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Abstract. An orthonormal wavelet basis in L2(Rn) used for microlocal
filters, which decompose signals into microlocal contents, is shown to
be a “stepwise” unconditional basis in Lp(Rn) (1 < p < ∞). Other
related spaces are also treated. As a part of the proof, an elementary
proof of the Lp version of the sampling theorem with the unconditional
convergence is given. Finally, an application is given to the expression of
some distributions as sums of boundary values of holomorphic functions.

1. Introduction

The extraordinary development of wavelets in recent years have made

them present in a large part of our high-technology world ([7], [13]). Wavelets

are being incorporated in engineering standards for image and audio signal

compression. The first standard based on wavelets is “wavelet scalar quan-

tization” adopted by the U.S. Federal Bureau of Investigation (FBI) in 1997

to encode fingerprints. The new still-image compression standard known as

JPEG2000 includes a wavelet option, and MPEG-4, the next video com-

pression standard, will be entirely wavelet-based. Developments in wavelets

have influenced a large number of pure and applied mathematicians, and

scientists in such disparate fields as numerical analysis, computer vision,

human vision, turbulence, statistics, physics, and medicine.

Most systems appeared in engineering are modeled as analog, but most of

their computational engines are digital. Transforming from analog to digital

is straightforward by what we call “sampling”. Regaining the original signal
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from these sampling data or assessing the information lost in the sampling

process are fundamental questions in sampling theory ([14]). The classical

sampling theorem, usually associated with the names of E. T. Whittaker,

V.A. Kotel’nikov and C. E. Shannon, provides the theoretical foundation

for communications systems. We say that a function (or distribution) f is

band-limited to I if supp f̂ ⊂ I, where f̂ denotes the Fourier transform of f :

(1.1) f̂(ξ) = f∧(ξ) :=

∫
�n

e−ix·ξf(x) dx .

The classical sampling theorem states that functions band-limited to [−σπ, σπ]

can be reconstructed from uniform samples {f(k/σ)}k∈� by

(1.2) f(t) =
∑
k∈�

f(k/σ)
sin π(σt− k)

π(σt− k)
.

The classical sampling theorem has been generalized in various directions.

One of such generalizations, which was given by F. Gensun[4], is to extend

the function space, to which band-limited functions belong, from L2(R) to

Lp(R), 1 < p <∞.

Wavelets have been developed as one of tools for time-frequency analysis,

which could be called “local Fourier analysis”. Another “local Fourier analy-

sis” named microlocal analysis has been developed extensively in the theory

of hyperfunctions, which was introduced by M. Sato[17]. Hyperfunctions,

which is a very wide generalization of functions, can be considered as sums

of formal boundary values of holomorphic functions defined in infinitesimal

wedges (Figure 1). They are powerful tools in several applications; for ex-

iΓ

x

Ω+iΓ0
Ω

Figure 1. An infinitesimal wedge Ω + iΓ0.

ample, vortex sheets in two-dimensional fluid dynamics are a realization of

hyperfunctions of one variable ([8]). Microlocal analysis deals with the di-

rection to which a hyperefunction can be extended analytically. In other

words, it decomposes the “singularity” into microlocal directions. Microlo-

cal analysis plays an important role in the theory of hyperfunctions, partial
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differential operators, and many other areas. In this theory, for example, one

can consider the product of hyperfunctions and discuss the partial regularity

of hyperfunctions with respect to any independent variable.

The article [2] constructed orthonormal wavelets in L2(R
n) applicable to

microlocal analysis. Since microlocal decomposition can be done numerically

by a filtering algorithm using those orthonormal wavelets, such wavelets are

called microlocal filters . The orthonormal wavelet basis enables us to obtain

information on the microlocal contents of signals or functions.

The main purpose of this article is to show that the orthonormal wavelets

bases in L2(R
n) are “stepwise unconditional bases” in Lp(R

n), 1 < p < ∞.

Related spaces are also treated. To prove these results, the Lp version of

the sampling theorem is used. Its elementary proof will be given and the

unconditionality of the convergence of (1.2) will be shown, which was not

stated explicitly in [4].

In the next section, we review the results of [2]. In Section 3, the function

spaces we consider are introduced. We give the precise statement of our

main results in Section 4. After giving some preliminaries in Section 5, we

give the Lp version of the sampling theorem in Section 6. Sections 7 and 8

are devoted to the proofs of the main theorems. In the final section, we give

an application to the expression of some distributions as sums of boundary

values of holomorphic functions.

2. Microlocal filters

In this section, we will give a brief overview of [2].

Notation:

• Z := { Integers }, Z+ := {n ∈ Z : n ≥ 0 },
N := {n ∈ Z : n > 0 }, R := {Real Numbers },
R± := { t ∈ R : ±t > 0 }, R� := { t ∈ R : t �= 0 },
Rn

� := (R�)
n, C := {Complex Numbers },

Sn−1 denotes the (n− 1)-dimensional unit sphere.

• For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, the inner product of x

and y is denoted by x · y :=
∑n

ν=1 xνyν . The L2 inner product is

denoted by 〈f, g〉 :=

∫
�n

f(x)g(x) dx.

• f̂(ξ) = f∧(ξ) :=

∫
�n

e−ix·ξf(x) dx (Fourier transform of f). As

is well-known, this is an isomorphism on each of the three spaces

S (Rn) ⊂ L2(R
n) ⊂ S ′(Rn), where S (Rn) is the space of rapidly
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decreasing C∞ functions, and S ′(Rn) is its dual, that is, the space of

the tempered distributions. We also use the variables ω = (ω1, . . . , ωn)

with ξ = 2πω.

For X ⊂ S ′(Rn), set X̂ := { f̂ : f ∈ X }. If f ∈ X implies

f̃ ∈ X, where f̃(x) := f(−x), then X̂ = { f ∈ S ′(Rn) : f̂ ∈ X }.
• g∨(x) :=

1

(2π)n

∫
�n

eix·ξg(ξ) dξ (inverse Fourier transform of g).

2.1. Orthonormal Wavelets. For f ∈ L2(R
n), let fjk(x) denote the

scaled and shifted function

(2.1) fjk(x) = 2nj/2f(2jx− k), j ∈ Z, k ∈ Zn .

Definition 2.1. LetD be a finite index set. A system {(ψδ)jk}δ∈D,j∈�,k∈�n ⊂
L2(R

n) is called an orthonormal wavelet basis and a system {ψδ}δ∈D is called

a system of orthonormal wavelet functions , if the system {(ψδ)jk}δ∈D,j∈�,k∈�n

is an orthonormal basis for L2(R
n).

2.2. Microlocal Analysis. Our approach to microlocal analysis is based

on the theory of hyperfunctions ([9], [10], [15]). Here, we give only a rough

sketch. A more complete treatment of microlocal filtering can be found

in R. Ashino, C. Heil, M. Nagase, and R. Vaillancourt [2] (See also [3]).

The important point is to find directions in which a hyperfunction can be

continued analytically.

Let Ω ⊂ Rn be an open set, and Γ ⊂ Rn be a convex open cone with

vertex at 0. From now on, every cone is assumed to have vertex at 0. The

set Ω+ iΓ ⊂ Cn is called a wedge. An infinitesimal wedge Ω+ iΓ0 is an open

set U ⊂ Ω+ iΓ which approaches asymptotically to Γ as the imaginary part

tends to 0. (Figure 1.)

A hyperfunction f(x) can be defined as a sum

(2.2) f(x) =
N∑

j=1

Fj(x+ iΓj0), x ∈ Ω,

of formal boundary values

(2.3) Fj(x+ iΓj0) = lim
y→0; x+iy∈Ω+iΓj0

Fj(x+ iy)

of holomorphic functions Fj(z) in infinitesimal wedges Ω + iΓj0.

A hyperfunction is said to be micro-analytic in the direction ξ0 ∈ Sn−1

at x0 ∈ Rn, or in short, at (x0, ξ0), if there exists a neighborhood Ω of x0
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and holomorphic functions Fj on infinitesimal wedges Ω + iΓj0 such that

f =
∑N

j=1 Fj(x+ iΓj0) and

(2.4) Γj ∩ { y ∈ Rn : y · ξ0 < 0 } �= ∅
for all j.

