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Abstract

Pseudodifferential operators with symbols supported on sectors of dyadic annuli in the Fourier domain are
used to perform microlocal analysis of tempered distributions. Microlocal analysis is recalled. The above
symbols are made of smooth wavelet frames which are constructed in the Fourier domain by means of
modulated smooth tapered characteristic functions. The method is used to localize a line of singularities
in an image.
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Résumé

On fait l’analyse microlocale de distributions tempérées au moyen d’opérateurs pseudodifférentiels à
symboles supportés dans des secteurs dyadiques dans le domaine de Fourier. Ces symboles sont faits
d’ondelettes obliques lisses construites dans le domaine de Fourier au moyen de fonctions caractéristiques
modulées et lissées. On utilise cette méthode pour localiser une ligne de singularités dans une image.





1 Introduction

Pseudodifferential operators whose symbols are modulated smooth tapered functions with support on sectors of
dyadic annuli in the Fourier domain are designed to perform microanalysis of tempered distribution on R2. These
tapered functions form a smooth tight frame with frame bound 1, called Parseval frame.

Nonsmooth orthonormal multiwavelets have been constructed in [3] for performing microlocal analysis of tempered
distributions in Rn. The multiwavelets, whose Fourier transforms consist of characteristic functions of cubes, have
perfect localization in the Fourier domain but poor localization in the x domain. To obtain good localization in both
the x and Fourier domains in Rn, in [4], the blockwavelets are smoothed by convolution and normalized to produce
Parseval frames. In [5], [8], nonorthogonal rectangular and polar smooth frame wavelets in R2 are obtained from a
multiresolution analysis. In [5], one also finds a general construction of microlocal frame wavelets supported on a
general ring of sets surrounding the origin and whose dyadic dilations cover R2 \ {0}.

In [1], Aldroubi, Cabrelli, and Molter have constructed wavelets on irregular grids with arbitrary dilation matrices,
and frame atoms for L2(Rd).

In the present paper, attention is restricted to microlocal analysis in the two-dimensional case with the goal of
localizing the singularities of a function f in the time domain by analyzing the growth of its Fourier transform, f̂ , in
wedges in the Fourier domain.

In view of numerical applications on domains with pixels at integer points, the continuous Fourier transform f̂(ξ)
of a function f(x) defined over R2 and the inverse Fourier transform of f̂(ξ) will be

f̂(ξ) =
∫
e−2πiξ·xf(x) dx, f(x) =

∫
e2πix·ξ f̂(ξ) dξ (1)

and Plancherel’s theorem will be
〈f, g〉 = 〈f̂ , ĝ〉, (2)

where

〈f, g〉 =
∫

R2
f(x) g(x) dx, 〈f̂ , ĝ〉 =

∫
R2
f̂(ξ) ĝ(ξ) dξ.

Since wedges in R2 are generalizations of the positive real axis in R, smooth frame wavelets are generalized
to L2(R2) by properly tapering the Fourier transforms of the orthonormal multiwavelets given in [3]. Thus, the
dyadically scaled Fourier transforms of the frame wavelets {ψ`(x)}, ` = 1, 2, . . . , L, satisfy the identity

G(ξ) :=
∑

`=1,2,...,12,j∈Z
|ψ̂`(2jξ)|2 ≡ 1, ξ 6= 0. (3)

Our smooth frame wavelets can be derived from a frame multiresolution analysis by two-scale equations. However,
they are not orthogonal to each other, nor to the spaces Vj spanned by the scaled and shifted scaling functions.

The paper proceeds as follows. In Section 2, the concepts of microlocal analysis are briefly reviewed. In Section 3,
necessary and sufficient conditions are given to characterize tight frame wavelets. In Section 4, two-dimensional
tapered characteristic functions are constructed. Section 5 introduces radial paving of the Fourier domain for mi-
crolocal analysis. In Section 6 an image restoration algorithm is described and the location of a line of singularities
in an image is found by means of the frame coefficients.

