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A LEMMA ON MATRICES AND A

CONSTRUCTION OF MULTI-WAVELETS

Ryuichi Ashino, Makoto Kametani

Dedicated to Professor Rémi Vaillancourt on the occasion of his sixtieth birthday

Abstract. A generalization of Gröchenig’s lemma on matrices is given. A theory of multi-
dimensional r-regular multi-wavelets is described in general terms. A general existence theo-
rem for multi-dimensional r-regular multi-wavelets based on the generalization of Gröchenig’s
lemma, similar to the general existence theorem for Meyer’s r-regular wavelets, is proved.

1. Introduction

Wavelets have their origin in many fields of pure and applied mathematics. It is usual for
wavelets to be generated by a scaling function. On the contrary, multi-wavelets are gener-
ated by many scaling functions, which gives us advantage. It is believed that multi-wavelets
are ideally suited to multichannel signals like color images which are two-dimensional three-
channel signals and stereo audio signals which are one-dimensional two-channel signals.

Many papers deal with multi-wavelets and various constructions of multi-wavelets are
already known. For example, Alpert [1] generalized the Haar system to one-dimensional
non-regular multi-wavelets in L2(R1) having vanishing moments by producing an example
of such multi-wavelets. In [17], Strang and Strela constructed a pair of real-valued one-
dimensional multi-wavelets with short support and symmetry, and, in [18], they constructed
a nonsymmetric pair; both of these cases are in L2(R1). Jia and Shen [13] investigated
multiresolution on the basis of shift-invariant spaces, proved a general existence theorem
and gave examples to illustrate the general theory. Their constructions are different from
ours.

We shall generalize Gröchenig’s lemma on matrices [8], introduce n-dimensional r-regular
multi-wavelets in L2(Rn), and give a general existence theorem, which follows the framework
of Meyer’s general existence theorem [15, Theorem 2 of Section 3.6 and Proposition 4 of
Section 3.7] for r-regular wavelets which, in this paper, will be called r-regular single-
wavelets.

In Section 2, we shall give a genaralization of Gröchenig’s lemma on matrices, Theorem 1,
and introduce an r-regular multiresolution analysis for multi-dimensional multi-wavelets
and state Theorems 2 and 3. Our main results are Theorem 1 and Theorem 3, which is
a general existence theorem for multi-dimensional r-regular multi-wavelets asserting that
the existence of an r-regular multi-wavelets is reduced to the existence of an r-regular
multiresolution analysis. Our definition of a multiresolution analysis for multi-wavelets
needs a stronger assumption than that of Meyer for single-wavelets. We say nothing on the
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existence of an r-regular multiresolution analysis in general. We shall give an example of an
r-regular multiresolution analysis for multi-wavelets using a (2r+1)-regular multiresolution
analysis for single-wavelets.

In Section 3, we shall prove Theorem 1.
In Section 4, we shall give a brief introduction to basic properties of multi-wavelets leading

to Proposition 4, which is the basis of the existence results of this paper. Though this is
well-known procedure leading to a construction of multi-wavelets, we stress the r-regularity.

In Section 5, we shall give the proofs of Theorems 2 and 3 using Theorem 1. These
theorems give a different construction of r-regular multi-wavelets from known constructions.

2. Definition and Main Results

First, we start with Theorem 1, which is a generalization of Gröchenig’s lemma on ma-
trices.

We assume that every manifold satisfies the second axiom of countability, that is, it has
a countable basis of open sets. We denote by (z, w) the standard Hermitian product of
z = (zi) and w = (wi) in Cm.

Theorem 1. Let X be a real, compact, C∞-manifold with dimX = n, and let m, n and d
be positive integers satisfying

(2.1) 2 ≤ 2d ≤ 2m− n.

Then, for all C∞-mappings fℓ : X −→ Cm, ℓ = 1, . . . , d, with the property

(2.2) (fk(x), fℓ(x)) = δkℓ, for k, ℓ ∈ {1, . . . , d}, x ∈ X,

there exist C∞-mappings fℓ : X −→ Cm, ℓ = d+ 1, . . . ,m, with the property

(2.3) (fk(x), fℓ(x)) = δkℓ, for k, ℓ ∈ {1, . . . ,m}, x ∈ X.

Remark 1. Let {ej}j=1,...,m be the standard basis of Cm. For the mappings fℓ : X −→
Cm, ℓ = 1, . . . ,m, put fjℓ(x) := (fℓ(x), ej), j, ℓ = 1, . . . ,m. Then (2.3) is equivalent to
the fact that the matrix (fjℓ(x); j ↓ 1, . . . ,m, ℓ→ 1, . . . ,m) is unitary for each x ∈ X .

Remark 2. In our application of Theorem 1 to the construction of multi-wavelets, we take
X = Tn and m = 2nd. In this case, the inequalities (2.1) are valid for each n ∈ N and each
d ≥ 1. Indeed, from the inequality 2n+1 ≥ n+ 2, n ∈ N, we obtain

2m− 2d = (2n+1 − 2)d ≥ 2n+1 − 2 ≥ n.

Next we give notation and definitions of multi-dimensional multi-wavelets.

Notation 1. The following notation will be used.

• fjk(x) is the scaled and shifted function

(2.4) fjk(x) = 2nj/2f(2jx− k), j ∈ Z, k ∈ Zn, f ∈ L2(Rn).

• Fjk is the vector of scaled and shifted functions

Fjk = ((f1)jk, . . . , (fd)jk), j ∈ Z, k ∈ Zn, F = (f1, . . . , fd) ∈ L2(Rn)d.
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• R = {0, 1}n is the set of 2n vertices of the n-dimensional unit cube.
• E = R \ {(0, . . . , 0)} is the set of vertices of R less the origin.
• D = {1, . . . , d} for a positive integer d.
• N = {0, 1, 2, . . .} is the set of natural numbers including zero.
• T = R/2πZ ≃ [0, 2π[ is the one-dimensional torus.
• 2T = R/πZ ≃ [0, π[.
• r ∈ N throughout the paper.
• α = (α1, α2, . . . , αn), αj ∈ N, is a multi-index of nonnegative integers.
• |α| = α1 + α2 + · · · + αn is the length of the multi-index α.
• ∂αx = ∂α1

x1
∂α2
x2

· · · ∂αn
xn

.
• m(ξ), with ξ ∈ Rn, is 2πZn-periodic if it is 2π-periodic in each ξj , j = 1, 2, . . . , n,

that is, m(ξ) is a function on Tn.
• U(n), n ∈ N\{0}, is the unitary group of order n, that is, the group of n×n unitary

matrices.

Definition 1. A family {Ψε}ε∈E is called a family of 2n−1 multi-wavelet , or wavelet, func-
tions Ψε := (ψε1, . . . , ψεd) ∈ L2(Rn)d if {(ψεδ)jk(x) := 2nj/2ψεδ(2

jx − k)}ε∈E,δ∈D,j∈Z,k∈Zn

is an orthonormal basis of L2(Rn). The (ψεδ)jk are called multi-wavelets.

Remark 3. An intuitive geometric explanation why 2n − 1 wavelet functions are needed is
as follows. If, after approximating Rn by the lattice Zn, we want to approximate it by the
more refined lattice 1

2Zn, then we need to add 2n−1 extra points for every point in Zn. We

use a function in L2(Rn)d to approximate every lattice point. A functional analytic answer
will be given in Remark 9 below.

Definition 2. A family of wavelet functions {Ψε}ε∈E is said to be r-regular if every ψεδ
satisfies the following three conditions.

(c1) Regularity:

(2.5) ψ
(α)
εδ (x) := ∂αxψεδ(x) ∈ L∞(Rn), ε ∈ E, δ ∈ D, |α| ≤ r.

(c2) Localization: For every positive number N , there exists a positive number CN
such that

(2.6) |ψ
(α)
εδ (x)| ≤ CN (1 + |x|)−N , a.a. x, ε ∈ E, δ ∈ D, |α| ≤ r.

