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Abstract. Microlocal filtering is performed with adapted orthonormal multi-
wavelets, which are derived from several scaling functions. Microlocal filtering
can also be considered to be the action of pseudodifferential operators whose
symbols are characteristic functions of disjoint sets in Fourier space. Expan-
sion of functions or signals in terms of an orthonormal multiwavelet basis gives
a rough estimate of their microlocal content. A fast algorithm is presented and
examples of filtered images are considered.
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1. Microlocal Analysis

Our approach to microlocal analysis for Schwartz distributions is based on the
theory of hyperfunctions, as introduced by Sato [1] and exposed in [2] for the theory
of linear partial differential equations with constant coefficients. A more complete
treatment of microlocal filtering with multiwavelets can be found in [3].

Two important points are:

• Find directions along which a function can be continued analytically for
every point x ∈ Rn.

• A hyperfunction is defined as a sum of general boundary values of holomor-
phic functions in wedges whose edges are open subsets of Rn.

2. One-Dimensional Hyperfunctions

Let δ(x) be the Dirac delta distribution. That is, δ(x) is the continuous linear
functional which has the property that if the function f(x) is continuous in a
neighborhood of zero, then ∫

R

f(x)δ(x) dx = f(0).
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Figure 1. Shift of path γ to −γ+ + γ−.

On the other hand, if the function f(z) is holomorphic in the closure of a domain
D ⊂ C, then by Cauchy’s integral formula, we have

1
2πi

∮
γ

f(z)
z

dz = f(0), 0 ∈ D, ∂D = γ.

Shifting the path γ to −γ+ + γ−, as shown in Fig. 1, gives the formula

1
2πi

∮
γ

f(z)
z

dz =
∫ +∞

−∞

(
− 1
2πi

) (
1

x+ i0
− 1

x− i0

)
f(x) dx.

Thus, the Dirac delta measure admits the hyperfunction representation

δ(x) = − 1
2πi

(
1

x+ i0
− 1

x− i0

)
.

2.1. Definition of one-dimensional hyperfunctions.

• A hyperfunction f(x), x ∈ R, is defined as the difference of boundary values
along R of two holomorphic functions:

f(x) = F+(x+ i0)− F−(x − i0),

where F+(z) and F−(z) are holomorphic in {Im z > 0} and {Im z < 0},
respectively.

• The defining functions F±(z) are not unique. Given any entire function
G(z), the same hyperfunction is defined by

F±(z) and F±(z) +G(z).

2.2. Product of pairs of hyperfunctions. Assume

f(x) = F+(x+ i0), g(x) = G+(x+ i0),

where F+(z), G+(z) are holomorphic in {Im z > 0}. In {Im z > 0}, the product of
F+(z) and G+(z) is

(F+G+)(z) := F+(z)G+(z).

• In taking the product of two hyperfunctions,
f(x)g(x) := (F+G+)(x+ i0),

the directions of analyticity are important.
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Figure 2. Complex neighborhoods U and U±.

2.3. Microanalyticity. A close look at analyticity means a look at microan-
alyticity. Thus, for a complex neighborhood in the one-dimensional case, as shown
in Fig. 2, we have the following definition of a microanalytic hyperfunction.

Definition 1. Let S0 = {±1}. A hyperfunction f(x) is said to be microana-
lytic at (x;−1) ∈ R × S

0 if and only if there exists a complex neighborhood U of x
such that both defining functions F±(z) of f(x) can be extended analytically to the
neighborhood U+ := U ∩ {Im z > 0}.

3. Microlocal Filtering

Given f ∈ L2(Rn), let fjk(x) denote the scaled and shifted function

fjk(x) = 2nj/2f(2jx− k), j ∈ Z, k ∈ Z
n.

Let D be a finite index set. If {(ψδ)jk}d∈D,j∈Z,k∈Zn is an orthonormal basis for
L2(Rn), then we say that Ψ = [ψδ]δ∈D is a multiwavelet function. The multiwavelet
expansion of f ∈ L2(Rn) with respect to this basis is

f =
∑
δ∈D

j∈Z,k∈Z
n

〈f, (ψδ)jk〉 (ψδ)jk.

