symbol p(ξ) is contained in {ξ : |ξ| ≥ 4}.
Taking a smooth function f(t) such that

supp f ⊂
[
1
2
, 1
]

and
∫ ∞

0

f(t)
t

dt = 1,

we have

p(Dx)u(x) =
1

(2π)n

∫ 1/2

0

1
t
dt

∫
Kt(z)u(x− tz) dz,

where

Kt(z) =
∫
eiz·ξp

(
1
t
ξ

)
f(|ξ|) dξ.

Then, as in the proof of the L∞(Rn) boundedness, writing∫
|Kt(z)|dz ≤

∫
|z|≤t−(1−ρ)

|Kt(z)| dz +
∫
|z|≥t−(1−ρ)

|Kt(z)| dz

:= At +Bt,

we have

At ≤

[∫
|z|≤t−(1−ρ)

dz

]1/2 [∫
|z|≤t−(1−ρ)

|Kt(z)|2 dz

]1/2

≤ Ct−n(1−ρ)/2

[∫ ∣∣∣∣p(1
t
ξ

)
f(|ξ|)

∣∣∣∣2 dξ
]1/2

≤ Cω((2t)σ)

and

Bt ≤

[∫
|z|≥t−(1−ρ)

|z|−2κ dz

]1/2 [∫
|z|≥t−(1−ρ)

|z|2κ|Kt(z)|2 dz

]1/2

≤ Ct(1−ρ)(κ−n/2)
∑
|α|=κ

t−κ

[∫ ∣∣∣∣p(α)

(
1
t
ξ

)
f(|ξ|)

∣∣∣∣2 dξ
]1/2

≤ Cω((2t)σ).

Hence we have ∫
|Kt(z)| dz ≤ Cω((2t)σ).
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Therefore, changing the order of the integration, we obtain∫
|p(Dx)u(x)| dx ≤

∫ 1/2

0

1
t
dt

∫∫
|Kt(z)u(x− tz)| dzdx

≤
∫ 1/2

0

1
t
dt

∫
|Kt(z)| dz‖u‖1

≤ C

∫ 1/2

0

ω((2t)σ)
t

dt‖u‖1

≤ C‖u‖1.

If we combine Theorems 4.4 and 4.6, the Riesz-Thorin interpolation theorem implies the following Corollary.

Corollary 4.5. If the symbol p(ξ) satisfies the same condition as in Theorem 4.6, then the operator p(Dx) is Lp(Rn)
bounded for 1 ≤ p ≤ ∞, and we have

‖p(Dx)u‖p ≤ C‖u‖p (u ∈ S),

where the constant C is independent of 1 ≤ p ≤ ∞.

5 Behavior in L∞(Rn) space

We first note that the results in this section are essentially found in Nagase [13].
Let Q be a cube in Rn with sides parallel to the coordinate axes, and |Q| be its Lebesgue measure. For a function

u(x) defined on Rn, we define its bounded mean oscillation (BMO) norm by

‖u‖∗ := ‖u‖BMO = sup
Q

1
|Q|

∫
Q

|u(x)− uQ| dx,

where uQ denotes the mean value of u(x) on Q, that is,

uQ =
1
|Q|

∫
Q

u(x) dx.

We let BMO = {u(x) : ‖u‖∗ <∞} denote the space of BMO functions on Rn. Then we easily see that L∞(Rn) ⊂
BMO and

‖u‖∗ ≤ 2‖u‖∞
(
∀u ∈ L∞(Rn)

)
.

The proof of the following Theorem 5.1 is given in [13]. The result itself has been essentially derived by C. Fefferman
[5] (see also, Li and Wang [11]). The proof of the theorem is a little long but we give it here. Theorem 5.1 will be
used in the proof of our main Theorem 5.2 in this section.

Theorem 5.1. Let ρ > 0 and δ < 1 satisfy 0 ≤ δ ≤ ρ ≤ 1. Assume that, for α and β with |α|, |β| ≤ κ = [n/2] + 1,
the symbol p(x, ξ) satisfies

|p(α)
(β)(x, ξ)| ≤ Cα,β〈ξ〉−n(1−ρ)/2−ρ|α|+δ|β|.

Then the operator p(X,Dx) is bounded from L∞(Rn) to BMO, and we have

‖p(X,Dx)u‖∗ ≤ C‖u‖∞ ∀u ∈ L∞(Rn).

Proof. As before, we may assume that the support of p(x, ξ) is contained in {(x, ξ) : |ξ| ≥ 4} and p(x, ξ) satisfies

|p(α)
(β)(x, ξ)| ≤ C|ξ|−n(1−ρ)/2−ρ|α|+δ|β| (|ξ| ≥ 4)

for |α|, |β| ≤ κ. Moreover, by the Calderón–Vaillancourt theorem we have

‖p(X,Dx)|Dx|n(1−ρ)/2u‖2 ≤ C‖u‖2

because the symbol p(x, ξ)|ξ|n(1−ρ)/2 satisfies the conditions of Theorem 3.3. As before, we take a nonnegative
function f(t) ∈ C∞

0 (R) such that

supp f ⊂
[
1
2
, 1
]
,

∫ ∞

0

f(t)
t

dt = 1.
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Thus, we have ∫ ∞

0

f(t|ξ|)
t

dt = 1 (|ξ| 6= 0).

