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Abstract

Basic results on the singular value decomposition of a matrix are recalled. The Kakar-
ala and Ogunbona form of a multiresolution analysis for singular value decomposition
is presented. Numerical case studies on a multiresolution analysis method based on
the singular value decomposition include the 2001 Nikkei Stock Exchange, the 1940 El
Centro earthquake wave, the 1995 Kobe earthquake wave and the Matlab leleccum

sample data. The Matlab code used in this paper is listed in the appendix.
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Résumé

On rappelle les éléments de la décomposition d’une matrice selon les valeurs singulières
et l’analyse multi-résolution de Kakarala et Ogunbona de cette décomposition. On ap-
plique cette méthode à l’étude numérique du Nikkei Stock Exchange pour 2001, des
tremblements de terre d’El Centro en 1940 et de Kobe en 1995 et du signal leleccum
de Matlab. Les codes Matlab sont en appendice.





1 INTRODUCTION

The singular value decomposition (SVD) of a real M ×N matrix A is

A = UΣV T ,

where U is an orthogonal M ×M matrix whose columns (called the left singular vectors) are the
eigenvectors of AAT , V is an orthogonal N × N matrix whose columns (called the right singular
vectors) are the eigenvectors of AT A, and Σ is an M × N diagonal matrix whose diagonal entries
are the singular values of A. More on the singular decomposition theorem can be found in [1], [2],
and [3]. The history of the singular value decomposition is reviewed in [4].

R. Kakarala and P. Ogunbona [5] proposed a multiresolution analysis based on singular value
decomposition. They let Â = UT A = ΣV T , and write the SVD as A = UÂ. This second form
reveals a useful connection with recent research in signal-adapted filterbanks: U is essentially the
decorrelating matrix obtained from an input signal measured in second-order statistics, and Â
contains the subband decomposition of the signal.

The main purpose of this paper is to show, by numerical experiences, how SVD multiresolution
analysis works, that is, how, by recursively resampling and decomposing the largest rank-one matrix,
the SVD may be developed into a multiresolution SVD, thereby providing useful information for
analyzing and comparing signals.

This paper is organized as follows. Notation is introduced in section 2. Basic properties of SVD
are recalled in section 3. The multiresolution form of the SVD is presented in section 4. Section 5
contain the numerical results obtained from four case studies. The Matlab codes used in section 5
are listed in appendix A.

2 NOTATION AND CONVENTIONS

Throughout this paper, the following notation and conventions are used. An N dimensional row
vector is indexed as [x(1) · · · x(N)] and similarly an M ×N matrix X is indexed as

X =




x(1, 1) x(1, 2) · · · x(1, N)
x(2, 1) x(2, 2) · · · x(2, N)

...
...

. . .
...

x(M, 1) x(M, 2) · · · x(M, N)


 (1)

The kth row and kth column of X are denoted by X(k, ·) and X(·, k), respectively. The methods
described in this paper are for real-valued vectors, but they extend to complex-valued vectors by
replacing every instance of transpose with conjugate-transpose.

3 BASIC RESULTS ON SVD

Henceforth, a matrix denoted by S (possibly with subscripts) represents a diagonal matrix of singular
values. The singular values are written s(k) for 1 ≤ k ≤ M , or sometimes s(X; k) when the matrix
needs to be identified. Singular values are always assumed to be arranged in decreasing order so
that s(1) ≥ s(2) ≥ · · · ≥ s(M) ≥ 0. Note that the SVD of X, X = USV T , may be written as a
sum of outer products

X =
M∑

k=1

s(k)U(·, k)V (·, k)T . (2)
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Each outer product U(·, k)V (·, k)T is a rank-one matrix, and the partial sum

X(q) =

q∑

k=1

s(k)U(·, k)V (·, k)T (3)

has rank q for q smaller than or equal to the rank of X. This partial sum has an important
approximation property [6] stated in Lemma 1 in terms of the Frobenius norm.