Problems.
• How can we construct two suitable multiwavelet functions ψ± corresponding
to each microanalytic direction S0 = {±1}?

• Is it possible to obtain information on the microlocal content of f ∈ L2(R)
from the wavelet coefficients (f, (ψδ)jk)?

• Can orthonormal multiwavelet filtering, which we call microlocal filtering,
separate microlocal contents?

3.1. One-dimensional multiwavelets for microlocal filtering. To char-
acterize the microanalyticity of a slowly increasing distribution f ∈ S′(Rn) by its
Fourier transform f̂ , we introduce the dual cone, Γ◦, of Γ, defined by

Γ◦ := {ξ ∈ R
n; y · ξ ≥ 0 for every y ∈ Γ}.

Examples of cones Γ, dual cones Γ◦ of cones Γ, and complements (Γ◦)c of dual
cones Γ◦ are shown in Fig. 3.

Lemma 1. Let Γ be an open convex cone. A slowly increasing distribution
f(x) ∈ S′(Rn) can be represented as the limit f(x + iΓ0) of a slowly increasing
holomorphic function f(z) in the infinitesimal wedge Rn + iΓ0 if and only if the
Fourier transform f̂ of f is exponentially decreasing in the open cone (Γ◦)c, the
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Figure 3. Open cone Γ, dual cone Γ◦, and complement (Γ◦)c of
dual cone.

−− 0

1

2π 4π2π4π �

ψ̂+ψ̂-

Figure 4. The Fourier transform of ψ±.

complement of the dual cone Γ◦, that is, f̂ is exponentially decreasing on every
closed proper subcone Γ′ ⊂⊂ (Γ◦)c.

Theorem 1. Define ψ± by ψ̂± = χ[±2π,±4π] (see Fig. 4). Then Ψ := t(ψ+, ψ−)
is a multiwavelet function. Define the orthogonal projections P± by

P±f :=
∑

j,k∈Z

〈f, (ψ±)jk〉 (ψ±)jk.

Then P±f(x) can be extended analytically to {Im z > 0} and {Im z < 0}, respec-
tively.

• This orthonormal basis is known [4].
Define the classical Hardy spaces H2(R±) by

H2(R±) =
{
f ∈ L2(R) : f̂(ξ) = 0 a.a. ξ ≤ (≥) 0}.

Then
L2(R) = H2(R+)⊕H2(R−).

Each ψ± is a uniwavelet function of H2(R±), respectively.

3.2. Definition of n-dimensional hyperfunctions. The following points
are relevent to the n-dimensional case.

• In the n-dimensional case, the set of all microanalytic directions is the unit
sphere Sn−1, which is an infinite set.

• A generalization of Theorem 1 to the n-dimensional case is Theorem 2 below.
• It is possible to tell fairly well the directions along which f is microanalytic.
• The price to pay to get good angular resolution in Sn−1 is the need for many
multiwavelets.

Definition 2. A hyperfunction f(x) in Rn is defined as a sum of the form

f(x) =
N∑

j=1

Fj(x+ iΓj0), x ∈ Ω,
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Figure 5. Infinitesimal wedge Γ0.

of boundary values
Fj(x+ iΓj0) = lim

y→0
y∈Γj0

Fj(x+ iy)

of holomorphic functions Fj(z) in infinitesimal wedges Γj0 with edge Ω ⊂ R
n (see

Fig. 5).

3.3. n-dimensional multiwavelets for microlocal filtering.

Notation 1. We shall use the following notation in Rn.
• η = (η1, . . . , ηn) ∈ H := {±1}n, parametrization of 2n orthants in Rn.
• ε = (ε1, . . . , εn) ∈ E := {0, 1}n \ {0}, 2n − 1 vertices of unit cube, less the

origin.
• ε. ∗ η := (ε1η1, . . . , εnηn).
• Qη :=

∏n
k=1 [0, ηk], unit cube, where [0,−1] means [−1, 0].