We consider a cube Q = {x : |xj − a0
j | ≤ d/2} with d ≤ 1, and take a function ψ(ξ) such that

supp ψ ⊂ {|ξ| ≤ 2}, 0 ≤ ψ(ξ) ≤ 1,

and ψ(ξ) = 1 for ξ ≤ 1. We set ψd(ξ) = ψ(dξ). We split the symbol p(x, ξ) as

p(x, ξ) = p(x, ξ)ψd(ξ) + p(x, ξ)
(
1− ψd(ξ)

)
:= p0(x, ξ) + p1(x, ξ).

We begin with the estimate for the operator p0(X,Dx). As before, we can write

p0(X,Dx)u(x) =
1

(2π)n/2

∫
eix·ξp0(x, ξ)û(ξ) dξ,

and

Dxj
{p0(X,Dx)u(x)} =

1
(2π)n/2

∫
eix·ξ{p0(ej)(x, ξ) + ξjp0(x, ξ)}û(ξ) dξ

=
1

(2π)n/2

∫
eix·ξ{p(ej)(x, ξ) + ξjp(x, ξ)}ψd(ξ)û(ξ) dξ

=
1

(2π)n/2

∫
eix·ξpj(x, ξ)û(ξ) dξ,

where

pj(x, ξ) = p0(ej)(x, ξ) + ξjp0(x, ξ)

= {p(ej)(x, ξ) + ξjp(x, ξ)}ψd(ξ).

Hence, using f(t) we can write

Dxj{p0(X,Dx)u(x)} =
1

(2π)n

∫ ∞

0

1
t
dt

∫∫
ei(x−y)·ξpj(x, ξ)f(t|ξ|)u(y) dydξ

=
1

(2π)n

∫ ∞

0

1
t
dt

∫∫
eiz·ξpj

(
x,

1
t
ξ

)
f(|ξ|)u(x− tz) dξdz

=
1

(2π)n

∫ ∞

0

1
t
dt

∫
K0,j(t, x, z)u(x− tz) dz,

where

K0,j(t, x, z) =
∫
eiz·ξpj

(
x,

1
t
ξ

)
f(|ξ|) dξ

=
∫
eiz·ξ

[
p(ej)

(
x,

1
t
ξ

)
+

1
t
ξjp

(
x,

1
t
ξ

)]
ψd

(
1
t
ξ

)
f(|ξ|) dξ.

On the support of the integrand of the kernel K0,j(t, x, z), we have

1
t
|ξ| ≥ 2,

1
2
≤ |ξ| ≤ 2,

1
t
|ξ| ≤ 2

d
.

Therefore, on this support we get d/4 ≤ t. Thus we can write

Dxj{p0(X,Dx)u(x)} =
1

(2π)n

∫ 1/2

d/4

1
t
dt

∫
K0,j(t, x, z)u(x− tz) dz.

Then we write ∫
|K0,j(t, x, z)| dz =

∫
{|z|≤t−(1−ρ)}

|K0,j(t, x, z)| dz +
∫
{|z|≥t−(1−ρ)}

|K0,j(t, x, z)| dz

:= I + II.

16



By Schwarz’ inequality and Plancherel’s formula we have

I ≤

[∫
{|z|≤t−(1−ρ)}

dz

]1/2 [∫
{|z|≤t−(1−ρ)}

|K0,j(t, x, z)|2 dz

]1/2

≤ Ct−n(1−ρ)/2

[∫ ∣∣∣∣pj

(
x,

1
t
ξ

)∣∣∣∣2 f(|ξ|)2 dξ

]1/2

.

By the definition of pj(x, ξ), we can see that∣∣∣∣pj

(
x,

1
t
ξ

)∣∣∣∣ ≤ C

(
1
t
|ξ|
)1−n(1−ρ)/2 (

1
2
≤ |ξ| ≤ 1

)
.

Therefore, we have

I ≤ Ct−1

[∫
{1/2≤|ξ|≤1}

dξ

]1/2

=
C

t
.

It is not difficult to see that the symbol pj(x, ξ) satisfies the estimate∣∣∣pj(α)
(x, ξ)

∣∣∣ ≤ C|ξ|−m∞+1−ρ|α|
(

1
2
≤ |ξ| ≤ 1

)
for |α| ≤ κ, where the constant C is independent of 0 < d ≤ 1. Hence we have∣∣∣∣∂α

ξ

[
pj

(
x,

1
t
ξ

)]∣∣∣∣ ≤ Ct−|α|
∣∣∣∣1t ξ

∣∣∣∣−m∞+1−ρ|α|

≤ Ctm∞−1−(1−ρ)|α|
(

1
2
≤ |ξ| ≤ 1

)
for |α| ≤ κ. Therefore, for any α with |α| ≤ κ we have∣∣∣∣∂α

ξ

[
pj

(
x,

1
t
ξ

)}∣∣∣∣ ≤ Ctm∞−1−(1−ρ)κ

(
1
2
≤ |ξ| ≤ 1

)
.