Definition 1 The Frobenius norm || · ||F of X is defined as

||X||F =

√√√√
M∑

k=1

N∑

l=1

|x(k, l)|2. (4)

Note that
||X||F =

√
s(X; 1)2 + · · ·+ s(X; M)2. (5)

Lemma 1 For any matrix Y with rank q smaller than or equal to the rank of X, we have the
inequality

||X − Y ||F ≥ ||X −X(q)||F =
√

s(X; q + 1)2 + · · ·+ s(X; M)2. (6)

In this sense, X(q) provides the best rank-q approximation to X.

Definition 2 The matrix
HN := IN − (1/N) eNeT

N (7)

is called the row centering matrix, where IN is the N ×N identity, and eN is the N × 1 vector with
all components equal to 1.

Lemma 2 The N ×N row centering matrix HN is symmetric and idempotent.

Proof. Let HN = IN − (1/N)eNeT
N and consider HT

N :

HT
N = {IN − (1/N)eNeT

N}T

= IT
N − (1/N)(eT

N)T eT
N

= IN − (1/N)eNeT
N = HN .

Thus HN is symmetric. Since HNHN = HN , then HN is idempotent.

Lemma 3 The singular values of HN are

s(1) = · · · = s(N − 1) = 1, s(N) = 0.

Suppose now that X := XHN is the mean corrected matrix for some M × N matrix X, with
M ≤ N . Let the SVD of X be denoted X = AS(X)BT , with A the matrix of eigenvectors of

XX
T
, S(X) the matrix of singular values, and B the N ×M matrix of eigenvectors of X

T
X. As

in X(q) =
∑q

k=1 s(k)U(·, k)V (·, k)T , let

X
(q)

=

q∑

k=1

s(X; k)A(·, k)B(·, k)T . (8)

Then, by (6) we have the following lemma.
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Lemma 4 The optimum rank-q approximation matrix to X is X
(q)

.

Suppose now that the SVD of X is X = USV T and that X(q) is obtained as in (3). Using results
in [2], on can establish some important facts about the SVDs of X and X.

Lemma 5 For k = 1, . . . ,M , we have

s(X; k) ≤ s(X; k). (9)

Lemma 6 From (9), it follows that mean correction generally reduces the error in rank-q approxi-
mations,

||X −X
(q)||F ≤ ||X −X(q)||F . (10)

Definition 3 The matrix Υ := (1/N)XeNeT
N is called the mean matrix (constant along rows).

Lemma 7 Adding the mean to the rank-q approximation to X, i.e., forming X
(q)

+Υ, gives a better
approximation to the original matrix X than simply using X(q).

Proof.

||X − (X
(q)

+ Υ)||F = ||X − (1/N)XeNeT
N −X

(q)||F
= ||X(IN − (1/N) eNeT

N)−X
(q)||F

= ||XH −X
(q)||F = ||X −X

(q)||F
≤ ||X −X(q)||F .

Hence, from the approximation point of view, it is better to remove the mean, form the rank q
approximation to the corrected matrix, and add the mean back at the end. In [7], it is shown that the

columns of X
(q)

+ Υ are the optimum q-dimensional subspace approximation to the corresponding
columns of X.

4 MULTIRESOLUTION FORM OF THE SVD

This section describes how the multiresolution SVD is constructed. Recall the following dyadic
wavelet transform.

Method 1 (Wavelet Transform) The signal is filtered separately by the lowpass and highpass
filters, and both outputs are decimated by a factor of two. This procedure is recursively repeated on
the decimated lowpass output, until the desired level of decomposition is achieved.

The basic idea behind the multiresolution SVD is to replace filtering with SVD at each level of
approximation. This idea is now described, initially for one-dimensional (1-D) signals, and for the
dyadic case. It would be easy to extend to higher dimensions and to p-adic decompositions.

Let X = [x(1), . . . , x(N)] represent a finite-extent 1-D signal. Assume that N is divisible by 2L

for some L ≥ 1. Let the data matrix at the first level, denoted X1, be constructed so that its top
row contains the odd-numbered samples and the bottom row contains the even-numbered samples:

X1 =

[
x(1) x(3) · · · x(N − 1)
x(2) x(4) · · · x(N)

]
. (11)
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The corresponding centered matrix is X1 = X1HN/2. Let U1 be the matrix of eigenvectors which

diagonalizes the scatter matrix T1 = X1X
t

1:

U t
1T1U1 = S2

1 ,

where S2
1 = diag{s1(1)2, s1(2)2} contains the squares of the two singular values, with s1(1) ≥ s1(2).