• Qj,ε,η :=
{∏n

k=1 [ηk( k−1), ηk k]+2j(ε.∗η) : 1 ≤  1, . . . ,  n ≤ 2j,  1, . . . ,  n ∈
N, j ∈ Z+

}
.

• Q := {Qk}k∈K , ι (Q) := ⋃
k∈K Qk.

• 2πQj,ε,η := {2πQ ; Q ∈ Qj,ε,η}.
• Z

E×H
+ is the set of all functions from E ×H to Z+.

Theorem 2. Let j ∈ Z+, ε ∈ E, η ∈ H. For Q ∈ Qj,ε,η, define ψQ by

ψ̂Q = χ2πQ,

where χ2πQ is the characteristic function of the cube 2πQ. For ρ ∈ Z
E×H
+ , let

Qρ :=
⋃

(ε,η)∈E×H

2πQρ(ε,η),ε,η .

Then Ψ := (ψQ)Q∈Qρ
is a multiwavelet function.

4. Two-Dimensional Masks

Figure 6 shows multiwavelets as masks or characteristic functions of cubes in
Fourier space.

Figures 7 and 8 illustrate the prefiltering and filtering process of images in
Fourier space.
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Figure 6. Multiwavelet masks and submasks.

5. Pseudodifferential Representation

Given an image f(x, y) and a mask p(ξ, η) = χQ(ξ, η), filtering of f by p is
represented by the pseudodifferential operator

Pf(x, y) =
1
4π2

∫
R2

ei(xξ+yη)p(ξ, η)f̂(ξ, η) dξ dη

=
1
4π2

∫
Q

ei(xξ+yη)f̂(ξ, η) dξ dη.

Pseudodifferential operators, P : f �→ Pf are pseudolocal operators, that is, they
are not local operators but they do not spread or displace the singular support of
f .

Micro-elliptic operators are studied in [5]. Nonlinear heat operators, which are
hypoelliptic operators, are used to denoise images [6], [7].
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Figure 7. Multiwavelet masks of the fourth quadrant.

6. Separation of Singularities in an Image

The four figures in the left part of Fig. 9 are the prefiltered images of the
“woman” image corresponding to the four prefilters with support in the four quad-
rants of the Fourier space, (+,+), (−,+), (−,−), and (+,−), taken counterclock-
wise, as shown in the top part of Fig. 8. The four figures in the right part of
Fig. 9, taken in the counterclockwise direction starting with the top right image
are (a) the original image and the result of its prefiltering by (b) P(+,−) + P(−,−),
(c) P(+,−) + P(−,+), and (d) P(+,−) + P(+,+).

The 12 filtered images of the “woman” image by means of the 12 multiwavelet
masks of Fig. 8 and its Fourier transform are shown in Fig. 10. Fourier transforms
of natural images often consist of a few high peaks corresponding to the smooth
approximation of the image by the scaling functions and much smaller values cor-
responding to the details by the multiwavelets.

In this example, the prefiltered image by P(+,−) has maximum energy among
the four prefiltered images by P(±,±), because it is the brightest. The following
tableau lists the energy of the four prefiltered images.
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 Pre-filtered image

  Microlocal filtered image

Pre-filtered

 image

Figure 8. The twelve multiwavelet masks.

Figure 9. Left: the four prefiltered images. Right: top right, the
original image, and three approximations (see text).
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Figure 10. The Fourier transform (center) and the 12 microlocal
filtered images (around) of the “woman” image.

Energy of 4 prefiltered images = 1.0e+06 *
2.2059 2.0735
2.5749 8.5187

It is observed experimentally that the singular parts, or details, of an image
contain less energy than its regular parts, or approximations. Hence it is conjectured
that the prefiltered image by P(+,−) contains most of its regular parts and the other
three prefiltered images contain most of its singular parts. This is observed in the
prefiltered images by P(+,−) + P(−,−), P(+,−) + P(−,+), and P(+,−) + P(+,+).