Thus, again by Schwarz’ inequality and Plancherel’s formula, we have

II ≤

[∫
|z|≥t−(1−ρ)

|z|−2κ dz

]1/2 [∫
|z|≥t−(1−ρ)

|z|2κ|K0,j(t, x, z)|2 dz

]1/2

≤ Ct−(n/2−κ)(1−ρ)
∑
|α|=κ

[∫ ∣∣∣∣∂α
ξ

[
pj

(
x,

1
t
ξ

)]∣∣∣∣2 dξ
]1/2

≤ Ct−(n/2−κ)(1−ρ)tm∞−1−(1−ρ)κ

≤ C
1
t
.

Hence we have ∣∣Dxj [p0(X,Dx)u(x)]
∣∣ ≤ C

∫ 1/2

d/4

1
t2
dt ‖u‖∞

≤ C

d
‖u‖∞.

Using this estimate we can see that

|p0(X,Dx)u(x)− p0(X,Dx)u(y)| ≤ C|x− y|
d

‖u‖∞.

Therefore, writing

(p0(X,Dx)u)Q =
1
|Q|

∫
Q

p0(X,Dx)u(y) dy,
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we obtain

1
|Q|

∫
Q

|p0(X,Dx)u(x)− (p0(X,Dx)u)Q | dx

≤ 1
|Q|2

∫
Q

∫
Q

|p0(X,Dx)u(x)− p0(X,Dx)u(y)| dy dx

≤ C
1

|Q|2

∫
Q

∫
Q

|x− y|
d

dy dx‖u‖∞

≤ C‖u‖∞. (5)

Now we have to estimate the term p1(X,Dx)u(x). We take a function χ(x) ∈ C∞
0 (Rn) such that{

χ(x) = 1 for x = (x1, x2, . . . , xn) with |xj | ≤ 2 (j = 1, 2, . . . , n),
χ(x) = 0 for x = (x1, x2, . . . , xn) with |xj | ≥ 4 (j = 1, 2, . . . , n).

Denoting the center of the cube Q by x0, we set

χd(x) = χ
(
d−ρ(x− x0)

)
and write

p1(X,Dx)u(x) = p1(X,Dx){χdu}(x) + p1(X,Dx){(1− χd)u}(x)
:= Iu(x) + IIu(x).

Then, by Schwarz’ inequality we have

(Iu)Q =
∣∣∣∣ 1
|Q|

∫
Q

Iu(x) dx
∣∣∣∣ ≤ [ 1

|Q|

∫
Q

|p1(X,Dx){χdu}(x)|2 dx
]1/2

.

Now we write the symbol p1(x, ξ) as

p1(x, ξ) = p(x, ξ)|ξ|n(1−ρ)/2
(
1− ψd(ξ)

)
|ξ|−n(1−ρ)/2

and note that p(x, ξ)|ξ|n(1−ρ)/2 satisfies the conditions of the Calderón-Vaillancourt theorem. So, using the L2(Rn)
boundedness of the operator p(X,Dx)|Dx|n(1−ρ)/2, we have

‖p1(X,Dx)χdu‖2 ≤ C‖
(
1− ψd(Dx)

)
|Dx|−n(1−ρ)/2{χdu}‖2

≤ Cdn(1−ρ)/2‖{χdu}‖2

≤ Cdn(1−ρ)/2‖χd‖2 ‖u‖∞.

By the definition of χd(x) we have
‖χd‖2 = dnρ/2‖χ‖2.

Thus we have
‖p1(X,Dx)χdu‖2 ≤ Cdn/2‖u‖∞,

and, therefore,
(Iu)Q ≤ C‖u‖∞.

In order to estimate the term IIu(x) we write

IIu(x) =
1

(2π)n

∫ d

0

1
t
dt

∫
K1(t, x, z){(1− χd)u}(x− tz) dz,

where

K1(t, x, z) =
∫
eiz·ξp

(
x,

1
t
ξ

)[
1− ψd

(
1
t
ξ

)]
f(|ξ|) dξ.

Here, in the support of the integrand of the integral kernel K1(t, x, z), for x = (x1, x2, . . . , xn) ∈ Q we have

d−ρ|xj − tzj − x0
j | ≥ 2, |xj − x0

j | ≤
d

2
.
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Thus, we have
|z| ≥ t−1dρ.

Hence, for x ∈ Q we have∫
|K1(t, x, z)| dz =

∫
|z|≥t−1dρ

|K1(t, x, z)| dz

≤

[∫
|z|≥t−1dρ

|z|−2κ dz

]1/2 [∫
|z|≥t−1dρ

|z|2κ|K1(t, x, z)|2 dz

]1/2

≤ Ctκ−n/2d−ρ(κ−n/2)
∑
|α|=κ

[∫
z2α|K1(t, x, z)|2 dz

]1/2

≤ Ctκ−n/2d−ρ(κ−n/2)
∑
|α|=κ

{∫ ∣∣∣∣∂α
ξ

[
p(x,

1
t
ξ)
(
1− ψd(

1
t
ξ)
)
f(|ξ|)

]∣∣∣∣2 dξ
}1/2

≤ Ctκ−n/2d−ρ(κ−n/2)t−(1−ρ)(κ−n/2)

≤ Ctρ(κ−n/2)d−ρ(κ−n/2).

Therefore, we have

|IIu(x)| ≤ C‖u‖∞
∫ d

0

1
t
dt

∫
|K1(t, x, z)| dz

≤ C‖u‖∞
∫ d

0

1
t1−ρ(κ−n/2)

dtd−ρ(κ−n/2) ≤ C‖u‖∞.