A simple aspect of the relation between micro-analyticity and Fourier

transform is given as follows.

Lemma 2.2. Let Γ ⊂ Rn be a closed cone and x0 ∈ Rn. For f ∈ S ′(Rn),

if there exists g ∈ S ′(Rn) such that supp ĝ ⊂ Γ and f − g is analytic in a

neighborhood of x0, then f is micro-analytic at (x0, ξ) for every ξ ∈ Γc∩Sn−1,

where Γc denotes the complement of Γ.

2.3. 1-D Orthonormal Wavelets for Microlocal Filtering. Define

ψ± by ψ̂± = χ
[±2π,±4π]

(Figure 2). Then, {ψ+, ψ−} is a system of orthonor-

−− 0

1

2π 4π2π4π

ψ̂+ψ̂-

Figure 2. The Fourier transform of ψ±.

mal wavelet functions. Define the orthogonal projections P± by

(2.5) P±f :=
∑
j,k∈�

〈f, (ψ±)jk〉 (ψ±)jk ,

then f = P+f + P−f and supp (P±f)∧ ⊂ R±, respectively. Hence, P+f(x)

(resp. P−f(x)) is a boundary value of a holomorphic function on { z ∈ C :

Im z > 0 } (resp. { z ∈ C : Im z < 0 }). Thus, f is decomposed into two

parts with micro-analytic direction ∓1. Each of P±f can be decomposed

and reconstructed by the usual filtering processes using wavelets. Since

each wavelet function has a scaling function, there are two scaling functions.

Hence those wavelets are called multiwavelets in [2].

2.4. n-D Orthonormal Wavelets for Microlocal Filtering. In the

n-dimensional case, the set of all micro-analytic directions is the (n − 1)-

dimensional unit sphere Sn−1, which is an infinite set for n ≥ 2. It is

possible for the orthonormal wavelet basis constructed in [2] to tell fairly

well in which directions f is micro-analytic. The price to pay to get good

angular resolution in Sn−1 is the need for many wavelet functions.
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Definition 2.3. For a closed cube Q ⊂ Rn, define ψQ by

ψ̂Q(ξ) := χ
2πQ

(ξ) ,

where χ
2πQ

is the characteristic function of the cube 2πQ defined by

χ
2πQ

(ξ) :=

{
1, ξ ∈ 2πQ ,

0, otherwise .

For an interval I ⊂ R, we can easily compute that

(2.6) χ∨
I
(t) =

|I|
2π

exp(icIt) sinc
( |I|
2π
t
)
,

where χ
I

is the characteristic function of I, |I| is the length of I, cI is the

center of I, and

(2.7) sinc t :=
sin(πt)

πt
for t �= 0, sinc 0 := 1 .

From this, we can easily see that if Q =
∏n

ν=1[cν − σν/2, cν + σν/2], where

cν ∈ R and σν > 0, then

(2.8) ψQ(x) =
n∏

ν=1

{σν exp(i2πcνxν) sinc(σνxν)}.

Thus, ψQ �∈ L1(R
n) and ψQ ∈ ⋂

1<r≤∞ Lr(R
n). We shall see later that ψQ

belongs to better spaces.

Definition 2.4. (1) As a convention, we use [a, b] := { x ∈ R :

min{a, b} ≤ x ≤ max{a, b} } even when a ≥ b.

(2) For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, the element-wise product is

denoted by a.∗b := (a1b1, . . . , anbn) ∈ Rn. The element-wise quotient is also

denoted by a./b := (a1/b1, . . . , an/bn). (Matlab convention)

(3) For η = (η1, η2, . . . , ηn) ∈ H := {±1}n = {±}n, set

Γη := {ω ∈ Rn : ηνων > 0, ν = 1, . . . , n },

which is an open orthant in Rn, and set

Qη :=

n∏
ν=1

[0, ην ] = {ω ∈ Rn : 0 ≤ ηνων ≤ 1, ν = 1, . . . , n } ,

which is a unit cube in the closed orthant Γη. (See Figure 3 for n = 2.)
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1

1
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η=(+,−)η=(−,−)

ηQ

ηQ
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Figure 3. Orthants (Quadrants) Γη and

Cubes (Squares) Qη (n = 2)

(4) For ε = (ε1, ε2, . . . , εn) ∈ E := { 0, 1 }n \ { (0, . . . , 0) } and η ∈ H,

consider 2n × (2n − 1) unit cubes

Qη + ε.∗η =
n∏

ν=1

[ηνεν , ην(εν + 1)]

= {ω ∈ Rn : εν ≤ ηνων ≤ (εν + 1), ν = 1, . . . , n }.
(2.9)

(See Figure 4 for n = 2.) For (ε, η) ∈ E×H, and ρ = ρ(ε, η) ∈ Z+, let Qρ,ε,η

be the collection of 2ρn unit cubes that cover 2ρ(Qη + ε.∗η) with overlaps of

measure zero, i.e.,

Qρ,ε,η : =
{ n∏

ν=1

[ην lν , ην(lν + 1)] + 2ρ(ε.∗η) :

0 ≤ l1, . . . , ln ≤ 2ρ − 1, l1, . . . , ln ∈ Z

}
=

{
Qη + (2ρε+ l).∗η :

0 ≤ l1, . . . , ln ≤ 2ρ − 1, l1, . . . , ln ∈ Z
}
.

(See Figure 5.)

From now on, we fix an arbitrary ρ = ρ(ε, η) ∈ Z+ for each (ε, η) ∈ E×H,

and set Qρ :=
⋃

(ε,η)∈E×H Qρ(ε,η),ε,η. (In the definition of Qρ in [2], 2π should

be eliminated, and some argument should be trivially modified afterward.)

For Q ∈ Qρ, there exists a unique η ∈ H such that Q ⊂ Γη. This η is

denoted by η(Q).
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Figure 4. Cubes (Squares) Qη + ε.∗η (n = 2)

The most basic fact on the family {ψQ }Q∈Qρ is that it is a system of

orthonormal wavelet functions as follows.

Theorem 2.5. ([2]) { (ψQ)j,k : Q ∈ Qρ, j ∈ Z, k ∈ Zn } is an orthonor-

mal basis for L2(R
n). That is,

(2.10) 〈(ψQ)j,k, (ψQ′)j′,k′〉 =

{
0 if (Q, j, k) �= (Q′, j′, k′)
1 if (Q, j, k) = (Q′, j′, k′)

,

and every f ∈ L2(R
n) is uniquely expressed in the form

(2.11) f(x) =
∑

Q∈Qρ

∑
j∈�

∑
k∈�n

〈f, (ψQ)j,k〉 (ψQ)j,k(x).

By the orthogonality, the convergence is unconditional , that is, it con-

verges for every choice of the order of summation. As for unconditional con-

vergence, see, for example, [12], [5], [21], etc. For each Q ∈ Qρ, the orthog-

onal projection PQf :=
∑

j,k 〈f, (ψQ)j,k〉 (ψQ)j,k satisfies supp P̂Qf ⊂ ΓQ,

where ΓQ is the closed cone generated by
⋃

j∈� 2jQ, that is, ΓQ := { kη :

η ∈ ⋃
j∈� 2jQ, k ∈ R+ }. Hence, PQf is micro-analytic in the direction

ξ ∈ ΓQ
c ∩ Sn−1 at every x ∈ Rn. The larger ρ we take, the smaller ΓQ we

have.

In this article, we consider the expansion (2.11) in Lp spaces and other

related spaces. The expansion in Lp(R
n) does not follow from the general
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Figure 5. Qρ,ε,η (n = 2, ε = (1, 0), η = (+,+), ρ = 2) :

2ρn cubes covering 2ρ(Qη + ε.∗η).

theory (see, for example, [5],[21]), since ψQ is not well localized. The main

result of this article is the following.

Theorem 2.6. Assume 1 < p <∞ and f ∈ Lp(R
n).