(c3) Oscillation:

(2.7)

∫

Rn

xαψεδ(x) dx = 0, ε ∈ E, δ ∈ D, |α| ≤ r.

Remark 4. Condition (c3) is equivalent to ψ̂
(α)
εδ (0) = 0, for |α| ≤ r, where ψ(x) and its

Fourier transform ψ̂(ξ) are related by the formulae

ψ̂(ξ) =

∫

Rn

e−ix·ξψ(x) dx, ψ(x) =
1

(2π)n

∫

Rn

eix·ξψ̂(ξ) dξ.

A central feature of wavelets is their localizing property in both the x- and ξ-spaces. Since
the support of (ψεδ)jk becomes very big as j → −∞, even if every (ψεδ)jk has compact sup-
port, we look for appropriate bases for the spaces spanned by {(ψεδ)jk}ε∈E,δ∈D,j∈{−1,−2,...},k∈Zn

by considering the following closed subspaces of L2(Rn).
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Notation 2. For all j ∈ Z, let

(2.8) Wjδ := Span{(ψεδ)jk}ε∈E,k∈Zn , δ ∈ D;

Vjδ :=

j−1⊕

k=−∞

Wkδ , δ ∈ D; Wj :=
⊕

δ∈D

Wjδ ; Vj :=

j−1⊕

k=−∞

Wk.

Definition 3. A function Φ := t(ϕ1, . . . , ϕd) ∈ (V0)
d is called a multi-scaling, or scaling

function if {ϕδ(x− k)}δ∈D,k∈Zn is an orthonormal basis of V0. The scaling function Φ(x) is
said to be r-regular if it satisfies the above regularity and localization conditions (c1) and
(c2) and the following oscillation condition:

(c4) Oscillation:

(2.9)

∫

Rn

xαϕδ(x) dx = 0, δ ∈ D, 1 ≤ |α| ≤ 2r + 1.

Remark 5. Lemma 9 will show that the condition
∑

δ∈D |ϕ̂δ(0)|2 = 1 is necessary for the

existence of an r-regular scaling function. Hence there exists δ ∈ D such that
∫
ϕδ(x) dx 6=

0. In the case of single-wavelets, as Meyer stated in [15, Section 2.10, Proposition 7],∫
ϕ(x) dx 6= 0 implies

∫
xαϕ(x) dx = 0, 1 ≤ |α| ≤ 2r + 1 by changing ϕ(x) suitably. But,

in the case of multi-wavelets, this implication is still open. We shall show that (c4) implies
(c3) using a similar framework to Meyer’s. In Daubechies’ framework [4, Section 5.5], it is
known that the regularities and the localization properties of a wavelet function and the
orthonormality of wavelets imply (c3) without (c4).

Definition 4. The generalized Fourier series expansion with respect to the orthonormal
basis {(ψεδ)jk}ε∈E,δ∈D,j∈N,k∈Zn ∪ {ϕδ(x− k)}δ∈D,k∈Zn is called a multi-wavelet expansion.

Remark 6. By Definition 4, {(ψεδ)jk}ε∈E,δ∈D,k∈Zn ∪ {(ϕδ)jk}δ∈D,k∈Zn is an orthonormal
basis of Vj+1 for every j ∈ Z.

To construct r-regular wavelet and scaling functions, we use a multiresolution analysis
[15], by which wavelet functions can be constructed from a given scaling function, Φ(x).

Definition 5. An increasing sequence {Vj}j∈Z of closed subspaces of L2(Rn),

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,

is called a multiresolution analysis if it satisfies the following four properties:

(a) ∩j∈ZVj = {0} and ∪j∈ZVj is dense in L2(Rn);
(b) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1;
(c) f(x) ∈ V0 if and only if f(x− k) ∈ V0 for every k ∈ Zn;
(d) there exists a function Φ(x) := t(ϕ1(x), . . . , ϕd(x)) ∈ (V0)

d such that
{ϕδ(x− k)}δ∈D,k∈Zn forms an orthonormal basis of V0.
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Definition 6. A sequence of functions {gk}k∈Zn is called a Riesz basis of V0 if there exist
positive numbers c1 and c2 such that

(2.10) c1

( ∑

k∈Zn

|αk|
2

)1/2

≤

∥∥∥∥
∑

k∈Zn

αkgk

∥∥∥∥
L2(Rn)

≤ c2

( ∑

k∈Zn

|αk|
2

)1/2

for all ℓ2-sequences (αk).

The definition of a Riesz basis means that the mapping

(2.11) (αk) 7−→
∑

k∈Zn

αkgk

defines a topological linear isomorphism from ℓ2(Zn) onto V0.

Remark 7. The anonymous referee kindly pointed out that if {gδ(x−k)}δ∈D,k∈Zn is a Riesz
basis of V0, then the matrix

(2.12) A(ξ) :=

( ∑

k∈Zn

ĝδ′(ξ + 2πk)ĝδ′′(ξ + 2πk)

)

(δ′,δ′′)∈D×D

,

is a hermitian invertible matrix satisfying

0 < c1Id ≤ A(ξ) ≤ c2Id.

Hence one can consider B(ξ) := (A(ξ))−1/2 and it can be checked that Φ(x) defined by

Φ̂(ξ) := B(ξ)t(ĝδ)δ∈D

satisfies condition (d) in Definition 5.

Definition 7. A multiresolution analysis {Vj}j∈Z is said to be r-regular if the scaling
function Φ(x) ∈ (V0)

d appearing in part (d) of Definition 5 is r-regular.

Example 1. Let {Ṽj}j∈Z be a (2r+1)-regular multiresolution analysis in L2(Rn) for single-
wavelets. Then there exist a (2r+1)-regular scaling function ϕ and a (2r+1)-regular wavelet
functions ψε, ε ∈ E. Put d = 2n and identify D ≃ R. Take Φ := t(ψε)ε∈R, where ψ0 := ϕ,

as an r-regular scaling function for multi-wavelets. Define V0 := Span{(ϕδ)0k}δ∈D,k∈Zn and

Vj , j ∈ Z\{0}, by property (b) in Definition 5. Then {Vj}j∈Z is an r-regular multiresolution
analysis of L2(Rn) for multi-wavelets.

Now we can state our main results. The first theorem deals with the case which is not
necessarily r-regular.

Theorem 2. Let a multiresolution analysis {Vj}j∈Z of multi-wavelets be given. Then, there
exists a family {Ψε}ε∈E of 2n − 1 wavelet functions Ψε := t(ψε1, . . . , ψεd) ∈ V d1 , ε ∈ E.

The second theorem deals with the r-regular case.

Theorem 3. Let an r-regular multiresolution analysis {Vj}j∈Z of multi-wavelets be given.
Then, there exists an r-regular family {Ψε}ε∈E of 2n−1 wavelet functions Ψε := t(ψε1, . . . , ψεd)
∈ V d1 , ε ∈ E.
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3. Proof of Theorem 1

Our proof of Theorem 1 is based on the following proposition.

Proposition 1. Let X and Y be C1-manifolds and f : X −→ Y be a C1-mapping. If X is
compact and if dimX < dim Y , then the set Y \f(X) is open and dense in Y .

We first prove Theorem 1 under the assumption that Proposition 1 is valid.

Proof of Theorem 1. We fix n = dimX and prove Theorem 1 by a double induction with
respect to (m, d) satisfying the inequalities (2.1).

First step. (The case d = 1.) Let m be a positive integer satisfying 2m−n ≥ 2d = 2 and let
f1 : X −→ Cm be a C∞-mapping with the property |f1(x)| = 1 for each x ∈ X . Then we
have a C∞-mapping f1 : X −→ S2m−1 = {z ∈ Cm; |z| = 1}. Since dimX = n < 2m− 1 =
dimS2m−1, Proposition 1 implies that S2m−1\f1(X) is open and dence in S2m−1. Thus we
can find a point y0 ∈ S2m−1\f1(X) and an open neighbourhood V0 of y0 in Cm such that
(V0 ∩ S2m−1) ⊂ S2m−1\f1(X). We choose a constant unitary matrix C such as Cem = y0,
and put g1 := C−1 ◦ f1, V1 := C−1(V0). Then V1 is an open neighbourhood of em in Cm

such that

(3.1) g1(X) ⊂ S2m−1\V1.