Here we used the condition ρ > 0. Thus combining the estimate for Iu(x) we have

1
|Q|

∫
Q

|p1(X,Dx)u(x)− (p1(X,Dx)u)Q| dx ≤ C‖u‖∞. (6)

Therefore, from (5) and (6) we have

1
|Q|

∫
Q

|p(X,Dx)u(x)− (p(X,Dx)u)Q| dx ≤ C‖u‖∞,

and, since the cube Q is arbitrary, we finally obtain

‖p(X,Dx)u‖∗ ≤ C‖u‖∞.

As a corollary to Theorem 5.1 we have the following boundedness result.

Corollary 5.1 ([5]). Let 2 ≤ p <∞, 0 ≤ δ ≤ ρ ≤ 1, δ < 1, and 0 < ρ. If the symbol p(x, ξ) satisfies∣∣∣p(α)
(β)(x, ξ)

∣∣∣ ≤ C〈ξ〉−mp−ρ|α|+δ|β|

for |α| ≤ κ = [n/2] + 1 and |β| ≤ κ, then the operator p(X,Dx) is Lp(Rn) bounded and we have

‖p(X,Dx)u‖p ≤ Cp‖u‖p.

The proof of Corollary 5.1 can be done by using the Fefferman–Stein interpolation theorem [6]).
Using the symbol approximation (or regularization) and Theorem 5.1 we can prove a boundedness theorem for

operators with symbols which have a weak regularity in the space variable, x, and the critical decreasing order. For
the symbol approximation the following two lemmas play an essential role.

Lemma 5.1 (See [13]). Let 0 < δ < 1 and ψ(x) be in S. Then ψ(〈ξ〉δx) belongs to S0
1,δ and satisfies

∂α
ξ {ψ(〈ξ〉δx)} =

∑
|α′|≤|α|

ψα,α′(ξ){〈ξ〉δx}α′ψ(α′)(〈ξ〉δx)

for any α, where ψ(α′)(z) = ∂α′

z ψ(z) and ψα,α′(ξ) ∈ S−|α|1,0 .
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Lemma 5.2 (See [10]). Let 0 < τ < 1 and ψ(x) be in S. Then, for any β, ∂β
ξ ψ
(
〈ξ〉−τ (ζ − ξ)

)
satisfies

∂β
ξ {ψ

(
〈ξ〉−τ (ζ − ξ)

)
} =

∑
|γ|≤|β|,γ1≤γ

ψβ,γ,γ1(ξ){〈ξ〉−τ (ζ − ξ)}γ1ψ(γ)
(
〈ξ〉−τ (ζ − ξ)

)
,

where ψβ,γ,γ1(ξ) ∈ S
−(|β|−(1−τ)|γ−γ1|)
1,0 .

We shall use Lemma 5.2 in the next Section 6. As one of the main results of this section we have the following
theorem. By Theorem 4.4 and the Fefferman–Stein interpolation theorem we can prove an Lp(Rn) boundedness
theorem for operators with symbols with critical decreasing order mp for 2 ≤ p <∞.

Theorem 5.2. Let 0 ≤ δ < ρ ≤ 1 and δ < 1, and suppose that the symbol p(x, ξ) satisfies∣∣∣p(α)(x, ξ)
∣∣∣ ≤ C〈ξ〉−n(1−ρ)/2−ρ|α|

and ∣∣∣p(α)(x, ξ)− p(α)(y, ξ)
∣∣∣ ≤ Cω(|x− y|〈ξ〉δ)〈ξ〉−n(1−ρ)/2−ρ|α|

for any |α| ≤ κ = [n/2] + 1, where ω(t) is a nonnegative and nondecreasing function on [0,∞) which satisfies∫ 1

0

ω(t)
t

dt <∞.

Then the operator p(X,Dx) is bounded from L∞(Rn) to BMO and we have

‖p(X,Dx)u‖∗ ≤ C‖u‖∞.

Proof. As usual, we may assume that the support of the symbol is contained in {(x, ξ) : |ξ| ≥ 4}. Take a smooth

function ϕ(x) on Rn such that the support of ϕ(x) is compact and
∫
ϕ(x) dx = 1. We define a new symbol p̃(x, ξ)

by

p̃(x, ξ) =
∫
ϕ(y)p(x− 〈ξ〉−δ′y, ξ) dy

= 〈ξ〉δ
′n

∫
ϕ
(
〈ξ〉δ

′
(x− y)

)
p(y, ξ) dy,

where δ′ is a constant such that δ < δ′ < ρ, and set

q(x, ξ) = p(x, ξ)− p̃(x, ξ).

Then, by Lemma 5.1 we can see that the symbol p̃(x, ξ) satisfies∣∣∣p̃(α)
(β)(x, ξ)

∣∣∣ ≤ Cβ〈ξ〉−n(1−ρ)/2−ρ|α|+δ′|β|

for any |α| ≤ κ and β. Therefore, by Theorem 5.1, the operator p̃(X,Dx) is bounded from L∞(Rn) to BMO, and
we have

‖p̃(X,Dx)u‖∗ ≤ C‖u‖∞.

