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Abstract

Digital image compression with multiresolution singular value decomposition is compared with discrete
cosine transform, discrete 9/7 biorthogonal wavelet transform, Karhunen—Loeve transform, and a hybrid
wavelet-svd transform. Compression uses SPIHT and run-length with Huffmann coding. The perfor-
mances of these methods differ little from each other. Generally, the 9/7 biorthogonal wavelet transform
is superior for most images that were tested for given compression rates. But for certain block transforms
and certain images other methods are slightly superior.

To appear in Proc. Fourth ISAAC Congress (York University), H. Begehr, R. P. Gilbert, M. Muldoon,
and M. W. Wong, eds., Kluwer.
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Résumé

On compare la compression d’image par décomposition multirésolution en veleurs singuliere (dvs) avec la
transformation en cosinus discréte, la transformation en ondelettes 9/7 biorthogonale, la transformation de
Karhunen—Loeéve et une transformation ondelette-dvs hybride. La compression se fait par SPIHT et le code
d’Huffman. La performance de ces méthodes diffrent peu entre elles, mais la transformation en ondelettes
9/7 biorthogonale les supplante quelque peu sur la plupart des images testées & compression égale. Pour
certaines tranformations blocs et certaines images, d’autres méthodes sont quelque peu supérieures.






1 Introduction

Image compression is important in digital image transmission and storage. Comparative studies of compression
methods are found in [5] and [1]. In [3], image compression with multiresolution singular value decomposition [6] is
compared with discrete cosine transform, discrete 9/7 biorthogonal wavelet transform, Karhunen—Loeve transform,
and a hybrid wavelet-svd transform. Compression uses Set Partitioning in Hierarchical Trees (SPIHT) [7] and run-
length with Huffmann coding. These methods are briefly reviewed and their performance is tested through numerical
experiments on several well-known images. It is found that these methods differ little from each other at moderate
compression ratio. Generally, the 9/7 biorthogonal wavelet transform is superior for most images that were tested
for given compression rates. But for certain block transforms and certain images other methods are slightly superior.

Section 2 summarizes multiresolution analysis (MRA) and block algorithms. Section 3 describes the coding meth-
ods. In Section 4, we propose a hybrid method using the 9/7 biorthogonal wavelets with singular value decomposition
(SVD). Table 1 lists the results of numerical experiments with these methods on five images and Table 2 in Section 5
list the results on a fingerprint image, for which visual inspection is done in Section 6.

2 Multiresolution Processing and Block Algorithms

The analysis stage of a two-dimensional separable discrete wavelet transform produces the matrix X = UAVT,
where the upper and lower half-parts of the orthogonal matrices U and V' correspond to lowpass and highpass filters,
respectively. The discrete wavelet transform divides the image into four parts as in the following procedure:

(P1) The scaling function ¢(x)¢(y) produces the top left part.

(P2) The vertical wavelet function 1 (x)p(y) produces the top right part.

(P3) The horizontal wavelet function ¢(z)¥(y) produces the bottom left part.
(P4) The diagonal wavelet function ¥ (z)1(y) produces the bottom right part.

The top left part is called an approrimation because it is smooth and has large values. The other three parts are
called details because they emphasize horizontal, vertical, and diagonal edges, respectively. These three parts have
small absolute values except for edges. A multi-level decomposition is obtained by applying this decomposition to
successive approximations.

Similar decompositions are achieved by the discrete cosine transform (DCT) and the SVD by means of the
following block algorithm:

(BA1) A given image matrix X € R™*" is divided into b x b submatrices X*9 1 <k <m/b, 1 < £ < n/b.
(BA2) Each submatrix X #% is transformed into Xl(k’e) by the DCT or the SVD.
(BA3) The matrix X{k’z) is rearranged into an (m/b) x (n/b) matrix Xz(i’j).

(BA4) The XQ(i’j ) matrices are put in the (4, j) position to produce the m x n matrix X3 which contains b parts and
is similar to the matrix obtained by the DWT.