Now we apply Gröchenig’s method (Gröchenig [8] or Meyer [15]). For z = (zj) ∈ Cm

and for a parameter α > 0, we define the matrix Gα(z) by

(3.2) Gα(z) :=

(
z′ αIm−1

zm (z′)∗

)
,

where z′ = t(z1, z2, . . . , zm−1). Since the cyclic permutation σ = (1,m,m − 1, . . . , 2) has
signature (−1)m−1, we have

detGα(z) =(−1)m−1

∣∣∣∣
αIm−1 z′

(z′)∗ zm

∣∣∣∣ = (−1)m−1

∣∣∣∣
αIm−1 z′

0 zm − α−1|z′|2

∣∣∣∣
=(−1)m−1αm−2(αzm − |z′|2),(3.3)

where |z′|2 =
∑m−1
j=1 |zj |2. Then, we have the following claim:

Claim 1. There exists a positive number α0 such that detGα(z) 6= 0 for each α ∈]0, α0]
and for each z ∈ S2m−1\V1.

Proof of Claim 1. For each α, put N(α) := {z ∈ S2m−1; detGα(z) = 0}. It suffices to show
that there exists a positive number α0 such that

(3.4) ∪α∈]0,α0]N(α) ⊂ V1.

We give α > 0 and z ∈ N(α). From (3.3), we have αzm = |z′|2 = 1 − |zm|2 ≥ 0, which
implies that zm ∈ R and 0 < zm < 1. Thus zm is the positive root of the equation
αt = 1 − t2, that is,

(3.5) zm = −α/2 +
√

1 + α2/4.
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Choose positive numbers ε and δ0 such that

(3.6) {z ∈ Cm; |z′| < ε, |zm − 1| < δ0} ⊂ V1.

By the continuity of the function: zm 7−→
√

1 − |zm|2 on the interval [0, 1], we can find a

positive number δ in ]0, δ0] such that
√

1 − |zm|2 < ε if 0 ≤ 1− zm < δ. Since (3.5) implies

|zm − 1| = 1 − zm = 1 + α/2 −
√

1 + α2/4 < α/2,

choosing α0 as 0 < α0 ≤ 2δ, we have that each z ∈ ∪α∈]0,α0]N(α) satisfies

|zm − 1| < α0/2 ≤ δ and |z′| =
√

1 − |zm|2 < ε.

Thus (3.6) yields z ∈ V1. Therefore we get (3.4). This completes the proof of Claim 1. �

Let α0 be the positive number as in Claim 1. Fix α in ]0, α0] and define C∞-mappings
vℓ : X −→ Cm, ℓ = 1, . . . ,m, by

(3.7)
v1(x) := g1(x) =

m∑

j=1

gj1(x) ej ,

vℓ(x) := αeℓ−1 + g(ℓ−1)1(x) em, ℓ = 2, . . . ,m.

Then, by the definition (3.2) of Gα(z), we have (v1(x), . . . , vm(x)) = Gα(g1(x)). So, by the
inclusion (3.1) and by Claim 1, (v1(x), . . . , vm(x)) forms a basis of Cm for each x in X .

Now we apply the Gram-Schmidt orthonormalization process to {vℓ}ℓ=1,...,m and have
the following lemma:

Lemma 1. There exist C∞-mappings wℓ : X −→ S2m−1, ℓ = 1, . . . ,m, with w1 = v1 = g1
and with the following property (3.8.k) for all k in {1, . . . ,m}:

(3.8.k)
(wℓ(x), wℓ′(x)) = δℓℓ′ , for ℓ, ℓ′ ∈ {1, . . . , k}, x ∈ X ;

Span{w1(x), . . . , wk(x)} = Span{v1(x), . . . , vk(x)}, x ∈ X.

Proof of Lemma 1. We construct w1, . . . , wm inductively as follows. First we put w1 := v1.
Then w1 is clearly a C∞-mapping with property (3.8.1). Next let k be an integer with
2 ≤ k ≤ m and assume that there exist C∞-mappings w1, . . . , wk−1 : X −→ S2m−1 with
property (3.8.k-1). Put

w̃k(x) := vk(x) −
k−1∑

j=1

aj(x)wj(x),

where aj : X −→ C, j = 1, . . . , k − 1, are unknown functions to be determined. Since
(3.8.k-1) implies

(w̃k(x), wℓ(x)) = (vk(x), wℓ(x)) −
k−1∑

j=1

aj(x)(wj(x), wℓ(x))

= (vk(x), wℓ(x)) − aℓ(x), ℓ = 1, . . . , k − 1,
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putting aℓ(x) := (vk(x), wℓ(x)), ℓ = 1, . . . , k − 1, we get

(w̃k(x), wℓ(x)) = 0 for ℓ = 1, . . . , k − 1;

aj : X −→ C is C∞ for j = 1, . . . , k − 1.

Thus w̃k : X −→ Cm is also C∞. Since v1(x), . . . , vk(x) are linearly independent over C, it
follows that

vk(x) /∈ Span{w1(x), . . . , wk−1(x)} = Span{v1(x), . . . , vk−1(x)},

which yields w̃k(x) 6= 0 for each x in X . Thus, if we put wk(x) := w̃k(x)/|w̃k(x)|, then wk :
X −→ S2m−1 is a C∞-mapping. By this construction of wk, it follows that the mappings
w1, . . . , wk satisfy the desired property (3.8.k). The proof of Lemma 1 is complete. �

Now we can finish the proof of Theorem 1 for the case d = 1. Let w1, . . . , wm : X −→
S2m−1 be the mappings obtained in Lemma 1. Define the mappings f2, . . . , fm : X −→ Cm

by

fℓ(x) := Cwℓ(x), ℓ = 2, . . . ,m.

Then each fℓ is clearly C∞ and we have

(f1(x), . . . , fm(x)) = C(w1(x), . . . , wm(x))

by w1(x) = v1(x) = g1(x) = C−1f1(x). Since C is unitary, we get

(fk(x), fℓ(x)) = (Cwk(x), Cwℓ(x)) = (wk(x), wℓ(x)) = δkℓ, k, ℓ ∈ {1, . . . ,m}.

This completes the proof of Theorem 1 for the case when d = 1.

Second step. (The case d ≥ 2.) Let m and d be positive integers satisfying

(3.9) 4 ≤ 2d ≤ 2m− n,

and let fℓ : X −→ Cm, ℓ = 1, . . . , d, be C∞-mappings with the property

(3.10) (fk(x), fℓ(x)) = δkℓ, for k, ℓ ∈ {1, . . . , d}, x ∈ X.

Put gℓ := fℓ, ℓ = 1, . . . , d − 1. Since (3.9) implies 2 ≤ 2(d − 1) ≤ 2m − n, Theorem 1 is
valid for (m, d−1) by the inductive assumption. Thus, there exist C∞-mappings gℓ : X −→
Cm, ℓ = d, . . . ,m, with the property

(3.11) (gk(x), gℓ(x)) = δkℓ, for k, ℓ ∈ {1, . . . ,m}, x ∈ X.

Since (3.11) means that {gℓ}ℓ=1,...,m forms an orthonormal basis of Cm for each x ∈ X ,
there exist uniquely determined mappings hjd : X −→ C, j = 1, . . . ,m such that

(3.12) fd(x) =

m∑

j=1

hjd(x)gj(x).
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Since (3.11) and (3.12) imply

hjd(x) =

m∑

k=1

hkd(x)(gk(x), gj(x)) = (fd(x), gj(x)),

hjd : X −→ C is C∞, for j = 1, . . . ,m, and hjd ≡ 0 for j = 1, . . . , d − 1 by (3.10). Then
(3.12) can be written as

(3.12’) fd(x) =

m∑

j=d

hjd(x)gj(x).