On the other hand, we can see that the symbol q(x, ξ) satisfies∣∣∣q(α)(x, ξ)
∣∣∣ ≤ Cω(〈ξ〉−δ′+δ)〈ξ〉−n(1−ρ)/2−ρ|α|

for any |α| ≤ κ. Since δ′ − δ > 0, the symbol q(x, ξ) satisfies the conditions of Theorem 4.4 and we have

‖q(X,Dx)u‖∞ ≤ C‖u‖∞.

Finally, we obtain

‖p(X,Dx)u‖∗ ≤ ‖p̃(X,Dx)u‖∗ + ‖q(X,Dx)u‖∗
≤ C‖u‖∞ + 2‖q(X,Dx)u‖∞
≤ C‖u‖∞.
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When ρ = 1, by using Theorem 5.2 we can show a slightly more general result than Corollary 5.1.

Corollary 5.2. Let δ < 1. Assume that the symbol p(x, ξ) satisfies∣∣∣p(α)(x, ξ)
∣∣∣ ≤ C〈ξ〉−|α|,∣∣∣p(α)(x, ξ)− p(α)(y, ξ)
∣∣∣ ≤ Cω(〈ξ〉δ(x− y|)〈ξ〉−|α|,

for any |α| ≤ κ, where ω(t) is a nonnegative and nondecreasing function on [0,∞) such that∫ 1

0

ω(t)
t

dt <∞.

Then the operator p(X,Dx) is Lp(Rn) bounded for 2 ≤ p <∞.

Proof. We have already seen in Corollary 4.1 that the operator is L2(Rn) bounded when p(x, ξ) satisfies the conditions
of Theorem 5.2. Also we have seen that the operator is bounded from L∞(Rn) to BMO by Theorem 5.2. Therefore
the boundedness follows from the Fefferman-Stein interpolation theorem.

6 Lp(Rn) estimates for 1 < p < ∞
In this section we consider only the case ρ = 1. When 2 ≤ p <∞, we have already seen in Corollary 5.1 that we can
get the boundedness result even in the case ρ < 1. However for, the case 1 < p < 2 and ρ < 1, we need a slightly
different argument to get the Lp(Rn) boundedness.

Theorem 6.1. Let δ < 1 and assume that the symbol p(x, ξ) satisfies∣∣∣p(α)(x, ξ)
∣∣∣ ≤ C〈ξ〉−|α|,∣∣∣p(α)(x, ξ)− p(α)(y, ξ)
∣∣∣ ≤ Cω(〈ξ〉δ|x− y|)〈ξ〉−|α|,

for |α| ≤ n+ 2, where ω(t) is a nonnegative and nondecreasing function on [0,∞) such that∫ 1

0

ω(t)
t
dt <∞.

Then the operator p(X,Dx) is Lp(Rn) bounded for 1 < p <∞.

Proof. We have already seen that the operator p(X,Dx) is Lp(Rn) bounded for 2 ≤ p <∞. So we need only consider

the case 1 < p < 2. Let ϕ(x) be a C∞(Rn) even function with support in {x : |x| ≤ 1} and
∫
ϕ(x) dx = 1. We

define a new symbol p̃(x, ξ) by

p̃(x, ξ) = 〈ξ〉nτ

∫
ϕ
(
〈ξ〉τ (x− y)

)
p(y, ξ) dy

= 〈ξ〉nτ

∫
ϕ(〈ξ〉τy)p(x− y, ξ) dy

=
∫
ϕ(z)p(x− 〈ξ〉−τy, ξ) dy,

where δ < τ < 1. Then, as before, we can see that the symbol p̃(x, ξ) satisfies∣∣∣p̃(α)
(β)(x, ξ)

∣∣∣ ≤ C〈ξ〉−|α|+τ |β|

for any β and |α| ≤ n+ 2. Moreover we can see that the symbol q(x, ξ) = p(x, ξ)− p̃(x, ξ) satisfies

|q(x, ξ)| ≤ Cω(〈ξ〉−(τ−δ))〈ξ〉−|α|

for |α| ≤ n + 2. Hence, by Theorem 4.5 we can see that the operator q(X,Dx) is Lp(Rn) bounded for 1 ≤ p ≤ ∞.
So we have to prove the boundedness for the operator p̃(X,Dx).
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We define another new symbol ˜̃p(x, ξ) by

˜̃p(x, ξ) = 〈ξ〉−nρ

∫
ϕ
(
〈ξ〉−ρ(ξ − ζ)

)
p̃(x, ζ) dζ

= 〈ξ〉−nρ

∫
ϕ(〈ξ〉−ρζ)p̃(x, ξ − ζ) dζ

=
∫
ϕ(ζ)p̃(x, ξ − 〈ξ〉ρζ) dζ,

where τ < ρ < 1. Then, by Lemma 5.2 we can see that the symbol ˜̃p(x, ξ) belongs to the symbol class S0
ρ,τ and

satisfies ∣∣∣ ˜̃p(α)
(β)(x, ξ)