(1) For each Q ∈ Qρ and each j ∈ Z, the series

∑
k∈�n

〈f, (ψQ)j,k〉 (ψQ)j,k

converges unconditionally in Lp(R
n) ∩ L∞(Rn), that is, it converges both in

the Lp-norm and uniformly on Rn. The sum is denoted by PQ
j f . Note that

Lp(R
n) ∩ L∞(Rn) =

⋂
p≤r≤∞ Lr(R

n) by the interpolation theorem.

(2) The series
∑

Q∈Qρ, j∈� PQ
j f converges unconditionally to f in Lp(R

n).

Thus, the wavelet expansion (2.11) is valid also in Lp(R
n). In this article,

this type of convergence is called stepwise unconditional convergence. The

whole unconditionality of the convergence of
∑

Q,j,k 〈f, (ψQ)j,k〉 (ψQ)j,k is

still open for p �= 2. We shall also give similar results for some other spaces.

The result (1) turns out to be a variant of the Lp version of the sampling

theorem, which has been given by F. Gensun[4]. We shall give a simpler

proof than his.
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3. Function Spaces

As we already said, we consider Lp spaces. We also consider L̂p and

Sobolev type spaces.

Definition 3.1. Set 〈ξ〉 := (1 + |ξ|2)1/2 and set 〈D〉sf := {〈ξ〉sf̂(ξ)}∨ for

s ∈ R and f ∈ S ′(Rn). Let 1 ≤ p ≤ ∞. Define the Sobolev type spaces as

follows.

Ls
p(R

n) : = { f ∈ S ′(Rn) : 〈D〉sf ∈ Lp(R
n) } ,(3.1)

L∞
p (Rn) : =

⋂
s∈�

Ls
p(R

n) , L−∞
p (Rn) :=

⋃
s∈�

Ls
p(R

n) ,(3.2)

M s
p (Rn) : = { f ∈ S ′(Rn) : 〈D〉sf ∈ L̂p(R

n) } ,(3.3)

M∞
p (Rn) : =

⋂
s∈�

M s
p (Rn) , M−∞

p (Rn) :=
⋃
s∈�

M s
p (Rn) .(3.4)

As is well-known, if s ∈ Z+, then

Ls
p(R

n) = { f ∈ S ′(Rn) : ∂α
x f ∈ Lp(R

n) for α ∈ Zn
+, |α| ≤ s } ,(3.5)

M s
p (Rn) = { f ∈ S ′(Rn) : ∂α

x f ∈ L̂p(R
n) for α ∈ Zn

+, |α| ≤ s } .(3.6)

We also use some spaces of band-limited functions (distributions).

Definition 3.2. For a bounded closed set Q ⊂ Rn, set

EQ := { f ∈ S ′(Rn) : supp f̂ ⊂ 2πQ } .

Further, for 1 ≤ p ≤ ∞, set

BQ
p := EQ ∩ Lp(R

n) .

The space BQ
p is a closed subspace of Lp(R

n) and we consider the induced

topology from Lp(R
n). Similarly, for 1 ≤ p ≤ ∞, set

PWQ
p := EQ ∩ L̂p(R

n) .

The space PWQ
p is a closed subspace of L̂p(R

n) and we consider the induced

topology from L̂p(R
n). We followed the notation of [6], where spaces like BQ

p

are called Bernstein spaces, and those like PWQ
p are called Paley-Wiener

spaces. In some other references, spaces like BQ
p are called Paley-Wiener

spaces without considering PWQ
p .

Remark 3.3. (1) An element of EQ is an entire function of exponential

type. Especially, BQ
p ↪→ O(Cn) and PWQ

p ↪→ O(Cn), where O(Cn) is

the space of entire functions with the topology of uniform convergence on

compact sets, and X ↪→ Y denotes that X is continuously embedded in Y .
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(2) We have BQ
p ↪→ BQ

r if 1 ≤ p ≤ r ≤ ∞. We also have BQ
p ↪→ Ls

r(R
n)

for every r ∈ [p,∞] and s ∈ R ∪ {∞}. Further, when r = p, the induced

topologies from Ls
p(R

n) to BQ
p coincide for all s ∈ R.

Similarly, we have PWQ
p ↪→ PWQ

r if 1 ≤ r ≤ p ≤ ∞. We also have

PWQ
p ↪→ M s

r (Rn) for every r ∈ [1, p] and s ∈ R ∪ {∞}. Further, when

r = p, the induced topologies from M s
p (Rn) to PWQ

p coincide for all s ∈ R.

Note that ∂α
xψQ �∈ L1(R

n) for every α ∈ Zn
+, and that

ψQ ∈
( ⋂

1<p≤∞
BQ

p

)
∩

( ⋂
1≤p≤∞

PWQ
p

)
(3.7)

⊂
( ⋂

1<p≤∞
L∞

p (Rn)
)
∩

( ⋂
1≤p≤∞

M∞
p (Rn)

)
,(3.8)

for every closed cube Q ⊂ Rn. By (3.8), the inner product 〈f, (ψQ)j,k〉 =
1

(2π)n

〈
f̂ , (̂ψQ)j,k

〉
is well-defined, for every Q ∈ Qρ, j ∈ Z, k ∈ Zn, and

every f ∈
(⋃

1≤p<∞ L−∞
p (Rn)

)
∪

(⋃
1≤p≤∞M−∞

p (Rn)
)
.

4. Expansions

The following two theorems give the validity of the wavelet expansion

(2.11) in the spaces Ls
p(R

n) and M s
p (Rn) for 1 < p < ∞. Theorem 2.6 is a

special case s = 0 of Theorem 4.1.

Theorem 4.1. Suppose that 1 < p <∞, s ∈ R, and f ∈ Ls
p(R

n).

(1) For every Q ∈ Qρ and every j ∈ Z, the series∑
k∈�n

〈f, (ψQ)j,k〉 (ψQ)j,k

converges unconditionally in B2jQ
p

(
↪→ L∞

p (Rn) ∩ L∞
∞(Rn)

)
. The sum is de-

noted by PQ
j f .

(2)
∑

Q∈Qρ

∑
j∈�

PQ
j f converges unconditionally to f in Ls

p(R
n).

Theorem 4.2. Suppose that 1 < p <∞, s ∈ R, and f ∈M s
p (Rn).

(1) For every Q ∈ Qρ and every j ∈ Z, the limit of rectangular sum

lim
M→∞

∑
k∈�n; |kν |≤M

〈f, (ψQ)j,k〉 (ψQ)j,k

exists in PW 2jQ
p

(
↪→M∞

p (Rn)∩M∞
1 (Rn)

)
. The limit is also denoted by PQ

j f .

(2)
∑

Q∈Qρ

∑
j∈�

PQ
j f converges unconditionally to f in M s

p (Rn).
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Remark 4.3. (1) The unconditionality of the convergence in Theorem 4.1

is stepwise. Even if s = 0, the whole unconditionality of the convergence∑
Q∈Qρ

∑
j∈�

∑
k∈�n

〈f, (ψQ)j,k〉 (ψQ)j,k

in Lp(R
n) is still open unless p = 2.

(2) If p �= 2, then the convergence to PQ
j f in Theorem 4.2 (1) is not

unconditional in general even if s = 0. In fact, we shall see that the series is

just the Fourier series expansion in Lp(2π2jQ) (see Section 8), and {eik·ξ}k∈�n

is not an unconditional basis of Lp([−π, π]n) ([18], Chapter II, Example 14.3;

[20], II.D.9).

5. Preliminaries

Definition 5.1. Let Q be a closed cube in Rn.

(1) Define the “partial sum operator([19])” SQ: L2(R
n) → BQ

2 ⊂ L2(R
n) by

(̂SQf)(ξ) := χ
2πQ

(ξ)f̂(ξ) for f ∈ L2(R
n). We have ‖SQf‖L2(�n) ≤ ‖f‖L2(�n ).

Note that we use χ
2πQ

, while χ
Q

is used in [19].

(2) Let 1 < p < ∞. For f ∈ L2(R
n) ∩ Lp(R

n), we have SQf ∈ Lp(R
n) and

there exists a positive constant Ap independent of n, Q and f such that

(5.1) ‖SQf‖Lp(�n ) ≤ Ap
n ‖f‖Lp(�n ).