Now let
X̂1 = U t

1X1,

so that
X1 = U1X̂1.

Lemma 8 The two rows of X satisfy the following inequality:

||X̂1(2, ·)||F ≤ ||X̂1(1, ·)||F .

Proof. The top row of X̂1, namely X̂1(1, ·) corresponds to the largest eigenvalue and the bottom
row corresponds to the smallest eigenvalue.

It is considered that natural images contain very rare singularities which correspond to edges
and so on, and the main parts are continuous. This means that the energy of singularities, which
can be measured by the Frobenius norm, is very small and the continuous parts should be included
in X̂1(1, ·) when X̂1(1, ·) is much bigger than X̂1(2, ·). Therefore, X̂1(1, ·) contains the “principal”
component and X̂1(2, ·) contains the “detail” component.

Definition 4 The top row of X̂1 is called the smooth or approximation component of X and the
bottom row of X̂1 is called the detail component of X. The elements of the approximation component
are called approximation coefficients and the elements of the detail component are called detail
coefficients.

Let Φ1 = X̂1(1, ·) and Ψ1 = X̂1(2, ·) represent the smooth and detail components of X, respec-
tively. Note that Φ1 and Ψ1 are uncorrelated since the rows of X̂1 have zero mean, and moreover

X̂1X̂
T
1 = ST

1 . (12)

Hence the vector has been decomposed into uncorrelated smooth and detail components.
The next level of the multiresolution SVD repeats the procedure described above, but now using

the smooth component Φ1 in place of X. This procedure is repeated recursively L times.

Method 2 (SVD Multiresolution Analysis) Let Φ0(1, ·) = X, so that the initial smooth com-
ponent is the original vector. For ` = 1, . . . , L− 1, set

X` =

[
φ`−1(1) φ`−1(3) · · · φ`−1(2N` − 1)
φ`−1(2) φ`−1(4) · · · φ`−1(2N`)

]
,

X` = X`HN`
.

Diagonalize the symmetric matrix T` := X`X
T

` as

T` = X`X
T

` = U`S
2
` U

T
` .

Define

X̂` = UT
` X`,

Φ` = x̂`(1, ·), Ψ` = x̂`(2, ·).
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Remark 1 Note that, for each level `, the vector

Φ` = [φ` (1) , . . . , φ` (N`)]

has N` = N/2` elements and that we require the singular values in T` to be arranged so that
s`(1) ≥ s`(2).

Definition 5 The transformation:

X −→ {ΦL, {Ψ`}L
`=1, {U`}L

`=1, {µ`}L
`=1} (13)

is called the L-level dyadic SVD of X, where µ` = (1/N`)X`eN`
are the mean vectors.

Theorem 1 To fully specify X, it is sufficient to store the lowest resolution smooth component Φ`,
and the detail components Ψ`, for ` = 1, . . . , L. In addition, the matrices U` and the mean vectors
µ` must also be stored.

Proof. It is easy to see how X can be reconstructed from the right-hand side of (13) since each
of the steps in Definition 5 is reversible.

Remark 2 The same procedure may be applied without mean removal. Although mean removal
improves the approximation (see section 3), reasons not to remove the mean include a reduction in
computation. But without mean removal, the components of X̂` are not necessarily uncorrelated;
however they are still orthogonal.

The following lemma gives a useful inequality for singular values at different resolution levels.

Lemma 9 The singular values at levels ` and ` + 1 satisfy the following inequality:

s`+1(1)2 + s`+1(2)2 ≤ s`(1)2.

If the mean is not removed, then equality is obtained.

Proof. This inequality follows from (5), (9) and (12).

5 FOUR CASE STUDIES

We give four typical experiments of fifth level dyadic multiresolution SVD. We define the energy
of a signal by its Frobenius norm. We give the energies of the approximation and the detail in
each fifth level of Φ and Ψ in Method 2. The ratio of the energy of approximation to the energy of
detail explains the accuracy of the decomposition. The bigger the ratio is, the more accurate the
decomposition is.