∣∣∣ ≤ Cα,β〈ξ〉−|α|+τ |β| (7)

for any β and |α| ≤ n+ 2. Moreover we can see that the symbol r(x, ξ) = p̃(x, ξ)− ˜̃p(x, ξ) satisfies∣∣∣r(α)(x, ξ)
∣∣∣ ≤ C〈ξ〉−|α|−(ρ−τ)

for |α| ≤ n+ 1. Hence, again, we can see that the operator r(X,Dx) is Lp(Rn) bounded for 1 ≤ p ≤ ∞. Writing the
operator p(X,Dx) as

p(X,Dx) = ˜̃p(X,Dx) + r(x, ξ) + q(X,Dx),

we need only show the boundedness of the operator ˜̃p(X,Dx). Since ˜̃p(X,Dx) belongs to S0
ρ,τ , we can use the algebra

of the symbol class S∞ρ,τ . For u and v in S we have

(˜̃p(X,Dx)u, v) = (u, ˜̃p∗(X,Dx)v),

where the symbol ˜̃p∗(x, ξ) belongs to S∞ρ,τ and has the asymptotic expansion

˜̃p∗(x, ξ) ∼
∑
α

(−i)|α|

α!
˜̃p(α)
(α)(x, ξ).

Hence, using (7) and ρ > τ we have ∣∣∣ ˜̃p∗(α)

(β)(x, ξ)
∣∣∣ ≤ C〈ξ〉−|α|+τ |β|

for |α| ≤ n+ 1 and any β. This implies
‖ ˜̃p∗(X,Dx)v‖p′ ≤ C‖v‖p′ ,

where 1/p+ 1/p′ = 1. So, by a duality argument we have

‖p(X,Dx)u‖p ≤ C‖u‖p.

7 Pseudodifferential operators with magnetic potentials

As we stated in Section 3, if 0 ≤ δ ≤ ρ ≤ 1 and δ < 1, then the pseudodifferential operator p(X,Dx) with symbol
S0

ρ,δ,λ is L2(Rn) bounded where λ is any basic function.
Let a(x) =

(
a1(x), . . . , an(x)

)
be an Rn valued function on Rn, where aj(x), j = 1, 2, . . . , n, are real valued

smooth functions whose derivatives, |∂αaj(x)|, are bounded for any α 6= 0. We consider the basic function

λ(x, ξ) =
√

1 + |ξ − a(x)|2. (8)

Thus, λ(x, ξ) satisfies the following inequalities:

(a) 1 ≤ λ(x, ξ) ≤ C〈x〉〈ξ〉,

(b) |λ(α)
(β)(x, ξ)| ≤ Cα,βλ(x, ξ)1−|α|.

In this section, we restrict attention to the basic weight function (8) and consider the symbol class Sm
ρ,δ,λ where

0 ≤ δ < ρ = 1. Then the problem is to show the Lp(Rn) boundedness of the operator p(X,Dx) ∈ S0
1,δ,λ for general

1 < p < ∞. However, this problem is still open (see Section 8). We present here a slightly weaker boundedness
result, which corresponds to the case of lower order operators.

We first prove the following lemma.
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Lemma 7.1. Let p(x, ξ) be in S−σ
0,δ,λ for some positive σ > n. Then the operator p(X,Dx) is Lp(Rn) bounded for

1 ≤ p ≤ ∞.

Proof. From the definition of the operator p(x,Dx), we have

p(X,Dx)u(x) =
1

(2π)n

∫∫
ei(x−y)·ξp(x, ξ)u(y) dy dξ

=
∫
K(x, x− y)u(y) dy (u ∈ S),

where
K(x, z) =

1
(2π)n

∫
eiz·ξp(x, ξ) dξ.

Since σ > n, for any multi-index α we have

|zαK(x, z)| = 1
(2π)n

∣∣∣∣∫ eiz·ξp(α)(x, ξ) dξ
∣∣∣∣

≤ 1
(2π)n

∫ ∣∣∣p(α)(x, ξ)
∣∣∣ dξ

≤ C

∫
〈ξ − a(x)〉−σ dξ

= C

∫
〈ξ〉−σdξ = Cα.

Therefore, we obtain
|K(x, z)| ≤ C〈z〉−n−1

and
‖p(X,Dx)u‖p ≤ C‖u‖p (u ∈ S).

For 2 ≤ p ≤ ∞, we can get a slightly stronger result than Lemma 7.1.

Lemma 7.2. Let the symbol p(x, ξ) satisfy

|p(α)(x, ξ)| ≤ Cαλ(x, ξ)−σ−|α|

for any α with |α| ≤ κ = [n/2] + 1, where σ is a positive constant. Then the operator p(X,Dx) is Lp(Rn) bounded
and we have

‖p(X,Dx)u‖p ≤ C‖u‖p (u ∈ S),

where the constant C is independent of 2 ≤ p ≤ ∞.

Proof. From the definition of the operator p(X,Dx) we have

p(X,Dx)u(x) =
1

(2π)n

∫∫
ei(x−y)·ξp(x, ξ)u(y) dy dξ

=
∫
K(x, x− y)u(y) dy,

where the integral kernel K(x, z) is

K(x, z) =
1

(2π)n

∫
eiz·ξp(x, ξ) dξ.