([19], Chapter IV, Theorem 4.) In other words, χ
2πQ

is a Fourier multiplier

for Lp(R
n). Thus, SQ is uniquely extended to a bounded operator from

Lp(R
n) to BQ

p .

(3) Let 1 < p < ∞. We take φ ∈ S (Rn) such that φ(ξ) = 1 in

a neighborhood of 2πQ. If f ∈ Ls
p(R

n), then
(
φ f̂

)∨ ∈ Lp(R
n), since

(φ 〈ξ〉−s)∨ ∈ S (Rn) ↪→ L1(R
n) and

(
φ f̂

)∨
= (φ 〈ξ〉−s)∨ ∗ (〈D〉sf). Hence,

we can define SQf by SQf := SQ(
(
φ f̂

)∨
) ∈ BQ

p . It is easy to see that this

definition is independent of the choice of φ. Thus, SQ is a bounded linear

operator from Ls
p(R

n) to BQ
p for every s ∈ R.

(4) For f ∈ M s
p (Rn), 1 ≤ p ≤ ∞, s ∈ R, we also define SQf :=

(
χ

2πQ
f̂

)∨
.

This definition does not contradict to the definition already given above.

We have the following basic properties of SQ on Ls
p(R

n).

Proposition 5.2. Let 1 < p <∞ and s ∈ R.

(1) Let Σ be a union of finite number of hyperplanes in Rn. If g ∈ Ls
p(R

n)

satisfies supp ĝ ⊂ Σ, then g = 0.
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Hence, g := SQf , defined in Definition 5.1 (2) and (3), is the unique

element of L−∞
p (Rn) satisfying

ĝ|2π
◦
Q = f̂ |2π

◦
Q in D ′(2π

◦
Q) ,(5.2)

ĝ|2πQc = 0 in D ′(2πQc) ,(5.3)

where
◦
Q denotes the interior of Q.

(2) For f ∈ Ls
p(R

n), we have SQf = ψQ ∗ f . Note that the right hand side

can be defined in
⋂

p<r≤∞ Lr(R
n) by Young’s inequality, since

ψQ ∗ f = (χ
2πQ

〈·〉−s)∨ ∗ (〈D〉sf) ,

(χ
2πQ

〈·〉−s)∨ = (χ
2πQ

φ 〈·〉−s)∨ = ψQ ∗ (φ 〈·〉−s)
∧ ∈

⋂
1<r≤∞

Lr(R
n) ,

where φ is the function used in Definition 5.1.

Remark 5.3. If 1 ≤ p ≤ 2, then f̂ ∈ Lq(R
n) ⊂ L1,loc(R

n)，where 1/p +

1/q = 1, and hence (1) of the proposition is trivial. If p > 2, then f̂ is not

necessarily belong to L1,loc(R
n) (see, for example, [16]), and hence it is not

trivial.

It is also worth noting that if Q is not a cube but a ball, then SQ is not

a Fourier multiplier for Lp(R
n) unless p �= 2 ([11], Theorem 3.5.6).

Proof of Proposition 5.2. Note that 〈D〉s is an isomorphism from Ls
p(R

n)

to Lp(R
n), and if supp ĝ ⊂ Σ, then supp (〈D〉sg)∧ ⊂ Σ. Hence, we may

assume s = 0. Let g ∈ Lp(R
n). We prove (1) by induction on the num-

ber of hyperplanes. If Σ itself is a hyperplane, we may assume by a ro-

tation that Σ = { ξ ∈ Rn : ξ1 = a } for some a ∈ R. We write

ξ = (ξ1, ξ
′), ξ′ = (ξ2, . . . ξn), and similarly for x′. Then, supp ĝ ⊂ Σ

means ĝ(ξ) =
∑

l∈�+:finite hl(ξ
′) δ(l)(ξ1 − a) for some hl ∈ S ′(Rn−1). Hence

g(x) =
∑

l∈�+:finite(hl)
∨(x′)(−ix1)

l exp(iax1)/(2π). From g ∈ Lp(R
n), we

obtain (hl)
∨ = 0 for every l.

Assume that (1) is valid if the number of hyperplanes is less than d, and

consider the case where Σ is a union of d hyperplanes {Pj : j = 1, . . . , d },
where d ≥ 2. Let ξo ∈ P1 \

⋃d
j=2 Pj. We can take φ ∈ S (Rn) such that

φ(ξ) = 1 in a neighborhood of ξo and suppφ ∩ (⋃d
j=2 Pj

)
= ∅. Since φ∨ ∈

S (Rn) ⊂ L1(R
n), we have φ∨ ∗ g ∈ Lp(R

n), and supp φ̂∨ ∗ g = supp(φ ĝ) ⊂
P1. Thus, by the result in the case d = 1, we have φ ĝ = 0. Since ξo
is an arbitrary point of P1 \

⋃d
j=2 Pj, we have supp ĝ ⊂ ⋃d

j=2 Pj. By the

assumption of the induction, we have g = 0.

(2) Let f ∈ Ls
p(R

n) and take r as p < r < ∞. Then, not only ψQ ∗ f
but also SQf belongs to Lr(R

n), since SQf ∈ BQ
p ⊂ BQ

r ⊂ Lr(R
n). Since
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supp
(
ŜQf−χ2πQ

f̂
)
⊂ ∂Q, we have SQf−ψQ ∗f = 0 using (1) for r instead

of p. �

We shall also use the following estimates. (Though we can extend this for

more general setting using the theory of vector-valued integrals, we avoid to

use large machinery.)

Lemma 5.4. Let 1 ≤ p ≤ ∞. Let (X,µ) and (Y, ν) are σ-finite complete

measure spaces. If F (x, y) is a measurable function on X × Y , F (·, y) ∈
Lp(X) for almost every fixed y ∈ Y , and if ‖F (·, y)‖Lp(X) is an integrable

function of y on Y , then F (x, y) is integrable with respect to y on Y for

almost every fixed x ∈ X, and we have

(5.4)

∥∥∥∥∫
Y

F (·, y) dν(y)
∥∥∥∥

Lp(X)

≤
∫

Y

‖F (·, y)‖Lp(X) dν(y) .

Proof. Take q ∈ [1,∞] as 1/p + 1/q = 1. If g ∈ Lq(X), then we have, by

Fubini’s theorem,∫
X×Y

|F (x, y)| |g(x)| dµ(x)dν(y)

=

∫
Y

(∫
X

|F (x, y)| |g(x)| dµ(x)
)
dν(y)

≤
∫

Y

‖F (·, y)‖Lp(X) ‖g‖Lq(X) dν(y)

=

∫
Y

‖F (·, y)‖Lp(X) dν(y) ‖g‖Lq(X) <∞ .

(5.5)

This implies that F (x, y)g(x) is integrable on X×Y , and especially, F (x, y)

is integrable with respect to y on Y for almost every x ∈ X.

Thus, we have∥∥∥∥∫
Y

F (·, y) dν(y)
∥∥∥∥

Lp(X)

≤
∥∥∥∥∫

Y

|F (·, y)| dν(y)
∥∥∥∥

Lp(X)

= sup
g∈Lq(X);‖g‖Lq(X)≤1

∣∣∣∣∫
X

(∫
Y

|F (x, y)| dν(y)
)
|g(x)| dµ(x)

∣∣∣∣
= sup

g∈Lq(X);‖g‖Lq(X)≤1

∫
X×Y

|F (x, y)| |g(x)| dµ(x)dν(y)

≤
∫

Y

‖F (·, y)‖Lp(X) dν(y) ,

by using (5.5) again. �
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6. Lp Version of the Sampling Theorem

In this section, we prove an Lp version of the sampling theorem, which

turns out to be the essence of Theorem 2.6 (1). The formulation is slightly

different from the usual one, since it is more convenient for our purpose.

Theorem 6.1. Let Q =
∏n

ν=1[cν − σν/2, cν + σν/2], where cν ∈ R and

σν > 0. Let 1 < p <∞ and f ∈ Lp(R
n).

(1) (SQf)(m./σ) = 〈f, ψQ(· −m./σ)〉 for m = (m1, . . . ,mn) ∈ Zn.