Note that (3.10), (3.11), and (3.12’) also yield that

m∑

j=d

|hjd(x)|
2 =

m∑

j=d

m∑

k=d

hjd(x)hkd(x)(gj(x), gk(x))

=(fd(x), fd(x)) = 1.

Therefore we get a C∞-mapping hd = (hjd; j ↓ d, . . . ,m) : X −→ S2(m−d+1)−1. Since (3.9)
implies 2 ≤ 2(m − d + 1) − n, Theorem 1 is also valid for (m − d + 1, 1) by the inductive
assumption. Thus, there exist C∞-mappings hℓ : X −→ Cm−d+1, ℓ = d + 1, . . . ,m, with
the property

(3.13) (hk(x), hℓ(x))Cm−d+1 = δkℓ, k, ℓ ∈ {d, . . . ,m}, x ∈ X.

Put h(x) = (hd(x), . . . , hm(x)), where hℓ(x) =
∑m

j=d hjℓ(x)ej for ℓ ∈ {d, . . . ,m}. Then, for
each x ∈ X , we get

U(m) ∋(g1(x), . . . , gm(x))

(
Id−1 0

0 h(x)

)

=(g1(x), . . . , gd−1(x),
m∑

j=d

hjd(x)gj(x), . . . ,
m∑

j=d

hjm(x)gj(x))

=(f1(x), . . . , fd(x),

m∑

j=d

hj(d+1)(x)gj(x), . . . ,

m∑

j=d

hjm(x)gj(x)).

Thus, if we define mappings fℓ : X −→ Cm, ℓ = d+1, . . . ,m by fℓ(x) :=
∑m

j=d hjℓ(x)gj(x),
then the mappings fd+1, . . . , fm are C∞ with the desired property

(fk(x), fℓ(x)) = δkℓ, k, ℓ ∈ {1, . . . ,m}, x ∈ X.

This completes the proof of Theorem 1. �

Now we shall prove Proposition 1. Let X and Y be C1-manifolds and let f : X −→ Y
be a C1-mapping. We assume that X is compact and that dimX < dimY . Then f(X) is
also compact; so it is closed in Y . Thus, the complement Y \f(X) is open in Y . Therefore,
it suffices for Proposition 1 to show the following proposition.
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Proposition 2. Let X and Y be C1-manifolds and let f : X −→ Y be a C1-mapping. If
dimX < dimY , then Y \f(X) is dense in Y .

To show Proposition 2, we first recall the following lemma.

Lemma 2. (Lindelöf) Let X be a topological space satisfying the second axiom of count-
ability. Then X has the Lindelöf property, that is, each open covering of X has a countable
subcovering.

We prove Proposition 2 by using the notion of measure zero. To define this notion on
manifolds we need the following well-known lemma in differential geometry. See Sternberg
[16, Chapter 2, Section 3, (3.2)].

Lemma 3. Let U be an open set in Rp and let ϕ : U −→ Rp be a C1-mapping. If a subset
A of U is of measure zero, then ϕ(A) is also of measure zero in Rp.

By virtue of Lemma 3, the following definition makes sense.

Definition 8. Let Y be a p-dimensional C1-manifold. A subset B of Y is said to be of
measure zero if there exists an atlas {(Vj , ψj)}j∈N of Y such that each ψj(Vj ∩ B) is of
measure zero in Rp.

Remark 8. Definition 8 is independent of the choice of the atlas {(Vj , ψj)}j∈N of Y , which
is a direct consequence of Lemma 3.

Remark 9. If a subset B of a manifold Y is of measure zero, then Y \B is dense in Y .

Proof. Assume the assertion were false. Then there would exist an open set W in Y such
that W ⊂ B. We take a point y ∈ W and a local chart (V, ψ) satisfying y ∈ V . Then
∅ 6= (V ∩W ) ⊂ (V ∩B), so that

(3.14) ∅ 6= ψ(V ∩W ) ⊂ ψ(V ∩B).

Since ψ(V ∩W ) is a non-empty open set in Rp, p = dimY , it has a positive measure. Then
(3.14) implies that ψ(V ∩ B) also has a positive measure, which contradicts the fact that
ψ(V ∩B) is of measure zero. �

By virtue of Remark 9, to prove Proposition 2 it suffices to show the following proposition.

Proposition 3. Let X and Y be C1-manifolds and let f : X −→ Y be a C1-mapping. If
n = dimX < dimY = p, then f(X) is of measure zero in Y .

Proof. By Definition 8, it suffices to show that, for every local chart (V, ψ) of Y , ψ(f(X)∩V )
is of measure zero in Rp. For each x ∈ f−1(V ), choosing a local chart (Ux, ϕx) of X such
that x ∈ Ux and f(Ux) ⊂ V , we have an open covering {Ux}x∈f−1(V ) of f−1(V ). Since

f−1(V ) satisfies the second axiom of countability, Lemma 2 implies that there exists a
countable open subcovering {Uxj

}j∈N. Then we have

(3.15) V ∩ f(X) = f(f−1(V )) = f(∪j∈NUxj
) = ∪j∈Nf(Uxj

).

For each j ∈ N, we consider the following commutative diagram:

(3.16)

X ⊃ Uxj

f
−−−−→ f(Uxj

) ⊂ V ⊂ Y

ϕxj

y
yψ

Rn ⊃ ϕxj
(Uxj

) −−−−−−−→
fj=ψfϕ−1

xj

ψf(Uxj
) ⊂ ψ(V ) ⊂ Rp.
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We put Ũj := ϕxj
(Uxj

)×Rp−n and define a C1-mapping gj : Ũj −→ Rp by gj(x, y) := fj(x)

for (x, y) ∈ ϕxj
(Uxj

) × Rp−n. Since ϕxj
(Uxj

) × {0} is of measure zero in Ũj by n < p,
Lemma 3 implies that gj(ϕxj

(Uxj
) × {0}) is of measure zero in Rp. Then, by the equality

gj(ϕxj
(Uxj

) × {0}) = fj(ϕxj
(Uxj

)) = ψf(Uxj
), we have that each ψf(Uxj

) is of measure
zero in Rp. Since (3.15) implies ψ(V ∩f(X)) = ∪j∈Nψf(Uxj

), we conclude that ψ(V ∩f(X))
is also of measure zero in Rp. This completes the proof of Proposition 3. �

4. Basic Properties of Multi-wavelets

Hereafter we assume that we have a multiresolution analysis {Vj}j∈Z with a scaling
function Φ as given in Definition 5, (d).

Notation 3. Given a function F (x) := (f1(x), . . . , fd(x)) ∈ L2(Rnx)
d, denote its Fourier

transform by F̂ (ξ) := (f̂1(ξ), . . . , f̂d(ξ)) ∈ L2(Rnξ )d.

Lemma 4. There exists an L2(Tn)-valued matrix

M0(ξ) :=
(
(m0)(d′,d′′)(ξ); d

′ ↓ 1, . . . , d, d′′ → 1, . . . , d
)

=
(
(m0)(d′,d′′)(ξ)

)
(d′,d′′)∈D×D

∈ Mat(d× d;L2(Tn))

such that

(4.1) Φ̂(2ξ) = M0(ξ)Φ̂(ξ).