The Kakarala—Ogunbona’s algorithm [0] is a kind of multiresolution algorithm. We explain here the two-
dimensional algorithm for level 1.

(KO1) Each b x b submatrix X% of a given matrix X € R™*" is reshaped into a b x 1 column vector.
(KO2) These column vectors are collected into a b? x (mn/b?) matrix T

(KO3) T is factored into its reduced singular value decomposition in the form 7" = USVT, where U & RY*x(mn/n?)
and V € R(mn/5°)x6” have orthonormal columns, and S € R*** is diagonal.

(KO4) Calculate the b2 x (mn/b?) matrix A = UTT = SVT.
(KO5) Each column vector of A is reshaped into a b x b matrix ka’z).

(KOG6) All the matrices Xl(k’e) are rearranged into an m X n matrix X;.
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Figure 1: Level 1 SVD MRA for a 32 x 32 matrix.
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Figure 2: Negative image of level-1 approximation and detail subimages of the octagon figure produced with SVD
and 9/7 wavelet MR, respectively. The level-1 approximation is in the top left subimages.
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Figure 3: Left: hierarchical structure. Right: binary representation of the magnitude-ordered coefficients

Figure 1 illustrates the algorithm for level-1 SVD MRA on a 32 x 32 matrix.

Figure 2 illustrates the difference between SVD and 9/7 wavelet multiresolution at level 1 for the octagon figure.
One notices that the four isolated diagonal segments appear in the lower-left and lower-right detail parts of the SVD
and wavelet multiresolution, respectively. The singular values and left singular vectors for the level-1 SVD MRA of
the octagon image are in the vector S and the columns of U, respectively,

S = 4554.4 U = 0.5000 -0.0000 -0.7071 -0.5000

3524.2 0.5000 0.7071 -0.0000 0.5000
3524.2 0.5000 -0.7071 0.0000 0.5000
2024.0 0.5000 0.0000 0.7071 -0.5000

One sees that the first column of U is a lowpass filter.

The norm of the nth row of A is equal to the nth singular value of T because the columns of the matrix V are
orthonormal. The b2 x b? orthogonal matrix U and the singular values are needed for the inverse transform.

3 SPIOT

The SPIHT [7] algorithm is based on the following two observations:

OBSERVATION 1. The pizels of the analyzed image having large absolute values are concentrated in the upper-left
corner.

OBSERVATION 2. SPIHT encodes zerotrees based on the principle that when a wavelet coefficient has small absolute
value, then points at other levels corresponding to this coefficient also have small absolute values.
SPIHT has three ordered lists:

e the list of significant pixels (LSP),
e the list of insignificant pixels (LIP),
o the list of insignificant sets (LIS).

LIP and LIS are searching areas. LSP lists the pixels whose absolute values are greater than 2%V, thus requiring more
than N bits. Each pixel of LIP is tested whether its absolute value is less than 2 or not. Each pixel of LIS is tested
whether all absolute values of its descendants are less than 2. At the first step, all the pixels of LIS are type ‘A’.
Some pixels of LIS will be changed from type ‘A’ to type ‘B’ in the following SP procedure:

(SP1) LSP is taken as an empty list and LIP is the set of top level coefficients. LIS is the set of top level wavelet
coefficients and all the pixels of LIS are type ‘A’. N is set to the most significant bit of all coefficients.

(SP2) Check each pixel of LSP and output 0 if its Nth bit is 0, and output 1 otherwise.

(SP3) Check each pixel of LIP and output 0 if its absolute value is less than 2V. Otherwise, output 1 and, moreover,
output 0 when the value of this pixel is negative and 1 if positive, and move this pixel to LSP.

(SP4) Check each pixel of LIS.



(a) When the pixel is of type ‘A’, output 0 if the absolute values of all its descendants are less than 2V,
Otherwise, output 1 and do the following:

(i) Check all four children.
(i) When the absolute value of a child is greater than or equal to 2V, output 1 and, moreover, output 0
or 1 according to the sign of this child and add this child to LSP.
(iii) When the absolute value of this child is less than 2V, add this child to the end of LIP.
(iv) When this pixel has grandchildren, move it to the end of LIS as a pixel of type ‘B’.