(2)
(
(SQf)(m./σ)

)
m∈�n ∈ lp(Z

n), where lp(Z
n) := { (am)m∈�n : ‖(am)‖lp(�n) :=(∑

m∈�n |am|p
)1/p

< ∞}. Further, there exists a positive constant Cp inde-

pendent of n and Q such that

(6.1)
∥∥(

(SQf)(m./σ)
)

m

∥∥
lp(�n)

≤ Cp
n|Q|1/p‖f‖Lp(�n )

for every f ∈ Lp(R
n), where |Q| = |σ|� := |σ1| . . . |σn| denotes the volume of

Q.

(3) If (ym)m∈�n ∈ lp(Z
n), then the series Ψ[(ym)] :=

∑
m∈�n ymψQ(·−m./σ)

converges unconditionally in BQ
p . Further, we have

(6.2) ‖Ψ[(ym)]‖Lp(�n ) ≤ Cq
n|Q|1−1/p‖(ym)‖lp(�n) ,

where Cq is the constant given in (2) for the conjugate exponent q to p, that

is, 1/p+ 1/q = 1.

(4) For f ∈ Lp(R
n), we have

(6.3) SQf =
1

|Q|
∑

m∈�n

(SQf)(m./σ)ψQ(· −m./σ) .

Note that if f ∈ Lp(R
n) and supp f̂ ⊂ 2πQ, then SQf = f . Further, we

have by (2.8)

(6.4) ψQ(x) = |σ|�ei2πc·x sinc(σ.∗x) ,
where sincx :=

∏n
ν=1 sincxν and σ.∗x := (σ1x1, . . . , σnxn). Hence, it is easy

to get the usual form of the sampling theorem from this theorem.

Corollary 6.2. Let 1 < p <∞ and σ = (σ1, . . . , σn), σν > 0, ν = 1, . . . ,

n. Assume that f ∈ Lp(R
n) and that supp f̂ ⊂ ∏n

ν=1[−σνπ, σνπ].

(1) We have

(6.5) f(x) =
∑

m∈�n

f(m./σ) sinc(σ.∗x−m),

where the convergence is the unconditional convergence in Lp(R
n), L∞(Rn)

and O(Cn).
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(2) f(m./σ) = |σ|�
∫
�n

f(x) sinc(σ.∗x−m) dx for m = (m1, . . . ,mn) ∈ Zn,

and
(
f(m./σ)

)
m
∈ lp(Z

n).

(3) For (ym)m ∈ lp(Z
n), the series

∑
m∈�n ym sinc(σ.∗x − m) converges

unconditionally in Lp(R
n), L∞(Rn), and O(Cn).

(4) There exists a positive constant Cp independent of n, σ and f such that

1

Cp
n |σ|−1/p

�

∥∥∥(
f(m./σ)

)
m

∥∥∥
lp(�n)

≤ ‖f‖Lp(�n )

≤ Cp
n|σ|−1/p

�

∥∥∥(
f(m./σ)

)
m

∥∥∥
lp(�n)

(6.6)

Remark 6.3. F. Gensun([4], Theorem 1 and 2) showed this corollary (for

n = 1), without mentioning the unconditionality of the convergence. Our

proof is more elementary than his, by the extensive use of SQ. Although

there are ‘similar’ results before his, they do not show Lp convergence as

long as we know. For example, Theorem 2.2 in [22] shows the absolute and

uniform convergence on compact sets of R for f ∈ Lp(R), but it says nothing

about Lp convergence.

Proof of Theorem 6.1. (1) Since SQf = ψQ ∗ f (Proposition 5.2 (2)) and

since ψQ(−x) = ψQ(x), we have

(SQf)(m./σ) = (ψQ ∗ f)(m./σ) =

∫
�n

ψQ(m./σ − y)f(y) dy(6.7)

=

∫
�n

f(y)ψQ(y −m./σ) dy = 〈f, ψQ(· −m./σ)〉 .(6.8)

(2) Take φo ∈ S (R) as φ̂o(τ) = 1 in a neighborhood of [−π, π]. Set

φ(x) =
∏n

ν=1 φo(xν) ∈ S (Rn), and define φQ ∈ S (Rn) by φ̂Q(ξ) := φ̂
(
(ξ −

2πc)./σ
)
. We have φ̂Q(ξ) = 1 in a neighborhood of 2πQ, and φQ(x) =

|σ|�φ(σ.∗x) exp(i2πc · x). Since SQf = φQ ∗ (SQf), we have

(6.9) (SQf)(m./σ) =

∫
�n

φQ(y)(SQf)(m./σ − y) dy,

and hence, by using Lemma 5.4 for X = Zn with unit mass on each point

and Y = Rn, we have

(6.10)
∥∥∥(

(SQf)(m./σ)
)

m

∥∥∥
lp(�n)

≤
∫
�n

|φQ(y)|
∥∥∥(

(SQf)(m./σ − y)
)

m

∥∥∥
lp(�n)

dy .
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Set F (y) :=
∥∥∥(

(SQf)(m./σ − y)
)

m

∥∥∥
lp(�n)

, and F is a (1/σ1, . . . , 1/σn)-

periodic function. Further, for every l ∈ Zn, we have∫
([0,1]n+l)./σ

F (y)p dy =

∫
[0,1]n./σ

F (y)p dy

=

∫
[0,1]n./σ

∑
m∈�n

|(SQf)(m./σ − y)|p dy

=
∑

m∈�n

∫
[0,1]n./σ

|(SQf)(m./σ − y)|p dy(6.11)

=

∫
�n

|(SQf)(y′)|p dy′

= ‖SQf‖p
Lp(�n ) ≤ Ap

np‖f‖p
Lp(�n ) ,

where [0, 1]n./σ :=
∏n

ν=1[0, 1/σν ] and ([0, 1]n + l)./σ :=
∏n

ν=1[lν/σν , (lν +

1)/σν]. Thus, taking q as 1/p+ 1/q = 1, we have∥∥∥∥(
(SQf)(m./σ)

)
m

∥∥∥∥
lp(�n)

≤
∫
�n

|φQ(y)|F (y) dy

=
∑
l∈�n

∫
([0,1]n+l)./σ

|φQ(y)|F (y) dy

≤
∑
l∈�n

(∫
([0,1]n+l)./σ

|φQ(y)|q dy
)1/q (∫

([0,1]n+l)./σ

F (y)p dy
)1/p

≤
∑
l∈�n

(∫
([0,1]n+l)./σ

|φQ(y)|q dy
)1/q

Ap
n ‖f‖Lp(�n ) .

(6.12)

Further, we have∫
([0,1]n+l)./σ

|φQ(y)|q dy =

∫
[0,1]n+l

|φQ(y′./σ)|q dy′ 1

|σ|�
=

∫
[0,1]n+l

|φ(y′)|q dy′ |σ|
q
�

|σ|�

= |σ|q−1
�

n∏
ν=1

(∫
[0,1]+lν

|φo(y
′
ν)|q dy′ν

)
.

(6.13)

By setting

C̃p :=
∑
l∈�

(∫
[0,1]+l

|φo(t)|q dt
)1/q

< ∞ ,

we have ∑
l∈�n

(∫
[0,1]n+l

|φ(y)|q dy
)1/q

= C̃ n
p ,
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and hence ∥∥∥∥(
(SQf)(m./σ)

)
m

∥∥∥∥
lp(�n)

≤ Ap
nC̃ n

p |Q|1/p‖f‖Lp(�n ) .

Thus, we have the result with Cp := ApC̃p.

(3) Let (ym)m ∈ lp(Z
n) and J be an arbitrary finite subset of Zn. For

every g ∈ Lq(R
n), we have

(6.14)

〈∑
m∈J

ymψQ(· −m./σ), g

〉
=

∑
m∈J

ym〈g, ψQ(· −m./σ)〉.

By putting gm := 〈g, ψQ(· −m./σ)〉 = (SQg)(m./σ), we have (gm)m ∈ lq(Z
n)

and ‖(gm)m‖lq(�n) ≤ Cq
n|Q|1/q‖g‖Lq(�n ) by using (2) for q instead of p.