Proof. Since we have the inclusions ϕd′′
(
2−1x

)
∈ V−1 ⊂ V0, d

′′ ∈ D, then

ϕd′′
(
2−1x

)
can be expanded in terms of the basis {ϕd′(x− k)}d′∈D,k∈Zn of V0,

(4.2) ϕd′′
(
2−1x

)
=

∑

d′∈D,k∈Zn

βd′′d′kϕd′(x− k),

where the coefficients βd′′d′k are defined by the scalar product

(4.3) βd′′d′k :=
(
ϕd′′(2

−1x), ϕd′(x− k)
)
L2(Rn)

and the sequence (βd′′d′k)k∈Zn belongs to ℓ2(Zn). Taking the Fourier transform of (4.2) we
have

(4.4) 2nϕ̂d′′(2ξ) =
∑

d′∈D,k∈Zn

βd′′d′kϕ̂d′(ξ) e
−ik·ξ .

If we put

(4.5) (m0)(d′,d′′)(ξ) := 2−n
∑

k∈Zn

βd′′d′k e
−ik·ξ,

then (m0)(d′,d′′)(ξ) is in L2(Tn) and satisfies (4.1). �

Notation 4. Let dµ(ξ) := (2π)−n dξ denote the normalized Haar measure of the torus Tn

and Id denote the identity matrix of order d.
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Lemma 5. The sequence {ϕδ(x− k)}δ∈D,k∈Zn is an orthonormal system if and only if

(4.6)
∑

k∈Zn

Φ̂(ξ + 2πk)tΦ̂(ξ + 2πk) ≡ Id. a.a. ξ,

Proof. Put

G(d′,d′′)(ξ) :=
∑

k∈Zn

ϕ̂d′(ξ + 2πk)ϕ̂d′′(ξ + 2πk).

Since G(d′,d′′)(ξ) ∈ L1(Tn), then its Fourier series, in the sense of distributions in D′(Tn),
is

G(d′,d′′)(ξ) =
∑

l∈Zn

Ĝ(d′,d′′)(l) e
il·ξ,

where

Ĝ(d′,d′′)(l) :=

∫

Tn

e−il·ξG(d′,d′′)(ξ) dµ(ξ).

On the other hand, the orthonormality of {ϕδ(x− k)}δ∈D,k∈Zn is equivalent to

δl,0δd′,d′′ =

∫

Rn

ϕd′(x− l)ϕd′′(x) dx

=(2π)−n
∫

Rn

e−il·ξϕ̂d′(ξ)ϕ̂d′′(ξ) dξ

=
∑

k∈Zn

(2π)−n
∫

[0,2π]n
e−il·(ξ+2πk)ϕ̂d′(ξ + 2πk)ϕ̂d′′(ξ + 2πk) dξ

=

∫

Tn

e−il·ξG(d′,d′′)(ξ) dµ(ξ) = Ĝ(d′,d′′)(l), l ∈ Zn,

which, in turn, is equivalent to

G(d′,d′′)(ξ) =
∑

l∈Zn

δl,0δd′,d′′ e
il·ξ ≡ δd′,d′′ . �

Lemma 6. The matrix M0(ξ), defined by (4.1), i.e. Φ̂(2ξ) = M0(ξ)Φ̂(ξ), satisfies

(4.7)
∑

η∈R

M0(ξ + πη)M0(ξ + πη)∗ ≡ Id, a.a. ξ,

where M∗
0 denotes the adjoint of M0.

Proof. By Lemma 5 we have

∑

k∈Zn

Φ̂(2ξ + 2πk)Φ̂(2ξ + 2πk)∗ ≡ Id, a.a. ξ,

and, by Lemma 4,

Φ̂(2ξ + 2πk) = M0(ξ + πk)Φ̂(ξ + πk).
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Put k = 2l + η with k, l ∈ Zn and η ∈ R. Since Zn = 2Zn + R and M0 is 2πZn-periodic,
then

Id ≡
∑

k∈Zn

M0(ξ + πk)Φ̂(ξ + πk)(M0(ξ + πk)Φ̂(ξ + πk))∗

=
∑

l∈Zn,η∈R

M0(ξ + 2πl + πη)Φ̂(ξ + 2πl+ πη)

× Φ̂(ξ + 2πl+ πη)∗M0(ξ + 2πl + πη)∗

=
∑

η∈R

M0(ξ + πη)

( ∑

l∈Zn

Φ̂((ξ + πη) + 2πl)Φ̂((ξ + πη) + 2πl)∗
)
M0(ξ + πη)∗

=
∑

η∈R

M0(ξ + πη)M0(ξ + πη)∗,

because
∑

l∈Zn Φ̂((ξ + πη) + 2πl)Φ̂((ξ + πη) + 2πl)∗ ≡ Id by Lemma 5. �

Let {ϕδ(x − k)}δ∈D,k∈Zn be an orthonormal basis of V0. Then there exists a natural
isomorphism ι between the Hilbert spaces V0 and ℓ2(Zn)d:

(4.8) ι : V0 ∋ f 7−→
(
(αfδk)k∈Zn

)
δ∈D

∈ ℓ2(Zn)d,

defined by the formula:

(4.9) f(x) =
∑

δ∈D,k∈Zn

αfδkϕδ(x− k), αfδk := (f(x), ϕδ(x − k))L2(Rn).

Notation 5. For f ∈ V0 and ι(f) = ((αfδk)k∈Zn)δ∈D given by (4.8) and (4.9), set

(4.10) m(f) :=
(
m(f)δ

)
δ∈D

, where m(f)δ(ξ) :=
∑

k∈Zn

αfδk e
−ik·ξ, δ ∈ D.

According to notation (4.10), we have

f̂(ξ) = m(f)(ξ)Φ̂(ξ)

and

M0(ξ) =
(
2−nm(ϕd′′(x/2))d′(ξ)

)
(d′,d′′)∈D×D

.

Denote by F the Fourier transformation in L2(Rn) and by

L2(Tn)d := (L2(Tn), . . . , L2(Tn))

the d-fold product Hilbert space of L2(Tn) with the inner product

(·, ·)L2(Tn)d := (·, ·)L2(Tn) + · · · + (·, ·)L2(Tn).
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Lemma 7. The Fourier transforms of V0 and V−1 satisfy the relations, respectively,

(4.11) FV0 = L2(Tn)dΦ̂(ξ), FV−1 = L2(2Tn)dM0(ξ)Φ̂(ξ).

Proof. Since the Fourier transformation is a constant multiple of a unitary operator, then

f̂(ξ) = m(f)(ξ)Φ̂(ξ) defines a natural isomorphism between the Hilbert spaces FV0 and
L2(Tn)d:

FV0 ∋ f̂ 7−→
(
m(f)δ

)
δ∈D

∈ L2(Tn)d.

By Part (b) of Definition 5, f̂(ξ) ∈ FV0 if and only if f̂(2ξ) ∈ FV−1. Hence, by Lemma 4,

f̂(2ξ) = m(f)(2ξ)Φ̂(2ξ) = m(f)(2ξ)M0(ξ)Φ̂(ξ). �

Lemma 8. Let f, g ∈ V0. Then

(4.12) (f, g)L2(Rn;dx) = (m(f)Φ̂,m(g)Φ̂)L2(Rn;dµ(ξ)) = (m(f),m(g))L2(Tn;dµ(ξ))d .

Proof. Since every element of m(f) and m(g) is 2πZn-periodic, Lemma 5 implies that

(f, g)L2(Rn;dx) =(f̂ , ĝ)L2(Rn;dµ(ξ))

=

∫

Rn

m(f)(ξ)Φ̂(ξ)m(g)(ξ)Φ̂(ξ) dµ(ξ)

=

∫

Rn

m(f)(ξ)Φ̂(ξ)tΦ̂(ξ)tm(g)(ξ) dµ(ξ)

=
∑

k∈Zn

∫

Tn

m(f)(ξ)Φ̂(ξ + 2πk)tΦ̂(ξ + 2πk)tm(g)(ξ) dµ(ξ)

=(m(f),m(g))L2(Tn;dµ(ξ))d . �

Remark 10. By Lemma 7 and Lemma 8, we have

FV0 ≃ L2(Tn)d and FV−1 ≃ L2(2Tn)dM0(ξ).