(b) When a pixel is of type ‘B’, output 0 if the absolute values of all descendants, apart from the children, are
less than 2V. Otherwise, output 1 and add each child to the end of LIS as type ‘A’ and delete this pixel
from LIS.

(SP5) Set N to N — 1 and go to step (SP2).
(SP6) When the number of output bits exceeds the threshold (which is decided by user’s bpp), then stop this procedure.

The SPIHT algorithm is very efficient for high compression rate when N is large but does not minimize memory
nor bandwidth and is not designed to look at regions of interest, as opposed to JPEG 2000.

The run-length and Huffmann coding can quantize the analyzed image economically by the following HU pro-
cedure:

(HU1) Divide each block of the analyzed image by some integer which depends on the image and the block location.
Each pixel of this divided image is rounded to an integer. This quantized analyzed image has many 0 entries.

(HU2) Reshape this image into a long row vector. In this step, use the following two methods:

(a) Reshape each block into a vector and stack these vectors together.
(b) Use the hierarchical tree (0 tree) algorithm.

(HU3) Compress the 0 entries of this long row vector by the run-length coding.

(HU4) Compress the run-length coded image by gzip.

4 Hybrid Wavelet-SVD Method

We propose a hybrid method which combines wavelet and singular value decompositions. The analysis procedure
consists in the following three steps:

(AN1) Transform the m x n image X into the analyzed image X7 by the level-two DWT using the 9/7 biorthogonal
wavelets.

(AN2) Decompose X7 into 2 x 2-block SVD MRA up to level six to get Xs.
(AN3) Compress X2 by SPIHT and compress the resulting image with gzip.

The synthesis procedure consists in the following three steps:
(SY1) Uncompress the gzip image with gunzip and decode the compressed code to X,.
(SY2) Obtain the synthesized image X, by the inverse 2 x 2-block SVD transform.
(SY3) Obtain the reconstructed image & from X, by the inverse DWT.

We have the following observation:

OBSERVATION 3. Our hybrid wavelet-SVD method is better than SVD alone, It is better than biorthogonal wavelet
for the fp1 and barb images.

This observation leads to the following conclusions:

(C1) The SVD decomposition depends on the data and cannot deal with data in time-frequency domain. Because
our hybrid method contains wavelet analysis, which is a kind of time-frequency analysis, our hybrid method
performs better.

(C2) The blocking effect in our hybrid method is weaker than with SVD, because we use long-filter wavelets in the
last synthesis step.



5 Numerical Experiments
Eight bit-per-pixel (bpp) images have been compressed by the following methods.
e bior4.4 is the biorthogonal wavelet filter with 9/7 taps of [2].
e db2 is Daubechies’ compactly supported wavelet filter with N = 2.
e 2by2SVDMR and 4by4SVDMR are the SVD multiresolution with block size 2 and 4, respectively.
e JPEG is MATLAB’s imwrite function.
e 2by2KLTMR and 4by4KLTMR are the KLT multiresolutions with block size 2 and 4, respectively.

e bior4.4+SVD consists of the following two steps. In the first step, the image is transformed by bior4.4 wavelet
to level 2. In second step, the transformed image is decomposed by 2by2SVDMR to level 6.

The SPIHT algorithm [7] is used for coding the MRA methods.
Six well-known images, 512 x 512 Lena, Boats, Barb, and Yogi, 512 x 640 Goldhill, and 768 x 768 fp1, shown in
Fig. 4 have been tested. The fpl image is a sample of the FBI WSQ FINGERPRINT COMPRESSION DEMOS 4.2.5.

Four objective measures, PSNR, MSE, MaxErr, and SNR, defined below, were applied to m X n original and
reconstructed images, X and zZ.