Hence, we have∣∣∣∣∣
〈∑

m∈J

ymψQ(· −m./σ), g

〉∣∣∣∣∣ =

∣∣∣∣∣∑
m∈J

ymgm

∣∣∣∣∣(6.15)

≤ ‖(ym)m∈J‖lp(�n)‖(gm)m‖lq(�n)(6.16)

≤ ‖(ym)m∈J‖lp(�n)Cq
n|Q|1/q‖g‖Lq(�n )(6.17)

for every g ∈ Lq(R
n). Thus, we have∥∥∥∥∑

m∈J

ymψQ(· −m./σ)

∥∥∥∥
Lp(�n )

≤ Cq
n|Q|1/q‖(ym)m∈J‖lp(�n).

This implies that
∑

m∈�n ymψQ(·−m./σ) converges unconditionally in Lp(R
n),

and hence in BQ
p .

(4) Since { |Q|−1/2ψQ(· −m./σ) }m∈�n is an orthonormal basis of BQ
2 , we

have (6.3) for f ∈ L2(R
n) ∩ Lp(R

n). Since the both side is continuous in

Lp(R
n), we have (6.3) for every f ∈ Lp(R

n). �

7. Proof of Theorem 4.1

In this section, we give a proof of Theorem 4.1.

First fix an arbitrary Q ∈ Qρ and j ∈ Z. As for (1), we may assume that

s = 0. Since

(7.1) (̂ψQ)j,k(ξ) = 2−nj/2e−i2−jk·ξψ̂Q

(
2−jξ

)
= 2−nj/2e−i2−jk·ξχ

2π2jQ
(ξ) ,

we have (ψQ)j,k(x) = 2−nj/2ψ2jQ(x − 2−jk). Hence, by Theorem 6.1 for

σ = 2j(1, . . . , 1), if f ∈ Lp(R
n), then we have the following.

• 〈f, (ψQ)j,k〉 = 2−nj/2(S2jQf)(2−jk).
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•
(
〈f, (ψQ)j,k〉

)
k∈�n

∈ lp(Z
n) and∥∥∥(

〈f, (ψQ)j,k〉
)

k

∥∥∥
lp(�n)

≤ Cp
n2nj(1/p−1/2)‖f‖Lp(�n ) .

• S2jQf =
∑
k∈�n

〈f, (ψQ)j,k〉 (ψQ)j,k, where the convergence is the un-

conditional convergence in B2jQ
p .

Thus, we have (1) and PQ
j f = S2jQf .

In order to prove (2), we show the following lemma.

Lemma 7.1. Let Q be a cube in Rn such that |2Q ∩ Q| = 0. Then, for

1 < p <∞, there exists a constant AQ,p such that

(7.2)

∥∥∥∥∑
j∈J

εjS2jQf

∥∥∥∥
Lp(�n )

≤ AQ,p‖f‖Lp(�n)

for every finite subset J ⊂ Z, every f ∈ Lp(R
n) and every choice of signs

εj = ±1 for each j ∈ Z.

Proof. The proof is similar to that of (54) in [19], Chapter IV, §5. We

refer equations and theorems in this book.

By an argument similar to the proof of (53) given in §5.3.2, which uses

Rademacher functions and Theorems 3 and 4’, we have that there exists a

constant CQ,p such that

(7.3)

∥∥∥∥(∑
j∈�

|S2jQf |2
)1/2

∥∥∥∥
Lp(�n )

≤ CQ,p‖f‖Lp(�n )

for every f ∈ Lp(R
n). Though (53) is a one-dimensional result, we can

proceed quite similarly for our n-dimensional case by considering {2jQ}j

instead of {Im}m. Note that we can take δ > 0 such that the δ-neighborhood

Qδ of Q satisfies 0 �∈ Qδ, and we can take ϕ ∈ C∞
0 (Rn) such that ϕ(ξ) = 1

in a neighborhood of Q and ϕ(ξ) = 0 for ξ �∈ Qδ.

Let f ∈ Lp(R
n) ∩ L2(R

n), supp f̂ ⊂ ⋃
j∈� 2jQ, and g ∈ Lq(R

n) ∩ L2(R
n),

where q is the conjugate exponent to p. Then,∣∣∣∣∫
�n

f(x) g(x) dx

∣∣∣∣ =

∣∣∣∣ 1

(2π)n

∫
�n

f̂(ξ) ĝ(ξ) dξ

∣∣∣∣
=

∣∣∣∣∣∑
j∈�

1

(2π)n

∫
�n

χ
2jQ

(ξ)f̂(ξ)χ
2jQ

(ξ)ĝ(ξ) dξ

∣∣∣∣∣
=

∣∣∣∣∣∑
j∈�

∫
�n

(S2jQf)(x) (S2jQg)(x) dx

∣∣∣∣∣
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≤
∫
�n

∑
j∈�

|(S2jQf)(x)| · |(S2jQg)(x)| dx

≤
∫
�n

(∑
j∈�

|(S2jQf)(x)|2
)1/2

·
(∑

j∈�
|(S2jQg)(x)|2

)1/2

dx

≤
∥∥∥∥(∑

j∈�
|S2jQf |2

)1/2
∥∥∥∥

Lp(�n )

·
∥∥∥∥(∑

j∈�
|S2jQg|2

)1/2
∥∥∥∥

Lq(�n )

≤
∥∥∥∥(∑

j∈�
|S2jQf |2

)1/2
∥∥∥∥

Lp(�n )

CQ,q‖g‖Lq(�n ) ,

where we used (7.3) replacing p by q. Hence, we have

(7.4) ‖f‖Lp(�n ) ≤ CQ,q

∥∥∥∥(∑
j∈�

|S2jQf |2
)1/2

∥∥∥∥
Lp(�n )

for every f ∈ Lp(R
n) such that supp f̂ ⊂ ⋃

j∈� 2jQ.

Now, for an arbitrary f ∈ Lp(R
n), an arbitrary finite subset J ⊂ Z, and

arbitrary choices of signs εj = ±1, put gJ :=
∑

j∈J εjS2jQf ∈ Lp(R
n). Since

supp ĝJ ⊂ ⋃
j∈� 2jQ and since S2jQgJ = εjS2jQf for j ∈ J and S2jQgJ = 0

for j �∈ J , we have by applying (7.4) and (7.3)

(7.5) ‖gJ‖Lp(�n ) ≤ CQ,q

∥∥∥∥(∑
j∈J

|S2jQf |2
)1/2

∥∥∥∥
Lp(�n )

≤ CQ,qCQ,p‖f‖Lp(�n ) .

Thus, we have (7.2) with AQ,p := CQ,qCQ,p. �

Next, we show the following.

Lemma 7.2. Set D(Rn) := {φ ∈ C∞(Rn) : suppφ is compact } and

D0 := {φ ∈ D(Rn) : suppφ ⊂ Rn \ {0} }. Then, D̂0 is dense in Lp(R
n).

Proof. Let T be an arbitrary element of
(
Lp(R

n)
)′

= Lq(R
n), where q is

the conjugate exponent to p, and assume that
〈
T, φ̂

〉
= 0 for every φ ∈ D0.

We have only to show that T = 0. The assumption means that
〈
T̂ , φ

〉
= 0 for

every φ ∈ D0, and hence we have supp T̂ ⊂ {0}, that is, T̂ =
∑

α:finite cαδ
(α)

for some cα ∈ C. Thus, T is a polynomial. Since T ∈ Lq(R
n), we have

T = 0. �

Fix Q ∈ Qρ. For f ∈ D̂0, it is trivial that limN→∞
∑

−N≤j≤N εjS2jQf

exists in Lp(R
n). Thus, by the well-known argument, which is given as a

proposition below, we have that limN→∞
∑

|j|≤N εjS2jQf converges in Lp(R
n)

for every f ∈ Lp(R
n) and every choice of signs εj = ±1. This implies

that
∑

j∈� S2jQf converges unconditionally in Lp(R
n) for every f ∈ Lp(R

n).

(See, for example, [5], §5.2, Theorem 2.4.) We have
∑

Q∈Qρ

∑
j∈� S2jQf = f
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trivially for f ∈ Lp(R
n) ∩ L2(R

n), and hence for every f ∈ Lp(R
n) by

continuity.