Notation 10. Denote the orthogonal complement of L2(2Tn)dM0(ξ) in L2(Tn)d by

(4.13) W̃−1 := (L2(2Tn)dM0(ξ))
⊥ in L2(Tn)d.

A family of wavelet functions is an orthonormal system for the orthogonal complement,
(V−1)

⊥, of V−1 in V0; this subspace is isomorphic to the orthogonal complement, (FV−1)
⊥,

of FV−1 in FV0. Moreover, (FV−1)
⊥ is isomorphic to W̃−1 by Lemma 8.

Lemma 9. The orthogonal complements W̃−1 and (FV−1)
⊥ satisfy the following relations:

W̃−1 =
{
l(ξ) ∈ L2(Tn)d;

∑

η∈R

M0(ξ + πη)l(ξ + πη)∗ ≡ 0 a.a. ξ
}
,(4.14)

W̃−1Φ̂(ξ) = (FV−1)
⊥ (in FV0).(4.15)
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Proof. Let l(ξ) ∈ W̃−1. Then for every n(ξ) ∈ L2(Tn)d, that is, n(2ξ) ∈ L2(2Tn)d,

(
n(2ξ)M0(ξ), l(ξ)

)
L2(Tn)d = 0.

Put ξ = ξ′ + πη, ξ ∈ Tn, ξ′ ∈ 2Tn, and η ∈ R. Since Tn = 2Tn + πR, then

0 =

∫

Tn

n(2ξ)M0(ξ)l(ξ)
∗ dµ(ξ)

=
∑

η∈R

∫

2Tn

n(2ξ′ + 2πη)M0(ξ
′ + πη)l(ξ′ + πη)∗ dµ(ξ′)

=

∫

2Tn

n(2ξ′)
∑

η∈R

M0(ξ
′ + πη)l(ξ′ + πη)∗ dµ(ξ′).

Since
∑
η∈RM0(ξ

′ + πη)l(ξ′ + πη)∗ is πZn-periodic and n(2ξ) is an arbitrary function in

L2(2Tn)d, then ∑

η∈R

M0(ξ
′ + πη)l(ξ′ + πη)∗ ≡ 0

in L2(2Tn)d, that is, for almost all ξ. �

Remark 11. The number of wavelet functions is 2n − 1 because relation (4.14) for W̃−1

defines a hyperplane of Cd-coefficients in (Cd)2
n

:

(4.16)
{

(zη)η∈R ∈ (Cd)2
n

;
∑

η∈R

M0(ξ + πη)zη = 0
}

for almost every fixed ξ ∈ Rn, and there exist d(2n − 1) orthonormal vectors in this hyper-
plane embedded in the vector space C2nd.

Notation 7. Let Jn = {0, 1, . . . , 2n − 1}. Any number ℓ ∈ Jn can be written uniquely, in
the base two, as

(4.17) ℓ = cn−1(ℓ)2
n−1 + cn−2(ℓ)2

n−2 + · · · + c1(ℓ)2
1 + c0(ℓ),

where each ck(ℓ), k = 0, . . . , n− 1, is either 0 or 1. Write

(4.18) αn,ℓ =
(
cn−1(ℓ), cn−2(ℓ), . . . , c1(ℓ), c0(ℓ)

)
, ℓ ∈ Jn.

Hereafter we let {αn,ℓ}ℓ∈Jn
define the ordering of R; we write Ψ0 := Φ and, for short,

Ψαn,ℓ
= Ψℓ =

(
ψℓδ

)
δ∈D

∈ L2(Tn)d for ℓ ∈ Jn \ {0}.

Notation 8. For Mℓ(ξ) :=
(
(mℓ)(d′,d′′)(ξ)

)
(d′,d′′)∈D×D

∈ Mat(d × d;L2(Tn)), ℓ ∈ Jn,

satisfying Ψ̂ℓ(2ξ) = Mℓ(ξ)Φ̂(ξ), let

(4.19) Lℓ′ℓ′′(2ξ) :=
∑

η∈R

Mℓ′(ξ + πη)Mℓ′′(ξ + πη)∗, ℓ′, ℓ′′ ∈ Jn

and

(4.20) L(ξ) :=
(
Lℓ′ℓ′′(ξ)

)
(ℓ′,ℓ′′)∈Jn×Jn

.
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We see that, for every η′ ∈ R,

Lℓ′ℓ′′(2(ξ + πη′)) =
∑

η∈R

Mℓ′(ξ + πη′ + πη)Mℓ′′(ξ + πη′ + πη)∗ = Lℓ′ℓ′′(2ξ).

Hence, Lℓ′ℓ′′(2ξ) is πZn-periodic, and this implies that

Lℓ′ℓ′′(ξ) ∈ Mat(d× d;L1(Tn)).

and
L(ξ) ∈ Mat

(
2n × 2n; Mat(d× d;L1(Tn))

)
≃ Mat(2nd× 2nd;L1(Tn)).

Lemma 10. The sequence {(ψℓδ)0k}ℓ∈Jn,δ∈D,k∈Zn is an orthonormal system if and only if

(4.21) L(ξ) = I2nd a.a. ξ.

Proof. The sequence {(ψℓδ)0k}ℓ∈Jn,δ∈D,k∈Zn is an orthonormal system if and only if, for
every k ∈ Zn and for ℓ′, ℓ′′ ∈ Jn,

δ(ℓ′,k),(ℓ′′,0)Id =

∫

Rn

(Ψℓ′)0k(Ψℓ′′)
∗
00 dx

=

∫

Rn

̂(Ψℓ′)0k ̂(Ψℓ′′)00
∗
dµ(ξ).

If we put ξ = 2ζ and substitute

Ψ̂ℓ(2ζ) = Mℓ(ζ)Φ̂(ζ), ℓ = ℓ′, ℓ′′,

in the above, then

δ(ℓ′,k),(ℓ′′,0)Id =

∫

Rn

e−2ik·ζMℓ′(ζ)Φ̂(ζ)Φ̂(ζ)∗Mℓ′′(ζ)
∗ dµ(2ζ)

=
∑

k′∈Zn

∫

2Tn

e−2ik·ζMℓ′(ζ + πk′)Φ̂(ζ + πk′)Φ̂(ζ + πk′)∗

×Mℓ′′(ζ + πk′)∗ dµ(2ζ).

Now, put k′ = 2l + η with k′, l ∈ Zn and η ∈ R. Since Zn = 2Zn +R, and Mℓ, ℓ ∈ Jn, are
2πZn-periodic, then

δ(ℓ′,k),(ℓ′′,0)Id =
∑

l∈Zn,η∈R

∫

2Tn

e−2ik·ζMℓ′
(
ζ + π(2l + η)

)

× Φ̂(ζ + π(2l + η))Φ̂(ζ + π(2l + η))∗Mℓ′′
(
ζ + π(2l + η)

)∗
dµ(2ζ)

=

∫

2Tn

e−2ik·ζ
∑

η∈R

Mℓ′(ζ + πη)

×
∑

l∈Zn

Φ̂
(
(ζ + 2l) + πη

)
Φ̂

(
(ζ + 2l) + πη

)∗
Mℓ′′(ζ + πη), dµ(2ζ)

=

∫

2Tn

e−2ik·ζLℓ′ℓ′′(2ζ) dµ(2ζ)

=

∫

Tn

e−ik·ξLℓ′ℓ′′(ξ) dµ(ξ) = L̂ℓ′ℓ′′(k), k ∈ Zn.

Hence the sequence {(ψℓδ)0k}ℓ∈Jn,δ∈D,k∈Zn is an orthonormal system if and only if

Lℓ′ℓ′′(ξ) ≡ δℓ′ℓ′′Id, a.a. ξ, ℓ′, ℓ′′ ∈ Jn. �
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Notation 9. Let Mℓ(ξ) be the same as in Notation 8. Put

(4.22) M̃ℓ′d′(ξ) :=
(
(mℓ′)(d′′,d′)(ξ + παn,ℓ′′)

)
(d′′,ℓ′′)∈D×Jn

∈ Mat(d× 2n;L2(Tn)),

for ℓ′ ∈ Jn, d
′ ∈ D and put

(4.23) M̃(ξ) :=
(
M̃ℓ′d′(ξ)

)
(ℓ′,d′)∈Jn×D

∈ Mat
(
2n × d; Mat(d× 2n;L2(Tn))

)
.