In the following experiments, the matrix Energy and the vector Energy Ratio are:



||Φ1||F ||Ψ1||F
||Φ2||F ||Ψ2||F
||Φ3||F ||Ψ3||F
||Φ4||F ||Ψ4||F
||Φ5||F ||Ψ5||F




,




||Φ1||F /||Ψ1||F
||Φ2||F /||Ψ2||F

...
||Φ5||F /||Ψ5||F


 .

This vector gives the energy ratios at each level.
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Table 1: Left:Nikkei Stock Average in 2001; right: El Centro earthquake wave.

Energy × 1.0e-05 Energy Ratio Energy × 1.0e-04 Energy Ratio
1.9382 0.0179 108.5363 2.2617 0.6785 3.3332
1.9381 0.0204 95.0042 2.0590 0.9358 2.2002
1.9379 0.0274 70.6873 1.6518 1.2290 1.3440
1.9376 0.0337 57.4113 1.2616 1.0659 1.1836
1.9373 0.0298 65.0026 1.1197 0.5808 1.9277

Experiment 1 (2001 Nikkei Stock Average)

The Nikkei Stock Average (Nikkei Average) is Japan’s most widely watched stock index. It has
roots going back to 1950. Nihon Keizai Shimbun, Inc., has calculated and announced the average
since 1971. Since October 1, 1985, the index has been calculated every minute during trading hours.
The current calculation method, based on the Dow Jones method, was first used in September 1950.
The Tokyo Stock Exchange calculated the average at that time and retroactively calculated it back
to May 1949, when the exchange reopened. This is the longest-running stock price index in Japan’s
history. The Nikkei Stock Average is an average stock price adjusted by the Dow Jones method,
which is suitable for monitoring the level of the market and its changes. The components of the
Nikkei Stock Average are 225 actively traded issues of the TSE first section. Taken together,
the 225 issues reflect up-to-the-moment market trends. Since October 1991, components have
been checked every year and those of relatively low liquidity have been replaced by issues of high
liquidity. Therefore, the index corresponds to changes in the market environment while maintaining
consistency. The Tokyo Stock Exchange average for year 2001 is listed in the left part of Table 1.
Figure 1 shows five levels of the dyadic multiresolution SVD of the Nikkei Stock Average of 2001.

Experiment 2 (1940 El Centro earthquake wave)

El Centro is located in California and is famous for the 1940 earthquake. The signal listed in
the right part of Table 1 is a record of a typical strong ground motion. Figure 2 shows five levels of
the dyadic multiresolution SVD of the 1940 El Centro earthquake wave.

Experiment 3 (1995 Kobe earthquake wave)

The 1995 Kobe earthquake was as follows. On Tuesday, January 17, 1995, at 5:46AM local
time, an earthquake of magnitude 7.2 struck the region of Kobe and Osaka in South-central Japan.
This region is the second most populated and industrialized area in Japan, after Tokyo, with a
total population of about 10 million. The shock occurred at a shallow depth on a fault running
from Awaji Island through the city of Kobe, which in itself has a population of about 1.5 million.
Strong ground shaking lasted for about 20 seconds and caused severe damage over a large area.
Nearly 5,500 deaths have been confirmed, with the number of injured people reaching about 35,000.
Nearly 180,000 buildings were badly damaged or destroyed, and officials estimate that more than
300,000 people were homeless on the night of the earthquake. The earthquake wave data is listed
in the left part of Table 2. Figure 3 shows five levels of the dyadic multiresolution SVD of the Kobe
earthquake wave.

Experiment 4 (leleccum)
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Table 2: Left:Kobe earthquake wave; right: leleccum data.

Energy × 1.0e-03 Energy Ratio Energy × 1.0e-04 Energy Ratio
5.0628 0.7507 6.7442 1.6554 0.0150 110.1318
4.8784 1.3539 3.6032 1.6553 0.0160 103.6214
4.2838 2.3341 1.8353 1.6551 0.0207 79.8380
3.4449 2.5464 1.3529 1.6548 0.0350 47.2716
3.0398 1.6208 1.8755 1.6486 0.0576 28.6077

The Matlab sample data leleccum.dat involves a real-world signal electrical consumption mea-
sured over the course of three days. This signal is particularly interesting because of noise introduced
when a defect developed in the monitoring equipment as the measurements were being made. The
SVD multiresolution analysis effectively removes the noise. The leleccum data is listed in the right
part of Table 2. Figure 4 shows five levels of the dyadic multiresolution SVD of the leleccum.