For L∞(Rn) boundedness we have∫
|K(x, x− y)u(y)| dy ≤

∫
|K(x, x− y)| dy ‖u‖∞

≤
∫
〈z〉−κ〈z〉κ|K(x, z)| dz ‖u‖∞

≤ C‖u‖∞
[∫

〈z〉2κ|K(x, z)|2 dz
]1/2

.
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From the assumption on the symbol p(x, ξ) we have∫
〈z〉2κ|K(x, z)|2 dz =

∑
|α|≤κ

cα

∫
|zαK(x, z)|2 dz

=
∑
|α|≤κ

cα

∫
|p(α)(x, ξ)|2dξ

≤ C

∫
〈ξ − a(x)〉−2σdξ

= C

∫
〈ξ〉−2σdξ = C∞, (9)

where the last constant, C∞, is independent of the variable x. Hence we have

|p(X,Dx)u(x)| ≤ C∞‖u‖∞.

Therefore, we can get the L∞(Rn) boundedness with norm bounds not greater than C∞.
For the L2(Rn) boundedness, using estimate (9), we have∫

|p(X,Dx)u(x)|2 dx =
∫ ∣∣∣∣∫ K(x, x− y)u(y) dy

∣∣∣∣2 dx
≤
∫ [∫

〈x− y〉−2κ|u(y)|2 dy
]

×
[∫

〈x− y〉2κ|K(x, x− y)|2 dy
]
dx

≤ C∞

∫∫
〈x− y〉−2κ|u(y)|2 dy dx

= C ′
∞‖u‖2.

Thus we obtain the L2(Rn) estimate. Hence the lemma follows from the Riesz–Thorin interpolation (see [17]).

Remark 7.1. In Lemmas‘7.1 and 7.2, we do not need the assumption that the derivatives ∂αaj(x) are bounded for
any j and α 6= 0. In the proofs we use only the fact that the functions aj(x) are real valued and measurable for
j = 1, 2, . . . , n.

Theorem 7.1. Let a(x) be as in Lemma 7.2 and λ(x, ξ) as in Definition 2.2. Choose a nonnegative and nondecreasing
function ω(t) on [0,∞) such that ∫ 1

0

ω(t)
t

dt <∞,

and assume that the symbol p(x, ξ) satisfies

|p(α)(x, ξ)| ≤ Cαλ(x, ξ)−|α|ω
(
λ(x, ξ)−1

)
for any α with |α| ≤ n+ 1. Then the pseudodifferential operator p(X,Dx) is Lp(Rn) bounded for 1 ≤ p ≤ ∞.

Proof. By Lemma 7.2, we may assume that the support of the symbol p(x, ξ) is contained in {(x, ξ) : |ξ−a(x)| ≥ 2}.
Now we take a smooth nonnegative function f(t) such that the support of f(t) is contained in the interval [1/2, 1]
and ∫ ∞

0

f(t)
t

dt = 1.

Since the support of the symbol p(x, ξ) is contained in {(x, ξ) : |ξ − a(x)| ≥ 2}, we have

p(X,Dx)u(x) =
1

(2π)n

∫ 1

0

1
t
dt

∫∫
ei(x−y)·ξp(x, ξ)f(t|ξ − a(x)|)u(y) dy dξ

=
1

(2π)n

∫ 1

0

1
tn+1

dt

∫∫
ei

(x−y)
t ·ξei(x−y)·a(x)p

(
x,
ξ

t
+ a(x)

)
f(|ξ|)u(y) dξ dy

=
1

(2π)n

∫ 1

0

1
t
dt

∫
eitz·a(x)Kt(x, z)u(x− tz) dz,
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where

Kt(x, z) =
∫
eiz·ξp

(
x,
ξ

t
+ a(x)

)
f(|ξ|) dξ.

If we put p̃(x, ξ) = p (x, ξ + a(x)), then it is easy to see that

|p̃(α)(x, ξ)| ≤ Cα〈ξ〉−|α|ω
(
〈ξ〉−1

)
for |α| ≤ n+ 1. Since the equality

zαKt(x, z) = i|α|
∑

α′≤α

1
t|α′|

(
α

α′

)∫
eiz·ξp̃(α′)

(
x,
ξ

t

)
∂α−α′

ξ f(|ξ|) dξ

holds for |α| ≤ n+ 1, we have

|zαKt(x, z)| ≤
∑

α′≤α

1
t|α′|

(
α

α′

)∫ ∣∣∣∣p̃(α)

(
x,
ξ

t

)
∂α−α′

ξ f(|ξ|)
∣∣∣∣ dξ

≤ C
∑

α′≤α

1
t|α′|

(
α

α′

)∫
1
2≤|ξ|≤1

∣∣∣∣ξt
∣∣∣∣|α′| ω

(∣∣∣∣ξt
∣∣∣∣−1
)
dξ

≤ Cω(t)

for |α| ≤ n+ 1. Therefore we have
|Kt(x, z)| ≤ C〈ξ〉−n−1ω(t). (10)

By inequality (10) and the equality

p(X,Dx)u(x) =
1

(2π)n

∫ 1

0

1
t
dt

∫
eitz·a(x)Kt(x, z)u(x− tz) dz

we can see that the operator p(X,Dx) is L1 and L∞ bounded. That is, the inequalities

‖p(X,Dx)u‖1 ≤ C‖u‖1, ‖p(X,Dx)u‖∞ ≤ C‖u‖∞
hold. So by the Riesz–Thorin interpolation theorem we have the Lp boundedness for 1 ≤ p ≤ ∞.

When 2 ≤ p, we can show a slightly more general result than Theorem 7.1, by using Plancherel’s formula.