Proposition 7.3. Let Tj (j ∈ Z+) be a family of bounded linear operators

from a Banach space B1 to another Banach space B2. Assume the following

two conditions.

(a) There exists a constant A such that ‖∑
j∈J Tjf‖B2 ≤ A‖f‖B1 for

every f ∈ B1 and every finite subset J ⊂ Z+.

(b) There exists a dense subset D of B1 such that
∑

j∈�+
Tjf converges

for every f ∈ D.

Then, Sf :=
∑

j∈�+
Tjf converges for every f ∈ B1 and S is a bounded

linear operator from B1 to B2.

Proof. Let f ∈ B1. For every ε > 0, there exists g ∈ D such that

‖f − g‖B1 < ε. By (b), there exists N0 ∈ Z+ such that if N ≥ M ≥
N0, then ‖∑N

j=M Tjg‖B2 < ε. Hence, by (a), we have ‖∑N
j=M Tjf‖B2 ≤

‖∑N
j=M Tjg‖B2 + ‖∑N

j=M Tj(f − g)‖B2 ≤ ε+A‖f − g‖B1 ≤ (1 +A)ε. Thus,

Sf :=
∑

j∈�+
Tjf converges for every f ∈ B1. By (a), it is trivial that

‖Sf‖B2 ≤ A‖f‖B1. �

Thus, we have proved (2) when s = 0. Since Ls
p(R

n) = 〈D〉−s(Lp(R
n))

and since 〈D〉s(SQf) = SQ(〈D〉sf) for f ∈ Ls
p(R

n), we have (2) for general

s.

8. Proof of Theorem 4.2

In this section, we give a proof of Theorem 4.2, which is very simple.

First fix an arbitrary Q ∈ Qρ and j ∈ Z. Since we have (7.1) and

〈f, (ψQ)j,k〉 = (1/2π)n
〈
f̂ , (̂ψQ)j,k

〉
= (1/2π)n2−nj/2

∫
�n

f̂(ξ)χ
2π2jQ

(ξ) exp(i2−jk · ξ) dξ ,

we have

〈f, (ψQ)j,k〉 (̂ψQ)j,k(ξ) =
1

(2π2j)n

∫
2π2jQ

f̂(ξ) exp(i2−jk · ξ) dξ

× exp(−i2−jk · ξ)χ
2π2jQ

(ξ).

Thus, the Fourier transform of
∑

k∈�n 〈f, (ψQ)j,k〉 (ψQ)j,k is the Fourier series

expansion of χ
2π2jQ

f̂ on the cube 2π2jQ. If f ∈ M s
p (Rn), then χ

2π2jQ
f̂ ∈

Lp(2π2jQ), and hence
∑

k∈�n; |kν |≤M 〈f, (ψQ)j,k〉 (̂ψQ)j,k → χ
2π2jQ

f̂ as M →
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∞ in Lp(R
n)([1], Chapter 2, §1). Since 〈ξ〉r is bounded on 2π2jQ for every

r ∈ R, we have∑
k∈�n; |kν |≤M

〈f, (ψQ)j,k〉 (ψQ)j,k → S2jQf as M → ∞ in M∞
p (Rn) .

Thus, we have (1) and PQ
j f = S2jQf .

(2) is trivial by the definition of M s
p (Rn).

9. Expression as a sum of boundary values of holomorphic func-

tions

We can use our wavelets as follows, to get an expression of a function

(distribution) in L−∞
p (Rn)∪M−∞

p (Rn) as a sum of boundary values of holo-

morphic functions.

As is already mentioned in Remark 3.3, if f ∈ S ′(Rn) is band-limited,

then f is extended as an entire function f � on Cn, and

(9.1) {f �(· + iy)}∧(ξ) = f̂(ξ)e−y·ξ

for every y ∈ Rn. Especially, (ψQ)j,k and PQ
j f for f ∈ L−∞

p (Rn)∪M−∞
p (Rn)

are extended to entire functions on Cn.

Moreover, we have the following.

Proposition 9.1. (1) If f ∈ S ′(Rn) and supp f̂ ⊂ Γη, then for y ∈ Γη,

a distribution f �(· + iy) ∈ S ′(Rn) can be defined by (9.1), and it gives a

holomorphic function f �(z) of z = x+iy on Rn+iΓη. Further, f �(·+iy) → f

in S ′(Rn) as y ∈ Γη, y → 0.

(2) Let 1 < p < ∞ and s ∈ R. If f ∈ Ls
p(R

n) (resp. M s
p (Rn)) and

supp f̂ ⊂ Γη, then

(a) f �(· + iy) ∈ L∞
p (Rn) (resp. M∞

p (Rn)) for y ∈ Γη,

(b) f �(· + iy) → f in Ls
p(R

n) (resp. M s
p (Rn)) as y ∈ Γη, y → 0.

Proof. We take θo ∈ S (R) such that θ̂o is real-valued and θ̂o(τ) = e−τ in

a neighborhood of [0,∞), and set θ(x) :=
∏n

ν=1 θo(xν) ∈ S (Rn). Further,

for y ∈ Rn
� , set

θy(x) :=
1

|y|� θ(x./y) =
n∏

ν=1

{ 1

|yν |θo(xν/yν)
}
∈ S (Rn) .

Note that θ̂y(ξ) = θ̂(y.∗ξ), and hence, if y ∈ Γη, then θ̂y(ξ) = e−y·ξ in a

neighborhood of Γη.
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(1) Let f ∈ S ′(Rn) and supp f̂ ⊂ Γη. If y ∈ Γη, then we have e−y·ξf̂(ξ) =

θ̂y(ξ)f̂(ξ) ∈ S ′(Rn). Hence, f �(· + iy) ∈ S ′(Rn) can be defined by (9.1),

and it is also given by

(9.2) f �(· + iy) = θy ∗ f , y ∈ Γη .

Now, we can consider f �(x + iy) as a distribution of (x, y) in Rn × Γη.

Then, we have {∂x(f
�(· + iy))}∧(ξ) = iξf̂(ξ)e−y·ξ and {∂y(f

�(· + iy))}∧(ξ) =

−ξf̂(ξ)e−y·ξ. Hence, ∂x(f
�(x+ iy)) = −i∂y(f

�(x+ iy)). Thus, f �(x+ iy) sat-

isfies the Cauchy-Riemann equation in Rn×Γη, and hence f � is holomorphic

in Rn + iΓη.

Since θ̂ ∈ S (Rn) and θ̂(0) = 1, we can easily show that if g ∈ S (Rn),

then θ̂(y.∗ξ) ĝ(ξ) → ĝ(ξ) in S (Rn) as y → 0. Hence, for f ∈ S ′(Rn) and

g ∈ S (Rn), we have 〈θy ∗ f, g〉 = 〈f, θy ∗ g〉 → 〈f, g〉 as y → 0.

(2) First, we prove the case of Ls
p(R

n). For y ∈ Γη and for every r ∈ R,

we have 〈D〉r{f �(·+ iy)} = (〈D〉r−sθy) ∗ (〈D〉sf) ∈ Lp(R
n) since 〈D〉r−sθy ∈

L1(R
n). Hence, f �(·+ iy) ∈ L∞

p (Rn). The last part follows easily from (9.2)

and the following lemma, which is a variant of well-known fact.

Lemma 9.2. Let f ∈ L1(R
n) satisfy

∫
�n f(x) dx = 1. Set fδ(x) :=

(1/|δ|�)f(x./δ), where δ = (δ1, . . . , δn) ∈ Rn
� and |δ|� :=

∏n
ν=1 |δν |. Then, for

every g ∈ Ls
p(R

n) (1 ≤ p <∞), we have

(9.3) fδ ∗ g → g in Ls
p(R

n) as δ ∈ Rn
� , δ → 0 .

Proof. First, let s = 0. If g ∈ S (Rn), then we have

(fδ ∗ g − g)(x) =

∫
�n

{fδ(y)g(x− y) − fδ(y)g(x)} dy

=

∫
�n

f(z) {g(x− δ.∗z) − g(x)} dz ,

and hence, by Lemma 5.4, we have

‖fδ ∗ g − g‖Lp(�n ) ≤
∫
�n

|f(z)| ‖g(· − δ.∗z) − g‖Lp(�n ) dz .