Observation

Here we shall focus our attention on two main aims of SVD multiresolution analysis, namely, de-
noising and data compression.

De-noising

Using SVD multiresolution analysis to remove noise from a signal requires identifying which compo-
nent or components contain the noise and then reconstructing the signal without these components.
In the above experiments, we note that successive approximations become less and less noisy as
more and more high-frequency information is filtered out of the signal. The level 3 approximation,
Φ3, is quite clean as compared with the original signal.

Of course, in discarding all the high-frequency information, we loose many of the sharpest fea-
tures of the original signal. Optimal de-noising requires a more subtle approach called thresholding.
This involves discarding only the portion of the details that exceeds a certain limit.

Data Compression

The compression features of the SVD multiresolution analysis are primarily linked to the relative
scarceness of the SVD decomposition of the signal. The notion behind compression is based on
the concept that the regular component of the signal can be accurately approximated using the
following elements: a small number of approximation coefficients (at a suitably chosen level) and
only some of the detail coefficients.

Like de-noising, the compression procedure contains three steps:
Step 1. Decompose.
Step 2. Threshold detail coefficients. For each level from 1 to N , a threshold is selected and
hard thresholding is applied to the detail coefficients.
Step 3. Reconstruct.

The difference with the de-noising procedure is in step 2. There are two compression approaches
available. The first consists in taking the SVD decomposition of the signal and keeping the largest
absolute value coefficients. In this case we can set a global threshold, a compression performance,
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Figure 1: Five levels of the dyadic multiresolution SVD of the 2001 Nikkei Stock Average.
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Figure 2: Five levels of the dyadic multiresolution SVD of the El Centro earthquake wave.
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Figure 3: Five levels of the dyadic multiresolution SVD of the Kobe earthquake wave.

10



0 0.2 0.4 0.6 0.8 1
0

200

400

600

0 0.2 0.4 0.6 0.8 1
-400

-200

0

200

400

0 0.2 0.4 0.6 0.8 1
-50

0

50

0 0.2 0.4 0.6 0.8 1
-500

0

500

0 0.2 0.4 0.6 0.8 1
-40

-20

0

20

40

1Φ

2Ψ2Φ

3Φ 3Ψ

0 0.2 0.4 0.6 0.8 1
-1000

-500

0

500

1000

0 0.2 0.4 0.6 0.8 1
-50

0

50

100

0 0.2 0.4 0.6 0.8 1
-1000

-500

0

500

1000

0 0.2 0.4 0.6 0.8 1
-100

-50

0

50

100

4

5 5

Φ

Φ Ψ

4Ψ

Figure 4: Five levels of the dyadic multiresolution SVD of leleccum.
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or a relative square norm recovery performance. Thus only one parameter needs to be selected.
The second approach consists in applying visually determined level-dependent thresholds.

Now we investigate our four experiments.
(i) De-noising. First, note that we assume that the energy of the noise is very small compared to
that of the signal. Experiments 1 and 4 satisfy this condition. In fact, the figures for Experiment 1
show that de-noising does works fine at level 3 and the figures for Experiment 4 show that de-noising
does works fine at level 5. For Experiments 2 and 3, nothing can be said about de-noising.
(ii) Data Compression. First, note that, at each level, the number of elements of the approxi-
mation Φ` and detail Ψ` is a half the number of elements of the approximation Φ`−1 at the previous
level. Therefore, if the energy of Φ` is almost the same as the energy of Φ`−1, then we may throw
the detail Ψ` away. We can use Φ` as an approximation to Φ`−1 with half the number of elements.
In fact, looking at Experiments 1 and 4, the energy of Φ` is almost the same as the energy of Φ`−1,
for ` = 2, 3, 4, 5, and the figures show that data compression works well at each level. But looking
at Experiments 2 and 3, the energy of Φ` differs from the energy of Φ`−1, for ` = 2, 3, 4, 5, and the
figures show that data compression does not work well at these levels.