2 Microlocal analysis

Our smooth tight frame wavelets are designed for investigating the microanalytic content of distributions. Hyper-
functions, which were introduced by Sato [13] and extensively developed by the Kyoto school of mathematics, can
be considered intuitively as sums of boundary values of holomorphic functions defined in infinitesimal wedges (see
[12] and the references therein).

We write C2 = R2
x + iR2

y and let Γ be a cone with vertex at the origin in R2
y. If ∆ is an open set in R2

y which
approaches Γ asymptotically near the origin from the interior of Γ, then the subset U = R2 + i∆ of C2 is called an
infinitesimal wedge with opening Γ, and is denoted by R2 + iΓ0 (see Fig. 1).

Let f(x) be a “generalized boundary value” of a holomorphic function in an infinitesimal wedge R2 + iΓ0; that is,

f(x) = lim
y→0 y∈Γ

f(x+ iy) := f(x+ iΓ0).
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Figure 1: An infinitesimal wedge R2 + iΓ0.

Definition 1. A distribution f(x) is said to be analytic with respect to a direction ξ0 if it can be represented as a
finite sum of limits fj(x + iΓj0) of slowly increasing holomorphic functions fj(z) in R2 + iΓj0 such that, for every
j, we have

Γj ∩ {y ∈ R2 ; y · ξ0 < 0} 6= ∅.

To characterize the microanalyticity of a slowly increasing distribution f ∈ S ′(R2) by its Fourier transform, f̂ ,
we introduce the dual cone, Γ◦, of the cone Γ defined by

Γ◦ := {ξ ∈ R2 ; y · ξ ≥ 0 for every y ∈ Γ}

(see Fig. 2); Γ◦ is a proper closed convex cone in R2. The complement of Γ◦ is denoted by (Γ◦)c.

Γ

Γ°


(Γ°)c (Γ°)c

Γ°
= Γ Γ°


Γ Γ Γ

(Γ°)c (Γ°)cΓ°
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Figure 2: Open cone Γ, dual cone Γ◦, and complement (Γ◦)c of dual cone.

The following lemma is standard (see [12]).

Lemma 1. Let Γ be an open convex cone. A slowly increasing distribution f(x) ∈ S ′(R2) can be represented as the
limit f(x+iΓ0) of a slowly increasing holomorphic function f(z) in the convex hull of the infinitesimal wedge R2+iΓ0
if and only if the Fourier transform, f̂ , of f is exponentially decreasing in the open cone (Γ◦)c, the complement of
Γ◦; that is, f̂ is exponentially decreasing on every closed proper subcone Γ′ ⊂⊂ (Γ◦)c.

The larger the opening of Γ, the more regular a slowly increasing distribution f(x + iΓ0) will be. The cone Γ
with largest opening is the whole space, in which case f(x+ iΓ0) is analytic. For the next largest possible openings,
Γ are half-spaces.

It is desirable to localize the directional decay of f̂(ξ), because local nonsmoothness of a function f(x) corresponds
to slow decay of f̂(ξ) along some directions at infinity. Each such direction corresponds to a point on the unit sphere
S1 in ξ-space. Therefore, we shall use the coordinates (x, ξ) ∈ R2 × S1 to represent a point x ∈ R2 together with a
direction ξ ∈ S1.

Definition 2. A distribution f(x) ∈ D′(R2) is said to be analytic at x0 ∈ R2 if there exists an open neighborhood
V ⊂ R2 of x0 such that the restriction f |V of f on V is analytic in V . The set of all points x ∈ R2 where f is not
analytic is called the singular support of f .

Definition 3. A distribution f(x) is said to be microanalytic or microlocal analytic at (x0, ξ0) ∈ R2 × S1 if there
exists a distribution g(x) which is analytic with respect to the direction ξ0 such that f(x) − g(x) is analytic in a
neighborhood of x0. The set of all points (x, ξ) ∈ R2×S1 where f is not microanalytic is called the singular spectrum
of f .
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3 Necessary and sufficient conditions for tight frame wavelets

We refer to [7], [10] for detailed background on frames.