DEFINITION 1 Peak Signal to Noise Ratio (PSNR) and Signal to Noise Ratio (SNR) are:

255%mn X117
PSNR = 10log () , SNR = 10log (F ,
PAIX -3 PAIX - 2%
where the square of the Frobenius norm of an m X n matriz A is
2 2
|Allz = Z Z Ai,j'
i=1 j=1

The mean square error and the maximum error are
1 12 "
MSE = —|| X — 2|7, MaxError = ||X — 2| -
mn

In this work, bpp is the number of bits in the gzip image divided by the number of bits in the original image.
Peak Signal to Noise Ratio (PSNR) with the bior4.4 method is generally higher except for the Yogi image at 1
and 0.5 bpp where 2by2SVDMR and 2by2KLTMR are superior.

The numerical results listed in Tables 1 and 2 lead to the following conclusions:

(C3) At high compression ratio, that is, low bpp, block effects appeared for SVD, KLT, and JPEG, especially
remarkable for SVD2by2 and KLT2by2. On the other hand, in case of wavelet with long filters, images were out
of focus. Our hybrid method using 9/7 wavelet with SVD lies between these two opposite cases.

(C4) For the fingerprint, our hybrid method using 9/7 wavelet with SVD was superior to the other methods.
(C5) Better performance was obtained with short-filter SVD2by2 and KLT2by2 for Yogi as it uses fewer grey levels,

(C6) For other images, our hybrid method performed a little bit inferior to wavelet bior4.4, but superior to SVD,
KLT, and JPEG.

Every experiment was run four times successively under the same conditions, and the cputime, measured with
the MATLAB profile function, was taken to be the mean value of the last three runs. The computations were done
on a portable PC with the following specifications: Pentium III 866 Mhz, 512 MB memory, Microsoft Windows 2000
and MATLAB R13. Partial results are listed in Table 1 for the first five figures. Fuller results are in [3].
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Figure 4: The six original figures.




Table 1: Results for Lena, Boats and Goldhill at 0.25 bpp, Barb at 1.5 bpp, and Yogi at 0.5 bpp. The bpp used by
JPEG is indicated in the first column.

Image\ Method \Level\ PSNR \ MSE \ MaxFErr \ SNR \ CPU

Lena bior4.4 6 33.4193 | 29.5901 | 41.9485 | 27.7383 | 4.96

db2 6 32.0355 | 40.6943 | 44.8188 | 26.3544 | 4.64
2by2SVDMR 6 30.3235 | 60.3568 | 64.4865 | 24.6425 | 3.14
4by4SVDMR 4 30.8061 | 54.0094 73.974 | 25.1251 | 3.24
0.26 JPEG 30.7576 | 54.6158 82 25.0766 | 0.97
2by2KLTMR 30.2218 | 61.7871 | 61.0016 | 24.5408 | 34.74
4bydKLTMR 4 30.7977 | 54.1135 | 63.7171 | 25.1167 | 9.17
bior4.44+SVD | 246 | 32.2857 | 38.416 52.0023 | 26.6046 | 5.55

[=p}

Boats bior4.4 6 29.4905 | 73.1191 80.172 | 24.1479 | 4.98
db2 6 28.6923 | 87.8713 | 75.3258 | 23.3497 | 4.53
2by2SVDMR 6 27.5786 | 113.5583 | 81.147 22.236 | 3.27
4by4SVDMR 4 27.8278 | 107.2269 | 87.8259 | 22.4852 | 3.23

0.25 JPEG 27.3174 | 120.5969 109 21.9748 | 0.99
2by2KLTMR 27.658 | 111.5017 | 82.5188 | 22.3154 | 34.10
4by4KLTMR 4 27.9562 | 104.1012 | 87.8324 | 22.6136 | 9.17
bior4.44+SVD | 246 | 28.5882 | 90.0041 78.3846 | 23.2456 | 5.43