Thus, if the energy of approximations is almost conserved, then we can say that de-noising and
data compression perform well.

A THE MATLAB CODES

Matlab code 1 This is a function M-file for the SVD decomposition of a given signal.

function [PHI,PSI,U,MU,Energy] = svd_mra(signal);

% SVD decomposition of a given signal

% Input: signal

% Outputs: PHI, PSI, U, MU, Energy

% By Masaaki YOSHIKAWA, 2001/11

l = length(signal);

signal = reshape(signal,1,l);

i1 = 1:2:(l-1);

i2 = 2:2:l;

approximation = signal(i1);

detail = signal(i2);

sum(approximation)

sum(detail)

X = [approximation; detail];

H = eye(l/2) - (2/l)*ones(l/2);

X = X*H;

[U,S,V] = svd(X);

HX1 = U.’*X;

PHI = HX1(1,:);

PSI = HX1(2,:);

Energy = [norm(PHI,’fro’), norm(PSI,’fro’)];

EN = ones(l/2,1);

MU = 2/l*X*EN;

Matlab code 2 This is a script M-file to load a signal named nikkei.dat and to execute the
SVD decomposition of the signal.
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% Script File: svd_dec.m

%

% SVD decomposition

%

% By Masaaki YOSHIKAWA, 2001/11

%

clear all; close all;

load nikkei.dat;

signal=nikkei;

l = length(signal);

[PHI1,PSI1,U1,MU1,Energy1] = svd_mra(signal);

[PHI2,PSI2,U2,MU2,Energy2] = svd_mra(PHI1);

[PHI3,PSI3,U3,MU3,Energy3] = svd_mra(PHI2);

[PHI4,PSI4,U4,MU4,Energy4] = svd_mra(PHI3);

[PHI5,PSI5,U5,MU5,Energy5] = svd_mra(PHI4);

figure(1)

subplot(3,2,1); plot(linspace(0,1,l),signal);

subplot(3,2,3); plot(linspace(0,1,l/2),PHI1);

subplot(3,2,4); plot(linspace(0,1,l/2),PSI1);

subplot(3,2,5); plot(linspace(0,1,l/4),PHI2);

subplot(3,2,6); plot(linspace(0,1,l/4),PSI2);

figure(2)

subplot(3,2,1); plot(linspace(0,1,l/4),PHI2);

subplot(3,2,3); plot(linspace(0,1,l/8),PHI3);

subplot(3,2,4); plot(linspace(0,1,l/8),PSI3);

subplot(3,2,5); plot(linspace(0,1,l/16),PHI4);

subplot(3,2,6); plot(linspace(0,1,l/16),PSI4);

figure(3)

hold on;

plot(linspace(0,1,l),signal,’y’);

plot(linspace(0,1,l/2),PHI1,’m-’);

plot(linspace(0,1,l/2),PSI1,’m--’);

plot(linspace(0,1,l/4),PHI2,’c-’);

plot(linspace(0,1,l/4),PSI2,’c--’);

plot(linspace(0,1,l/8),PHI3,’r-’);

plot(linspace(0,1,l/8),PSI3,’r--’);

plot(linspace(0,1,l/16),PHI4,’g-’);

plot(linspace(0,1,l/16),PSI4,’g--’);

hold off;

figure(4)

hold on;

plot(linspace(0,1,l),signal,’y’);

plot(linspace(0,1,l/2),PHI1,’m-’);

% plot(linspace(0,1,l/2),PSI1,’m--’);

plot(linspace(0,1,l/4),PHI2,’c-’);

% plot(linspace(0,1,l/4),PSI2,’c--’);

plot(linspace(0,1,l/8),PHI3,’r-’);
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% plot(linspace(0,1,l/8),PSI3,’r--’);

plot(linspace(0,1,l/16),PHI4,’g-’);

% plot(linspace(0,1,l/16),PSI4,’g--’);

hold off;

Energy = [Energy1; Energy2; Energy3; Energy4; Energy5];

Energy_square = Energy.^2;

Energy_square(:,1)+Energy_square(:,2);

plot(Energy)

Ratio_of_Energy = Energy(:,1)./Energy(:,2)
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