Definition 4. Let I be an index set. A sequence of vectors {fi}i∈I in a Hilbert space H is called a frame for H if
there exist constants A, B > 0 (called frame bounds) such that

∀ f ∈ H, A ‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B ‖f‖2.

If A = B, the frame is said to be an A-tight frame. A 1-tight frame is called a Parseval frame.

It can be shown that ‖fi‖2 ≤ B for each i ∈ I. Further, {fi}i∈I is a tight frame with frame bound A if and only
if

∀ f ∈ H,
∑
i∈I

〈f, fi〉 fi = Af.

A frame is redundant if it is possible to remove some element from the frame and still leave a complete set. For
the case of tight frames, we can give the following easy characterization of redundancy. Redundancy of frames is
explored in more detail in [6].

Lemma 2. Let {fi}i∈I be an A-tight frame for a Hilbert space H. If j ∈ I is such that ‖fj‖2 < A, then {fi}i 6=j is
still a frame for H, with frame bounds A′ = A− ‖fj‖2 and B′ = A.

Proof. If f ∈ H, then clearly ∑
i 6=j

|〈f, fi〉|2 ≤
∑
i∈I

|〈f, fi〉|2 = A ‖f‖2.

This establishes the upper frame bound. On the other hand, using the Cauchy-Schwarz inequality, we have∑
i 6=j

|〈f, fi〉|2 =
∑
i∈I

|〈f, fi〉|2 − |〈f, fj〉|2

≥ A ‖f‖2 − ‖f‖2 ‖fj‖2 = (A− ‖fj‖2) ‖f‖2,

which establishes the lower frame bound.

Given f ∈ L2(R2), let fj,k(x) denote the scaled and shifted function

fj,k(x) = 2jf(2jx− k), j ∈ Z, k ∈ Z2,

with Fourier transform
f̂j,k(ξ) = e−2πik·ξ2−j f̂(2−jξ).

Let L be a finite index set. A system {ψ`
j,k}`∈L,j∈Z,k∈Z2 ⊂ L2(R2) is called an A-tight wavelet frame if

f(x) =
1
A

∑
`∈L,j∈Z,k∈Z2

〈f, ψ`
j,k〉ψ`

j,k(x), ∀f ∈ L2(R2). (4)

A system {ψ`
j,k}`∈L,j∈Z,k∈Z2 ⊂ L2(R2) is called an orthonormal wavelet basis if it is an orthonormal basis for

L2(R2). An extension of Lemma 2 shows that this is equivalent to saying that the system {ψ`
j,k}`∈L,j∈Z,k∈Z2 is a

Parseval wavelet frame and ‖ψ`‖L2(R2) = 1 for ` ∈ L.
The following general theorem, which is stated and proved for Rn in [9, Theorem 1], gives necessary and sufficient

conditions to have a Parseval wavelet frame in R2.

Theorem 1. If {ψ1, ψ2, . . . , ψL} ⊂ L2(R2), then

‖f‖2
L2(R2) =

∑
`∈L,j∈Z,k∈Z2

∣∣〈f, ψ`
j,k〉

∣∣2 (5)

for all f ∈ L2(R2) if and only if the functions {ψ1, ψ2, . . . , ψL} satisfy the following two equalities:∑
`∈L,j∈Z

∣∣∣ψ̂`(2jξ)
∣∣∣2 = 1, a.e. ξ ∈ R2, (6)

∑
`∈L,j∈Z+

ψ̂`(2jξ) ψ̂`(2j(ξ + q)) = 0, a.e. ξ ∈ R2, ∀q ∈ Z2\(2Z)2, (7)

where Z+ := N ∪ {0} and q ∈ Z2\(2Z)2 means that at least one component qj is odd.
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Corollary 1. Under the hypotheses of Theorem 1, any function f ∈ L2(R2) admits the tight wavelet frame expansion

f(x) =
∑

`∈L,j∈Z,k∈Z2

〈f, ψ`
j,k〉ψ`

j,k(x). (8)

By using the localization property of the frame wavelet in the Fourier domain, one can study the directions of
growth of f̂(ξ) by looking at the size of the frame coefficients

〈f, ψ`
j,k〉 = 〈f̂ , ψ̂`

j,k〉. (9)

Moreover, by using the localization property of the frame wavelets in x-space, one can localize the singular support
of f(x) by varying `, j and k in (9).