Remark 12. The matrix M̃(ξ) is given by changing the order of the columns of the matrix(
Mℓ′(ξ + παn,ℓ′′)

)
(ℓ′,ℓ′′)∈Jn×Jn

from the ordered set Jn ×D with lexicographic order to the

ordered set D × Jn with lexicographic order.
Then we have

(4.24) M̃(ξ)M̃(ξ)∗ = L(2ξ).

Proposition 4. The family of functions {Ψℓ}ℓ∈Jn\{0} defined by the relations

Ψ̂ℓ(2ξ) = Mℓ(ξ)Φ̂(ξ), is a family of wavelet functions if and only if

(4.25) M̃(ξ) ∈ U(2nd), a.a. ξ.

Proof. By (4.24), (4.25) is equivalent to (4.21). Since we assume the existence of a mul-
tiresolution analysis {Vj}j∈Z, then {Ψℓ}ℓ∈Jn\{0} is a family of wavelet functions if and only
if {(ψℓδ)jk}ℓ∈Jn,δ∈D,k∈Zn is an orthonormal basis of Vj+1 for some (equivalently, for every)
j ∈ Z. By Lemma 10, it is sufficient to show that {(ψℓδ)(−1)k}ℓ∈Jn,δ∈D,k∈Zn is a basis of V0

if and only if (4.25) holds.
First assume that {(ψℓδ)(−1)k}ℓ∈Jn,δ∈D,k∈Zn is a basis of V0. Then

{(ψℓδ)(−1)k}ℓ∈Jn\{0},δ∈D,k∈Zn is a basis of W−1. Then, (4.25) holds by Lemma 10.
Conversely, if (4.21) holds, then, by Remark 12, ((Mℓ′(ξ + παn,ℓ′′))(ℓ′,ℓ′′)∈(Jn\{0})×Jn

is
full rank. Hence, by Lemma 9, all the rows of this matrix form an orthonarmal basis of

W̃−1 for almost all ξ ∈ Rn. Define

Ψ̂ℓ(2ξ) := Mℓ(ξ)Φ̂(ξ), ℓ ∈ Jn \ {0}.

Then, {(ψℓδ)(−1)k}ℓ∈Jn\{0},δ∈D,k∈Zn is an orthonormal basis of W−1. �

Hereafter in this section, we assume that the given multiresolution analysis {Vj}j∈Z is
r-regular.

Notation 10. Denote by Ej : L2(Rn) −→ Vj , the orthogonal projection operator.

Then, as Meyer stated in [15, Section 2.10], we have the following two lemmas:

Lemma 11. The orthogonal projection Ej of L2(Rn) onto Vj can be represented as a
pseudo-differential operator with the symbol: σ(2jx, 2−jξ), where

(4.26) σ(x, ξ) :=
∑

k∈Zn

e2πik·xΦ̂(ξ)∗Φ̂(ξ + 2πk).
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That is, for every f ∈ S(Rn),

(4.27) Ejf(x) =

∫
eix·ξσ(2jx, 2−jξ)f̂(ξ) dµ(ξ).

Proof. Since {ϕδ(x − k)}δ∈D,k∈Zn is an orthonormal basis of V0 and ϕδ satisfies (c1) and
(c2), then we can write

E0f(x) =
∑

δ∈D,k∈Zn

(f(x), ϕδ(x− k))L2(Rn;dx)ϕδ(x− k)

=
∑

δ∈D,k∈Zn

(f̂(ξ), ϕ̂δ(ξ)e
−iξ·k)L2(Rn;dµ(ξ))ϕδ(x− k)

=
∑

δ∈D

∫
eix·ξf̂(ξ)ϕ̂δ(ξ)

∑

k∈Zn

e−i(x−k)·ξϕδ(x− k) dµ(ξ).

By Poisson’s summation formula, we have

∑

k∈Zn

e−i(x−k)·ξϕδ(x− k) =
∑

k∈Zn

e2πik·xϕ̂δ(ξ + 2πk).

Hence, property (b) in Definition 5 completes the proof. �

Lemma 12. With the above notation,

(4.28) |Φ̂(ξ)|2 = 1 +O(|ξ|2r+2), as |ξ| ↓ 0.

Proof. By the localization condition (c2), Φ̂(ξ)∗Φ̂(ξ) is a smooth function. Since the oscil-
lation condition (c4) imples that

(∂αξ Φ̂)(0) = 0 for 1 ≤ |α| ≤ 2r + 1,

we have
((∂βξ Φ̂)∗(∂γξ Φ̂))(0) = 0 for 1 ≤ |β + γ| ≤ 2r + 1.

A Taylor expansion implies that

Φ̂(ξ)∗Φ̂(ξ) = |Φ̂(0)|2 +O(|ξ|2r+2), as |ξ| ↓ 0.

Hence we need only show that |Φ̂(0)|2 = 1. The symbol (4.26) is so good that the
pseudo-differential operator (4.27) can be applied to the constant function 1. In fact,

we consider, for each ε > 0, the function fε(x) := e−ε|x|
2

whose Fourier transform is

gε(ξ) := (π/ε)n/2e−|ξ|2/4ε. Then

(4.29) E0fε(x) =

∫
eix·ξσ(x, ξ)gε(ξ) dµ(ξ).

Denote
E(x, y) :=

∑

k∈Zn

Φ(y − k)∗Φ(x− k).
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Then, since this E(x, y) has the same properties as Meyer’s E(x, y) in [15, Section 2.6], it
follows that Theorem 4 in [15, Section 2.6] is still valid for this E(x, y), that is, we have

∫
E(x, y)dy = 1.

Passing to the limit in (4.29), we have

(4.30) 1 = E01 = {eix·ξσ(x, ξ)}ξ=0, in S′(Rn).

This equality holds in L∞(Rn). Now, (4.26) gives

σ(x, 0) =
∑

k∈Zn

e2πik·xΦ̂(0)∗Φ̂(2πk) = 1.

This implies that Φ̂(0)∗Φ̂(0) = 1 and Φ̂(0)∗Φ̂(2πk) = 0 for k 6= 0. �

5. Proof of Theorems 2 and 3

We shall prove Theorems 2 and 3 only in the case where M0(ξ) ∈ Mat(d× d;L2(Tn; C))
because the proof of the case where M0(ξ) ∈ Mat(d × d;L2(Tn; R)) is similar and rather
easy.

Let us start with some general notation. Let m(ξ) ∈ L2(Tn). The Fourier transform of
m(ξ) is

m(ξ) :=
∑

k∈Zn

m̂(k)eik·ξ , where m̂(k) :=

∫

Tn

e−ik·ξm(ξ) dµ(ξ).

Put k = 2l+ η with k, l ∈ Zn and η ∈ R. Since Zn = 2Zn +R, then

m(ξ) :=
∑

l∈Zn,η∈R

m̂(2l + η)ei(2l+η)·ξ =
∑

η∈R

eiη·ξ
∑

l∈Zn

m̂(2l + η)ei2l·ξ.

Notation 11. For (mℓ′)(d′,d′′)(ξ) ∈ L2(Tn), ℓ′ ∈ Jn, d
′, d′′ ∈ D, denote

(5.1) (mℓ′ℓ′′)(d′,d′′)(ξ) :=
∑

l∈Zn

(̂mℓ′)(d′,d′′)(2l+ αn,ℓ′′)e
il·ξ, ℓ′′ ∈ Jn.