This inequality holds for every g ∈ Lp(R
n) by continuity. Put Gδ(z) :=

‖g(· − δ.∗z) − g‖Lp(�n ), then we have |Gδ(z)| ≤ 2‖g‖Lp(�n ). Further, it is

well-known that Gδ(z) → 0 as δ → 0 for every fixed z ∈ Rn. Hence, by

Lebesgue’s convergence theorem, we have
∫
�n |f(z)|Gδ(z) dz → 0 as δ → 0.

For general s ∈ R, we have only to note that 〈D〉s(fδ ∗ g − g) = fδ ∗
(〈D〉sg) − 〈D〉sg. �

Next, we prove the case of M s
p (Rn). For y ∈ Γη and for every r ∈ R,

〈ξ〉rθ̂y(ξ) is bounded on Rn and hence f �(· + iy) ∈ M∞
p (Rn). Note that
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θ̂y(ξ) is bounded on Rn uniformly for y ∈ Rn
� , since supξ∈�n |θ̂y(ξ)| ≤(

supτ∈� |θ̂o(τ)|
)n

. Further, θ̂y(ξ) → 1 as y → 0 for every fixed ξ ∈ Rn.

Hence, by Lebesgue’s convergence theorem, if f ∈ M s
p (Rn), then we have

〈·〉s f̂ θ̂y → 〈·〉s f̂ in Lp(R
n) as y → 0. �

Now, we can use our expansions.

Theorem 9.3. (1) Let f ∈ Ls
p(R

n) (1 < p <∞, s ∈ R). If we set

(9.4) fQ :=
∑
j∈�

(PQ
j f) ∈ Ls

p(R
n)

for Q ∈ Qρ, then we have

(9.5) f(x) =
∑

Q∈Qρ

lim
y∈Γη(Q); y→0

fQ
�(x+ iy) ,

with the convergence in Ls
p(R

n). Further, fQ
�(z) is expanded as follows, by

using the expansion given in Theorem 4.1.

For each fixed Q ∈ Qρ, j ∈ Z, and y ∈ Rn, the series

(9.6)
∑
k∈�n

〈f, (ψQ)j,k〉 (ψQ)j,k
�(x+ iy)

converges unconditionally in B2jQ
p as a function of x, and equals (PQ

j f)
�
(x+

iy). For y ∈ Γη(Q), the series
∑

j∈� (PQ
j f)

�
(x+iy) converges unconditionally

in L∞
p (Rn) as a function of x, and equals fQ

�(x+ iy).

(2) Let f ∈M s
p (Rn) (1 < p <∞, s ∈ R). If we set

(9.7) fQ :=
∑
j∈�

(PQ
j f) ∈M s

p (Rn)

for Q ∈ Qρ, then we have

(9.8) f(x) =
∑

Q∈Qρ

lim
y∈Γη(Q); y→0

fQ
�(x+ iy) ,

with the convergence in M s
p (Rn). Further, fQ

�(z) is expanded as follows, by

using the expansion given in Theorem 4.1.

For each fixed Q ∈ Qρ, j ∈ Z, and y ∈ Rn, the limit

(9.9) lim
M→∞

∑
k∈�n;|kν |≤M

〈f, (ψQ)j,k〉 (ψQ)j,k
�(x+ iy)

exists in PW 2jQ
p as a function of x, and equals (PQ

j f)
�
(x+iy). For y ∈ Γη(Q),

the series
∑

j∈� (PQ
j f)

�
(x + iy) converges unconditionally in M∞

p (Rn) as a

function of x, and equals fQ
�(x+ iy).
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Proof. First, we prove (1). The first part of (1) follows easily from Propo-

sition 9.1 (2)(a), since fQ ∈ Ls
p(R

n), supp f̂Q ⊂ Γη(Q), and f =
∑

Q∈Qρ
fQ.

Since 2jQ is compact, we can take φy ∈ S (Rn) for each y ∈ Rn such that

φ̂y(ξ) = e−y·ξ in a neighborhood of 2jQ. Then, (ψQ)j,k
�(·+ iy) = φy ∗ (ψQ)j,k.

Hence, for every finite subset K ⊂ Zn, we have∑
k∈K

〈f, (ψQ)j,k〉 (ψQ)j,k
�(· + iy) = φy ∗

(∑
k∈K

〈f, (ψQ)j,k〉 (ψQ)j,k

)
.

Since φy ∈ L1(R
n) and since

∑
k∈�n 〈f, (ψQ)j,k〉 (ψQ)j,k converges uncondi-

tionally to PQ
j f inB2jQ

p by Theorem 4.1 (1), the series
∑

k∈�n 〈f, (ψQ)j,k〉 (ψQ)j,k
�(·+

iy) also converges unconditionally to φy ∗ (PQ
j f) = (PQ

j f)
�
(· + iy) in B2jQ

p .

For every finite subset J ⊂ Z, every y ∈ Γη(Q), and every r ∈ R, we have

〈D〉r
(∑

j∈J

(PQ
j f)

�
(· + iy)

)
=

(
〈D〉r−sθy

)
∗

{
〈D〉s

(∑
j∈J

PQ
j f

)}
,

where θy is the function introduced in the proof of Proposition 9.1. We

also have 〈D〉r−sθy ∈ S (Rn) ⊂ L1(R
n)and 〈D〉s(∑j∈� PQ

j f
)

converges un-

conditionally in Lp(R
n) by Theorem 4.1 (2). Hence,

∑
j∈� (PQ

j f)
�
(· + iy)

converges unconditionally in Lr
p(R

n) for every r ∈ R. Further, we have∑
j∈�

(PQ
j f)

�
(· + iy) = θy ∗

(∑
j∈�

PQ
j f

)
= fQ

�(· + iy) .

Next, we prove (2). The first part of (2) follows easily from Proposi-

tion 9.1 (2)(b), since fQ ∈M s
p (Rn), supp f̂Q ⊂ Γη(Q), and f =

∑
Q∈Qρ

fQ.

For every y ∈ Rn and M ∈ Z+, we have( ∑
k∈�n;|kν |≤M

〈f, (ψQ)j,k〉 (ψQ)j,k
�(· + iy)

)∧

= e−y·ξ
( ∑

k∈�n;|kν |≤M

〈f, (ψQ)j,k〉 (ψQ)j,k

)∧
.

By Theorem 4.2 (1), we have( ∑
k∈�n;|kν |≤M

〈f, (ψQ)j,k〉 (ψQ)j,k

)∧
→ ̂PQ

j f

in Lp(R
n) as M → ∞. Since e−y·ξ is bounded on Q, we have( ∑

k∈�n;|kν |≤M

〈f, (ψQ)j,k〉 (ψQ)j,k
�(· + iy)

)∧

→ e−y·ξ̂PQ
j f = {(PQ

j f)
�
(· + iy)}

∧
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in Lp(R
n) as M → ∞. Thus, the limit (9.9) exists in PW 2jQ

p and equals

(PQ
j f)

�
(· + iy).

For every finite subset J ⊂ Z, every y ∈ Γη(Q), and every r ∈ R, we have

〈ξ〉r
(∑

j∈J

(PQ
j f)

�
(· + iy)

)∧
(ξ) = (〈ξ〉r−sθ̂y(ξ))

(
〈ξ〉s

(∑
j∈J

PQ
j f

)∧
(ξ)

)
.

Since 〈ξ〉r−sθ̂y(ξ) is bounded as a function of ξ and 〈ξ〉s(∑j∈� PQ
j f

)∧
(ξ)

converges unconditionally in Lp(R
n) by Theorem 4.2 (2), the series

〈ξ〉r
(∑

j∈�
(PQ

j f)
�
(· + iy)

)∧
(ξ) =

∑
j∈�

〈ξ〉r
(
(PQ

j f)
�
(· + iy)

)∧
(ξ)

converges unconditionally in Lp(R
n).

Further, we have∑
j∈�

(PQ
j f)

�
(· + iy) =

((∑
j∈�

PQ
j f

)∧
(ξ) e−y·ξ

)∨

=
(
f̂Q(ξ) e−y·ξ

)∨
= fQ

�(· + iy) .

�
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