An alternate formulation of the problem is by means of a pseudodifferential operator

Pf(x) =
∫ ∑

j.k.`

ψ`
j,k(x)ψ̂`

j,k(ξ)

 f̂(ξ) dξ (10)

=
∫
e2πix·ξ

(∑
ψ`

j,k(x) e−2πi(k+x)·ξ2−jψ̂`(2−jξ)
)
f̂(ξ) dξ

=
∫
e2πix·ξp(x, ξ)f̂(ξ) dξ,

The problem is to find a symbol p such that Pf is strongly localized on the singular support of f and negligible
where f is smooth. Pseudodifferential operators with smooth symbols do not extend the singular support of f ; that
is, the singular support of Pf is contained in the singular support of f . In Section 6, the symbol will involve only
the matrix Q`

j which will be a discretized version of ψ̂`
j(ξ) = ψ̂`(2−jξ), and the values of the shift parameter k in the

summation in (8) will be determined indirectly by the singular support of f through the size of |〈f̂ , ψ̂`
j,k〉|.

4 Two-dimensional tapered characteristic functions

The localization property of frame wavelets in the Fourier domain by means of the frame coeffficients (9) depends
upon the support of the wavelet functions ψ̂`

j,k on appropriate rectangular or polar pavings of the plane.
In this section, we construct rectangular paving as a steppping stone for polar paving in section 5.
We first define bell functions of one variable. We partition the s axis with points {aj} (aj < aj+1) into intervals,

such that the jth interval is [aj , aj+1] and has length Lj = aj+1 − aj . Around each endpoint of an interval, say aj ,
we allow a transition region [aj − εj , aj + εj ] of width 2εj ; in this region, the bell function bj(s) over the interval j
rises smoothly from 0 to 1, and the bell function bj−1(s) over the interval j − 1 decreases smoothly from 1 to 0. The
bell function bj(s) is nonzero for s in the region (aj − εj , aj+1 + εj+1) and it is 1 for s in [aj + εj , aj+1 − εj+1]. Bell
functions over two adjacent intervals overlap in their transition region.

A bell function, or window, bj(s) has the following properties:

(i) 0 ≤ bj(s) ≤ 1 for all s and

bj(s) =

{
1 if aj + εj ≤ s ≤ aj+1 − εj+1

0 if s ≤ aj − εj or s ≥ aj+1 + εj+1

where εj ≥ 0 and εj + εj+1 ≤ Lj ;

(ii) b2j (aj + s) + b2j (aj − s) = 1 if |s| ≤ εj ;

(iii) bj(aj + s) = bj−1(aj − s) if |s| ≤ εj .

Condition (i) says that the windows are simply smoothed versions of the rectangular window and bj can be
specified if it is known in the left transition region LTR = [aj − εj , aj + εj ] and the right transition region RTR =
[aj+1 − εj+1, aj+1 + εj+1]. So we need only consider the window function in the transition regions; we refer to this
as a taper function. We shall denote the restrictions of bj on LTR and RTR by

tl(s; εj) = bj(s) for s ∈ [aj − εj , aj + εj ] (11)

and
tr(s; εj) = bj(s) for s ∈ [aj+1 − εj+1, aj+1 + εj+1], (12)
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respectively.
The left part of Fig. 3 shows three tapered characteristic functions: (a) of the interval [0, 1] with transition width

1/2 at both ends, (b) of the interval [1, 2] with transition widths 1/2 at the left end and 1 at the right end, and (c) of
the interval [2, 4] with transition widths 1 at the left end and 2 at the right end. It is seen in the right part of Fig. 3
that the square root of the sum of the squares of these three functions is equal to 1 over the overlapping tapered
parts.