Theorem 7.2. Let a(x) and λ(x, ξ) be the same as in Theorem 7.1. Choose a nonnegative and nondecreasing
function ω(t) on [0,∞) such that ∫ 1

0

ω(t)
t

dt <∞.

Assume that the symbol p(x, ξ) satisfies

|p(α)(x, ξ)| ≤ Cαλ(x, ξ)−|α|ω
(
λ(x, ξ)−1

)
for any α with |α| ≤ κ =

[n
2

]
+ 1. Then the pseudodifferential operator p(X,Dx) is Lp(Rn) bounded for 2 ≤ p ≤ ∞.

Proof. We first show the L∞ boundedness. We write the operator p(X,Dx), as in the proof of Theorem 7.1, in the
form

p(X,Dx)u(x) =
1

(2π)n

∫ 1

0

dt

t

∫
eitz·a(x)Kt(x, z)u(x− tz) dz, (11)

where

Kt(x, z) =
∫
eiz·ξp

(
x,
ξ

t
+ a(x)

)
f(|ξ|) dξ. (12)

Then, ∫
|Kt(x, z)| dz =

∫
〈z〉−κ〈z〉κ|Kt(x, z)| dz

≤
[∫

〈z〉−2κ dz

]1/2 [∫
〈z〉2κ|Kt(x, z)|2 dz

]1/2

≤ C
∑
|α|≤κ

[∫
|zαKt(x, z)|2 dz

]1/2
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and Plancherel’s equality gives∫
|zαKt(x, z)|2 dz = (2π)n

∫ ∣∣∣∣∂α
ξ

[
p̃

(
x,
ξ

t

)
f(|ξ|)

]∣∣∣∣2 dξ
≤ Cαω(t).

Hence, we obtain
|p(X,Dx)u(x)| ≤ C‖u‖∞.

In order to show the L2 boundedness of the operator p(X,Dx), using representation (11)–(12), we have

‖p(X,Dx)u(x)‖2 ≤
1

(2π)n

∫ 1

0

dt

t

∥∥∥∥∫ eitza(·)Kt(·, z)u(· − tz) dz
∥∥∥∥

2

.

It follows that ∥∥∥∥∫ eitz·a(·)Kt(·, z)u(· − tz) dz
∥∥∥∥2

2

=
∫ ∣∣∣∣∫ eitz·a(x)Kt(x, z)u(x− tz) dz

∣∣∣∣2 dx
≤
∫ ∣∣∣∣∫ |Kt(x, z)u(x− tz)| dz

∣∣∣∣2 dx.
Hence, by Schwarz’ inequality we have∣∣∣∣∫ |Kt(x, z)u(x− tz)| dz

∣∣∣∣2 ≤ ∫ 〈z〉2κ|Kt(x, z)|2 dz
∫
〈z〉−2κ|u(x− tz)|2 dz.

As above, we can see that∫
〈z〉2κ|Kt(x, z)|2 dz ≤

∑
|α|≤κ

∫
|zαKt(x, z)|2 dz

=
∑
|α|≤κ

∫ ∣∣∣∣∂ξ

[
p

(
x,
ξ

t
+ a(x)

)
f(|ξ|)

]∣∣∣∣2 dξ
≤ Cω(t)2.

Therefore we obtain ∥∥∥∥∫ eitz·a(·)Kt(·, z)u(· − tz) dz
∥∥∥∥2

2

≤ C

∫ ∫
〈z〉−2κ|u(x− tz)|2 dz dx

≤ Cω(t)2‖u‖2
2.

Thus, from the assumption on ω(t) we have the L2 estimate

‖p(X,Dx)u‖2 ≤ C‖u‖2.

Again, by the Riesz–Thorin interpolation theorem, we have the Lp boundedness for 2 ≤ p ≤ ∞.

8 Conjectures

As was seen in the previous sections, we can expect that the following Lp(Rn) boundedness theorem holds.

Conjecture 1. If the vector function a(x) =
(
a1(x), . . . , an(x)

)
, which defines the basic weight function (8), satisfies

|∂αaj(x)| ≤ Cα (13)

for any α 6= 0, then, for 1 < p <∞, the operator p(X,Dx) in S0
1,δ,λ is Lp(Rn) bounded, that is, the inclusion

S0
1,δ,λ ⊂ L

(
Lp(Rn)

)
holds.
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As we stated in Section 3, it is known that if the vector function a(x) satisfies the estimates (13), the operators in
S0

1,δ,λ, with δ < 1, are L2(Rn) bounded. So if we can show weak type (1, 1) estimates or boundedness from L∞(Rn)
to BMO, then we can get Conjecture 1, that is, Lp(Rn) boundedness for 1 < p <∞, by using interpolation theorems
(see, for example, [16], [6]). Therefore, the fundamental conjecture is

Conjecture 2. If the vector function a(x) =
(
a1(x), . . . , an(x)

)
, which defines the basic weight function (8), satisfies

|∂αaj(x)| ≤ Cα

for any α 6= 0, then the operator p(X,Dx) in S0
1,δ,λ is bounded from L∞(Rn) to BMO, that is, there is a constant C

such that
‖p(X,Dx)u‖BMO ≤ C‖u‖∞.
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[7] Gröchenig, K. and Heil, C., Modulation spaces and pseudodifferential operators, Integral Equations Operator
Theory 34 (1999) 439–457.
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