[=p}

Gold bior4.4 6 30.5292 | 57.5658 | 51.2446 | 23.5659 | 6.33
db2 6 29.77 68.5611 | 64.5146 | 22.8068 | 5.34
2by2SVDMR 6 29.3633 | 75.2917 | 73.4238 | 22.4001 | 3.74
4by4SVDMR 3 29.6741 | 70.0923 | 66.1833 | 22.7108 | 3.65

0.26 JPEG 29.6083 | 71.1619 70 22.6451 | 1.15
2by2KLTMR 29.5023 | 72.9213 | 74.7445 | 22.539 | 43.05
4by4KLTMR 3 29.8132 | 67.8827 | 60.2749 | 22.8499 | 11.07
bior4.44+SVD | 246 | 29.9528 | 65.7348 68.479 | 22.9896 | 6.24

[=p}

Barb bior4.4 6 30.3506 | 59.9822 | 34.2253 | 24.0747 | 5.94
db2 6 30.0205 | 64.7188 37.389 | 23.7446 | 5.56
2by2SVDMR 6 29.4611 | 73.6165 39.915 | 23.1852 | 4.14
4by4SVDMR 4 29.8336 | 67.565 37.9863 | 23.5577 | 4.11

1.51 JPEG 28.2041 | 98.3269 ol 21.9282 | 1.01
2by2KLTMR 29.4167 | 74.3729 | 40.5208 | 23.1408 | 34.47
4by4dKLTMR 4 29.9307 | 66.0707 | 39.6838 | 23.6548 | 9.76
bior4.44+SVD | 246 | 30.4038 | 59.252 38.8405 | 24.1279 | 6.51

(=2}

Yogi bior4.4 6 31.431 | 46.7712 | 66.2005 | 24.8921 | 5.06
db2 6 30.3525 | 59.9555 | 71.4808 | 23.8136 | 4.63
2by2SVDMR 6 34.1772 | 24.8517 61.563 | 27.6384 | 3.37
4by4SVDMR 4 28.8366 | 85.0009 | 127.6891 | 22.2977 | 3.35

0.51 JPEG 28.8926 | 83.9116 112 22.3537 | 0.96
2by2KLTMR 34.4421 | 23.3812 | 62.9133 | 27.9033 | 34.08
4by4dKLTMR 29.2121 | 77.9592 | 126.2277 | 22.6732 | 9.07
bior4.44+SVD | 246 | 28.8919 | 83.9258 | 108.8086 | 22.353 | 5.65

[=p}

S




6 Visual Inspection of the Fingerprint Image at 0.15 bpp.

The six compression methods, bior4.4, db2, 2by2SVDMR, 4by4SVDMR, 4by4KLTMR, and bior4.4+SVD, applied to the
768 x 768 fpl image produce very similar synthesized images at 0.15 bpp on the screen and in 40%-reduced print
form. However, at high compression ratio, that is, low bit per pixel, visual inspection is necessary to ascertain the
quality of synthesized images.

It is seen in Table 2 for fpl that PSNR is below 30 db at bpp = 0.15 so that some visual deterioration of
the synthesized images may be expected. Blocking effects (BE) and blurring of the fingerprint image at 0.15 bpp
can be observed at 200% and 300% magnification with Adobe Illustrator. The following list goes from low to high
performance.

e jpeg: strong BE at 200%

e 2by2SVDMR: weak BE at 200%, strong at 300%

2by2KLTMR: weak BE at 200%, moderate at 300%

4by4SVDMR weak BE at 200%, slightly strong at 300%

e 4by4KLTMR: weak BE at 200%, moderate at 300%

db2: weak BE at 200% with a little blurring

bior4.4+SVD: weak BE at 600% with some blurring in parts

e bior4.4: weak BE at 600% with some blurring in parts

Visual inspection corroborates the PSNR.
Figures 5 and 6 show a magnified part of the fingerprint image at 0.15 bpp. Again magnification is by Adobe
Tllustrator. It is seen that apart from bior4.4+SVD and bior4.4, the other methods introduce blocking effects.
The curves in Figs. 7 show that the new hybrid method, bior4.4+3VD, has higher PSNR against bpp than other
methods for the fingerprint image.
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Table 2: Numerical results for the 768 x 768 fp1 image