-1 1 2 3 4 5 6

0.5

1.0

0 -1 1 2 3 4 5 6

1.0

0.5

0

Figure 3: Left: three overlapping tapered characteristic functions. Right: square root of sum of squares of the three
functions.

Bell functions of two variables are defined as the tensor product of two bell functions of one variable,

b(s1, s2) = b1(s1)b2(s2),

where b1 and b2 have transition regions of appropriate lengths at their left and right ends.
We illustrate two-dimensional paving of the Fourier domain by the following example. The tapered characteristic

functions of the 12 squares of side 1/2 of the ring R[0], shown in Fig. 4, have transition widths 4ε on the outside
edges and 2ε on all the other edges. Similarly, the three squares of side 1 of the second ring R[1] in the first quadrant,

0

Figure 4: Paving of the Fourier domain by rings of 12 dyadic squares.

produced by dilation by 2, have transition widths 8ε on the four outside edges and 4ε on the remaining edges.
In general, the ring R[j], parametrized by j ∈ Z, is the support of tapered characteristic functions

ψ̂`
j(ξ) := ψ̂`(2jξ), ` = 1, 2, . . . , 12,

where the Fourier transform is defined by (1). For fixed j, the only rings that intersect with R[j] are R[j−1] and
R[j+1]. Given one ring R[j], the other rings are simply obtained by dilation.

To prove identity (3), one needs only check points where two, three and four tapered wavelet frame functions
overlap. Let us check identity (3) at an arbitrary point ξ in the intersection of the four tapered parts of ψ̂2

1 and
ψ̂`

2, ` = 1, 2, 3. Since tapering is of the same width for all four transition regions, it is obtained by the same taper
functions (11) and (12), tl(s, ε) and tr(s, ε), respectively. Proceeding counter-clockwise from the top right corner of
the frame ψ̂2

1 , we have

tr(ξ, ε)2tr(ξ, ε)2 + tr(ξ, ε)2tl(ξ, ε)2 + tl(ξ, ε)2tl(ξ, ε)2 + tl(ξ, ε)2tr(ξ, ε)2

= tr(ξ, ε)2[tr(ξ, ε)2 + tl(ξ, ε)2] + tl(ξ, ε)2[tl(ξ, ε)2 + tr(ξ, ε)2]

= tr(ξ, ε)2 + tl(ξ, ε)2

= 1.

We generalize to two dimensions the treatment of smooth frames for H2(R) given in [11, Section 8.4] and show
that the functions ψ`

j,k form a Parseval wavelet frame for L2(R2).

5



Theorem 2. If 0 < ε ≤ 1/4, the system {ψ`
j,k}, j ∈ Z and k ∈ Z2, is a Parseval wavelet frame for L2(R2).

Proof. Identity (3) has just been proved. For f ∈ L2(R2), a similar argument to the proof of Theorem 2 implies∑
k∈Z2

|〈f, ψ`
j,k〉|2 =

∫
|f̂(ξ)|2 |ψ̂`(2−jξ)|2 dξ

and

12∑
`=1

∞∑
j=−∞

∑
k∈Z2

|〈f, ψ`
j,k〉|2 =

12∑
`=1

∞∑
j=−∞

∫
|f̂(ξ)|2 |ψ̂`(2−jξ)|2 dξ

=
∫
|f̂(ξ)|2 dξ = ‖f‖2

L2(R2).

A folding argument [11, p. 419], shows that

‖ψ`
0,0‖2

L2(R2) =
1
4
.

Thus we have a family of frames in L2(R2) that do not form an orthonormal basis.

5 Radial paving of the Fourier domain for microlocal analysis

To have arbitrarily fine angular resolutions in the Fourier domain it is convenient to consider polar pavings of the
plane by dyadic sectors of annuli with appropriate angular divisions. A few sectors of annuli of the first and second
dyadic rings are shown in Fig. 5.