In the first case, the support of the Fourier transform of the prefiltered image
by P(+,−)+P(−,−) is contained in the lower half-space {(ξ, η) ∈ R2; η ≤ 0}. Hence,
Lemma 1 implies that there exists an open cone Γ1 containing (ξ, η) = (0,−1) and
a holomorphic function f1(z) in the infinitesimal wedge R2 + iΓ10 such that the
filtered image by P(+,−) + P(−,−) is represented as the limit f1(x+ iΓ10).

Similarly, in the third case, the support of the Fourier transform of the pre-
filtered image by P(+,−) + P(+,+) is contained in the right half-space {(ξ, η) ∈
R2; ξ ≥ 0}. Hence, by Lemma 1 there exists an open cone Γ2 containing (ξ, η) =
(1, 0) and a holomorphic function f2(z) in the infinitesimal wedge R2 + iΓ20 such
that the filtered image by P(+,−) + P(+,+) is represented as the limit f2(x+ iΓ10).
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Saturn Filtered saturn 1 Filtered saturn 2

Noisy saturn Filtered noisy saturn 1 Filtered noisy saturn 2

Figure 11. Nonnoisy (top) and noisy (bottom) “Saturn” images.

Hence these two filtered images by P(+,−) + P(−,−) and P(+,−) + P(+,+) are, in a
sense, “approximations” of the original image.

In the second case, however, the support of the Fourier transform of the pre-
filtered image by P(+,−) + P(−,+) cannot be contained in any half space. Hence,
we may assume that the Fourier transform of the filtered image by P(+,−)+P(−,+)

cannot have exponential decay on any half-space (this is an assumption in dealing
with images). Then the filtered image by P(+,−) +P(−,+) cannot be represented as
a boundary value of a single holomorphic function in an infinitesimal wedge but it
can be represented as a sum of boundary values of several holomorphic functions
in infinitesimal wedges. This means that the filtered image by P(+,−)+P(−,+), in a
sense, may be a “detail” only. These “regularities” and “singularities” can be seen
in Fig. 9.

7. Microlocal Filtering of a Nonnoisy and Noisy Image

A Gaussian noise of zero mean and variance equal to 0.005 is added to the
“Saturn” image. The original and noisy images are shown in the left part of Fig. 11.

The four prefiltered and the twelve microfiltered images of the noisy image are
shown in Fig. 12. The energy in each of the twelve filtered parts, as measured by
the Frobenius norm, is shown in the following tableau:
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Figure 12. The four prefiltered (center) and the 12 microlocal
filtered (around) images of the noisy “Saturn” image.

Energy = 1.0e+06 *

0.8632 1.2849 0.8778 0.7957
1.1707 0 0 1.3954
1.1229 0 0 2.9633
0.8322 1.4608 2.6909 2.4393

It is seen that the energy in the lower right corner is larger than in the remaining
entries.

The filtered Saturn and noisy Saturn images 1 are reconstituted from the sum
of the five lower right parts of Fig. 12 and are shown in the central part of Fig. 11.

The filtered Saturn and noisy Saturn images 2, shown in the right part of
Fig. 11 are more completely reconstituted by adding the top left part of Fig. 12 to
the above images 1.

The following tableau lists the noise level in each of the 12 filtered parts.
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Energy =

775.0441 784.5579 777.4827 787.3333
776.8823 0 0 779.2572
779.3348 0 0 990.3241
786.4254 778.1941 997.4562 991.4474

Since the noise is somewhat evenly distributed, it is reduced by a factor of 5/12
in the reconstructed images 1 which use five out the twelve filtered parts and by a
factor of 6/12 in the reconstructed images 2 which use six out the twelve filtered
parts. In both reconstructions, the Saturn ring along the secondary diagonal is
rendered to a satisfactory degree.
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