bpp \ Method \ Level \ PSNR \ MSE \ MaxErr \ SNR \ cpu
1 bior4.4 6 39.684 6.994 14.727 | 37.221 | 10.3
db2 6 38.130 | 10.002 | 22.632 | 35.667 | 9.7
2by2SVDMR 6 36.569 | 14.329 | 21.849 | 34.106 | 6.3
4by4dSVDMR 4 38.0430 | 10.204 18.85 | 35.581 | 6.3
JPEG 37.825 | 10.730 22 35.363 | 1.7
2by2KLTMR 6 35.793 | 17.132 | 22.308 | 33.331 | 76.9
4bydKLTMR 4 38.222 9.793 17.41 | 35.759 | 20.2
bior4.44+SVD | 246 | 40.221 6.180 14.96 | 37.759 | 11.9

0.5 bior4.4 6 35.724 17.404 32.551 | 33.262 | 9.8
db2 6 33.834 26.89 35.070 | 31.372 | 9.0
2by2SVDMR, 6 31.483 | 46.219 | 44.070 | 29.020 | 5.5
4by4SVDMR, 4 33.633 | 28.171 | 37.668 | 31.170 | 5.6
JPEG 34.000 | 25.887 37 31.538 | 1.68
2by2KLTMR 6 31.165 | 49.721 | 43.419 | 28.70 | 76.2
4bydKLTMR 4 33.766 | 27.321 | 38.342 | 31.304 | 19.5
bior4.44+SVD | 246 | 35.954 | 16.509 28.77 | 33.491 | 11.0

0.25 bior4.4 6 32.5633 | 36.287 | 44.579 | 30.071 | 9.3
db2 6 30.525 | 57.622 | 53.073 | 28.067 | 8.7
2by2SVDMR 6 28.197 | 98.497 | 67.898 | 25.734 | 5.1
4by4dSVDMR, 4 29.513 | 72.743 | 65.411 | 27.051 | 5.2
JPEG 28.990 | 82.056 84 26.527 | 1.68
2by2KLTMR 6 28.052 | 101.838 | 70.428 | 25.589 | 75.8
4bydKLTMR 4 29.666 | 70.222 | 73.483 | 27.204 | 19.2
bior4d.44+-SVD | 246 | 32.436 | 37.106 | 42.748 | 29.97 | 10.6

0.15 bior4.4 6 29.877 | 66.893 | 60.519 | 27.415 | 11.0
db2 6 28.418 | 93.592 | 69.640 | 25.956 | 10.1
2by2SVDMR, 6 26.517 | 145.013 | 94.399 | 24.054 | 5.9
4by4SVDMR, 4 26.784 | 136.353 | 94.678 | 24.322 | 6.0
JPEG 24.248 | 244.495 129 21.786 | 1.91
2by2KLTMR 6 26.417 | 148.400 | 92.085 | 23.954 | 76.8
4bydKLTMR 4 27.007 | 129.534 | 92.582 | 24.545 | 20.0
bior4d.44+SVD | 246 | 29.906 | 66.441 | 62.348 | 27.444 | 12.1




bior4.4+SVD PSNR=29.906 bior4.4 PSNR=29.877

Figure 5: Compressed fingerprint image at 0.15 bpp for bior4.4+SVD, bior4.4, db2, jpeg, 4by4SVDMR and 2by2SVDMR.
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KLT4by4 PSNR=27.007

KLT2by2 PSNR=26.417

Figure 6: Compressed fingerprint image at 0.15 bpp for 4by4KLTMR and 2by2KLTMR.
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Figure 7: PSNR curve against bpp. Top, for bior4.4+SVD, bior4.4, db2, k1t2by2; bottom bior4.4+SVD, jpeg,

k1t4by4, and svd2by?2.
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