1/4 1/20 1

Figure 5: Dyadic sectors of annuli with central disk in the Fourier domain. Unequal angular divisions offer directional
freedom.

It is to be noticed that the radial interval is of the form [r, 2r]. Polar wavelets can be defined by the inverse Fourier
transforms of nonoverlapping characteristic functions over sectors of annuli. If the Fourier domain is completely
covered by L nonoverlapping wedges, the L family of wavelets {ψ`

j,k}, with ` = 1, . . . , L, j ∈ Z, and k ∈ Z2, form an
orthonormal basis of L2(R2). This basis can be generated by a frame multiresolution analysis with scaling functions.

To have better localization in x-space, these functions are tapered with width 2ε on the inside arcs, width 4ε
on the outside arcs and width εs, r ≤ s ≤ 2r, on the straight radial edges. Provided ε is sufficiently small so that
tapering overlaps are restricted to immediately adjacent regions, it will be shown below that identity (3) is satisfied.
By taking a ring sufficiently close to the origin, by construction, dyadic polar rings form a Parseval frame.

The description of polar frame wavelets is considerably simplified by using the polar coordinates (r, θ) in the
Fourier domain instead of the Cartesian coordinates (ξ1, ξ2). The inverse and direct coordinate transformations are

ξ1 = r cos 2πθ, ξ2 = r sin 2πθ; r =
√
ξ21 + ξ22 , θ =

1
2π

arctan
(
ξ2
ξ1

)
,

6



with the appropriate branches of arctan. In the (r, θ)-plane, the polar frame wavelets are supported in the semi-
infinite strip {0 ≤ r <∞, 0 ≤ θ ≤ 1}, and are 1-periodic in θ. The strip, shown in Fig. 6, is divided into rectangles
with vertical sides at r = 2j , j ∈ Z and horizontal sides at

0 = θ0 < θ1 < · · · < θ` < · · · < θL = 1.

0 1/2 1 2 4
r

θ

θ L—1

θ 1

θ
lθ

θ  = 00

θ  = 1L

l+1

Figure 6: Strip in the (r, θ)-plane.

The smooth functions ψ̂`
j(r, θ) = ψ̂`(2−jr, θ) are easily obtained by tapering the characteristic functions of each

rectangle. Tapering is done along vertical sides with transition regions of width 2j+1ε at r = 2j−1 and along horizontal
sides with transition regions of width 2ε` with εL = ε0 at θ = θL.

It is then clear that identity (3) is satisfied.
It is shown in [5] that our smooth frame wavelets can be obtained from a frame multiresolution analysis with

scaling functions.

6 A numerical implementation of the localization method

In this section, we describe how to apply the above theory to the restoration of finite images represented by matrices.
Since the Fourier transform of a finite region gives rise to oscillations of the cardinal sine type, care must be taken
in the restoration process.

The restoration process described in [5] involves the following steps.

(a) A scarred image (A) is to be restored as its original image (F).

(b) Image (A) is Fourier transformed and filtered by multiplication with tapered characteristic functions with
support far from the origin and at right angles to the singularities to be localized. This produces image (B).

(c) The frame coefficients (9) in the Fourier domain,

〈f̂ , ψ̂`
j,k〉 = 〈f, ψ`

j,k〉,

make image (C).

(d) In view of the Plancherel theorem, image (C) is used in the x domain to obtain the wavelet frame expansion
(8) of Corollary 1. This produces a thick image (D) of the singularities in image (A)

(e) The extra width of (D), caused by the side lobes in the support of ψ`
j,k, is narrowed to eliminate oscillations

due to the cardinal sine effect when transforming functions with finite support. This is image (E).

(f) A tuned multiple of (E) is subtracted from (A) to restore the original image (F).

7



In the case of polar frames, two-dimensional bell functions were produced by the Mathematica Wavelet Explorer
by tapering characteristic functions over the rectangles with left and right vertical edges at r = 1/2 and r = 1 with
horizontal transition widths 1/8 and 1/4, respectively. The lower and upper transition widths of the rectangle with
lower and upper horizontal edges at θ` and θ`+1 are (θ` − θ`−1)/4 and (θ`+1 − θ`)/4, respectively.