Then,

(5.2) (mℓ′)(d′,d′′)(ξ) =
∑

ℓ′′∈Jn

eiαn,ℓ′′ ·ξ(mℓ′ℓ′′)(d′,d′′)(2ξ).

Since (mℓ′ℓ′′)(d′,d′′)(ξ) are 2πZn-periodic, we have, for η ∈ R,

(mℓ′)(d′,d′′)(ξ + ηπ) =
∑

ℓ′′∈Jn

eiαn,ℓ′′ ·(ξ+ηπ)(mℓ′ℓ′′)(d′,d′′)(2ξ)

(5.3)

=
(
2n/2(mℓ′ℓ′′)(d′,d′′)(2ξ)

)
ℓ′′∈Jn

t
(
2−n/2eiαn,ℓ′′ ·(ξ+ηπ)

)
ℓ′′∈Jn

.
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Notation 12.

• M̆(d′,d′′) :=
(
(mℓ′)(d′,d′′)(ξ + παn,ℓ′′)

)
(ℓ′,ℓ′′)∈Jn×Jn

∈ Mat(2n × 2n;L2(Tn)).

• M̆(ξ) :=
(
M̆(d′,d′′)

)
(d′,d′′)∈D×D

∈ Mat
(
d× d; Mat(2n × 2n;L2(Tn))

)
.

• N(d′,d′′) :=
(
2n/2(mℓ′ℓ′′)(d′,d′′)(ξ)

)
(ℓ′,ℓ′′)∈Jn×Jn

∈ Mat(2n × 2n;L2(Tn)).

• N(ξ) :=
(
N(d′,d′′)

)
(d′,d′′)∈D×D

∈ Mat
(
d× d; Mat(2n × 2n;L2(Tn))

)
.

• U2n(ξ) :=
(
2−n/2eiη·(ξ+rπ)

)
(η,r)∈R×R

∈ U(2n;C∞(Tn)).

• U(ξ) :=
(
U2nδd′,d′′

)
(d′,d′′)∈D×D

∈ U(2nd;C∞(Tn)).

Remark 13. The matrix M̆(ξ) is given by changing the order of the rows of the matrix

M̃(ξ) from the ordered set Jn ×D with lexicographic order to the ordered set D× Jn with
lexicographic order.

Since (5.3) is represented as M̆(ξ) = N(2ξ)U(ξ), then M̃(ξ) is unitary when N(2ξ) is
unitary. Hence, we have the following corollary to Proposition 4.

Corollary 1. If N(ξ) ∈ U(2nd;L2(Tn)), then the family of functions {Ψℓ}ℓ∈Jn\{0}, defined

by the relations Ψ̂ℓ(2ξ) = Mℓ(ξ)Φ̂(ξ), is a family of wavelet functions.

Lemma 13. If the scaling fuction Φ(x) has the regularity (c1) and the localization property
(c2) and if N(ξ) ∈ U(2nd;C∞(Tn)), then the family of functions {Ψℓ}ℓ∈Jn\{0}, defined by

the relations Ψ̂ℓ(2ξ) = Mℓ(ξ)Φ̂(ξ), is a family of wavelet functions having the regularity (c1)
and the localization property (c2).

Proof. Assume that N(ξ) ∈ U(2nd;C∞(Tn)). Then, M̆(ξ) ∈ U(2nd;C∞(Tn)) and, there-
fore, Mℓ(ξ) ∈ Mat(d× d;C∞(Tn)) for ℓ ∈ Jn.

Represent the elements of the matrix Mℓ(ξ) by Fourier series as:

(5.4) Mℓ(ξ) =
( ∑

k∈Zn

αℓd′d′′ke
−ik·ξ

)
(d′,d′′)∈D×D

,

whose coefficients αℓd′d′′k are rapidly decreasing as k → ∞. Then the relation Ψ̂ℓ(2ξ) =

Mℓ(ξ)Φ̂(ξ) implies

2−nΨℓ(x/2) =
( ∑

k∈Zn

αℓd′d′′k

)
(d′,d′′)∈D×D

Φ(x− k)(5.5)

=
( ∑

k∈Zn,d′′∈D

αℓd′d′′kϕd′′(x− k)
)
d′↓1,...,d

.

Diffentiating (5.5) under the summation, we can show that every Ψℓ, ℓ ∈ Jn\{0}, has the
same regularity and localization property as Φ. �

Proof of Theorem 2. By Corollary 1, it suffices to construct N(ξ) ∈ U(2nd;L2(Tn)). Since
a multiresolution analysis is given, that is, M0(ξ) is given, then d rows

(5.6) {2n/2(m0ℓ′′)(d′,d′′)(ξ)}(d′′,ℓ′′)∈D×Jn
, d′ ∈ D

of N(ξ) are given, which is an orthonormal system in C2nd for almost all ξ ∈ Rn. We must
construct the remaining (2n − 1)d rows

(5.7) {2n/2(mℓ′ℓ′′)(d′,d′′)(ξ)}(d′′,ℓ′′)∈D×Jn
, (d′, ℓ′) ∈ D × Jn,
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of N(ξ) so that N(ξ) ∈ U(2nd;L2(Tn)). Using the Gram-Schmidt orthonormalization for
every ξ ∈ Tn, we can construct N(ξ) ∈ U(2nd;L2(Tn)). This completes the proof. �

Remark 14. If the scaling fuction has the localiation property (c2), then we can apply
Theorem 1 to the construction of N(ξ) ∈ U(2nd;C∞(Tn)) as we stated in Remark 2. Then
we have wavelet functions which have the localization property (c2) by Lemma 13.

Lemma 14. Let N(ξ) ∈ U(2nd;L2(Tn)) be given. Then

(5.8)
∑

δ∈D

|ϕ̂δ(ξ)|
2 +

∑

δ∈D,ℓ∈Jn\{0}

|ψ̂ℓδ(ξ)|
2 =

∑

δ∈D

|ϕ̂δ(ξ/2)|2, a.a. ξ.

Proof. Denote

(5.9) M◦(ξ) :=
(
Mℓ(ξ); ℓ ↓ 0, . . . , 2n − 1

)
∈ Mat(2nd× d;L2(Tn)).

Since N(ξ) ∈ U(2nd;L2(Tn)) is given, then we haveM◦(ξ) whose columns are orthonormal,
that is,

(5.10) M◦(ξ)∗M◦(ξ) = Id.

Multiply both sides of (5.10) by Φ̂(ξ)∗ from the left and by Φ̂(ξ) from the right. Then

(Mℓ(ξ)Φ̂(ξ); ℓ ↓ 0, . . . , 2n − 1)∗(Mℓ(ξ)Φ̂(ξ); ℓ ↓ 0, . . . , 2n − 1) = Φ̂(ξ)∗Φ̂(ξ).

Since Mℓ(ξ)Φ̂(ξ) = Ψ̂ℓ(2ξ), then we have

(Ψ̂ℓ(2ξ); ℓ ↓ 0, . . . , 2n − 1)∗(Ψ̂ℓ(2ξ); ℓ ↓ 0, . . . , 2n − 1) = Φ̂(ξ)∗Φ̂(ξ),

which is the conclusion sought. �

Now we can prove Theorem 3.

Proof of Theorem 3. We use the same construction as Remark 14. Lemma 13 ensures
that the family of wavelet functions constructed as above has the regularity (c1) and the
localization property (c2). To establish the oscillation property (c3), we substitute (4.28)
in (5.8); thus we have

∑

δ∈D,ℓ∈Jn\{0}

|ψ̂ℓδ(ξ)|
2 = O(|ξ|2r+2), as |ξ| ↓ 0,

that is,

|ψ̂ℓδ(ξ)| = O(|ξ|r+1), as |ξ| ↓ 0, for δ ∈ D, ℓ ∈ Jn\{0}.

Hence (∂αψ̂ℓδ)(0) = 0, for δ ∈ D and ℓ ∈ Jn\{0}. Thus (c3) holds. The proof is com-
plete. �
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