Tapering was done by iterating the sine function twice to get

b(s) = sin
(π

2
sin2

(π
2

sin2
(π

2
s
)))

with the option Taper -> {Trig[2],epsilon}. It is easy to see that

b(s)2 + b(1− s)2 = 1, s ∈ [0, 1],

by noting that sin((π/2)(1− s)) = cos((π/2)s) and repeated use of the identity cos2 s = 1− sin2 s.
Six sets of longer rectangles were produced by horizontal dyadic scaling of the functions of the first set. The

support of these functions is a strip with far right end at r = 287.
These functions are evaluated in the form of tables by Mathematica in the (ξ1, ξ2) plane and exported to Matlab

in the form of matrices:
Q1

1, . . . , QL
1 , . . . , Q1

7, . . . , QL
7 .

By construction, the top right 87×87 matrix Qd
7 (d for diagonal), with center line making an angle of π/4 radians

with respect to the ξ1 axis, has lower left and upper right elements in positions (87, 201) and (1, 287). Therefore, in
the sequel we shall work with matrices of dimension 287× 287.

A diagonal line is added to the Saturn image making (A) shown in the top left part of Fig. 7.
Let f be the matrix representing image (A). The discrete Fourier transform F of f is filtered by means of the top

right frame, Qd
7, of the fifth ring to recover the singularity and eliminate the smooth part of the image. We write

k = (k1, k2). Let the (m,n)-th element of the matrix of exponentials Ek be

Ek(m,n) = e−2πi(m−1,n−1)·(k1,k2)/287. (13)

Discretizing the scalar product (9),
〈f̂ , ψ̂d

5,k〉,
we obtain the matrix C = (ck) of frame coefficients

ck =
287∑

m,n=1

(F .∗Ek.∗Qd
7)(m,n), k1 = k2 = 1, . . . , 287, (14)

where .∗ denotes componentwise matrix multiplication. Note that Qd
7 is a real matrix. The matrix C represents

image (C).
Discretizing the partial sum (8),

287∑
k1=k2=1

〈f̂ , ψ̂d
5,k〉 ψ̂d

5,k(ξ),

we obtain the matrix W = (wk) of the wavelet frame expansion of the discrete inverse Fourier transform of the
filtered image (B). The entries of W are

wk =
( 287∑

k1=k2=1

cm1,m1E−m1,−m1 .∗Qd
7

)
k

, (15)

where summation is over the diagonal segment S.
Since the Fourier transform of the smooth component of the image is localized mainly near the origin and the

Fourier transform of the singularity consists mainly of details with high frequency, the properly modulated matrix
filter Qd

7 picks up only the singularity.
The frame ψ̂d

5,k(ξ), with support in the top right corner in the Fourier domain, picks up the singularities across
segments parallel to the main diagonal.

In the top left part of Fig. 7, a diagonal line of height 100 has been added to the Saturn image making image
(A). The Fourier transform of this image is filtered by a smooth polar frame supported on a sector of an annulus of
aperture of 0.02π radians and inner and outer radii 220 and 287, along the secondary diagonal in the upper right
corner of a 287 × 287 matrix in the Fourier domain and shown in the top right part of the figure (image (B)). The
image of the frame coefficients of the filtered image is shown in the bottom left part of the figure (image (C)). This
image clearly locates the diagonal line singularity added to the Saturn image. The bottom right part of the figure
shows the frame expansion of the filtered image in the x domain (image (D)). It is seen that the smooth image has
been filtered out.

8



Figure 7: Top left: framed negative image of diagonal line added to the Saturn image. Top right: framed negative
image of the filtered image in the Fourier domain. Bottom left: framed negative image of the frame coefficients of
the filtered image in the Fourier domain. Bottom right: framed negative image of the frame reconstruction of the
filtered image in the x domain.
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