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Abstract

Structures undertaking dynamic load store cumulative damages on their struc-
tural members. Although these damages are generally estimated by measuring
the acceleration, velocity and displacement at several observing points, the health
monitoring system based on these measurements could be expensive.

Therefore, approaches to the health monitoring system utilizing only the ac-
celeration and decreasing the observing points are growing in importance. Hy-
bridizing wavelet analysis and neural networks gives a powerful method for these
approaches.

In such a method, wavelet analysis performs efficient time-frequency analysis,
which accesses to the information on velocity and displacement from the observed
acceleration. On the other hand, neural networks realize a function to estimate
the unknown information on points, where the acceleration is not observed, from
the data processed by wavelet analysis.

As the first step for this approach, LODE (Linear Ordinary Differential Equa-
tion) models with piecewise constant coefficients of MDOF (Multi-Degree Of
Freedom) structure will be studied here. These LODE models have stiffness and
damping matrices of piecewise constant entries which will be identified from the
acceleration. This paper presents an efficient identification method of the struc-
tural parameters of MDOF structure using the wavelet transform and neural
networks. Some simulations will certify the usefulness of this hybrid method.

1 INTRODUCTION
In this paper, we present a health monitoring system that detect the degradation
of structures with Multi-Degree-Of-Freedom (MDOF). As an example of the MODF
structures, we consider a building-like structure that is modeled by a linear system
shown in Fig.1. This system is composed of three single-degree-of-freedom models
with linear stiffness and damping. For notational convenience, the ith material point
in Fig.1 is noted as “the ith floor”, and the base of the linear system is called “ground
floor”.

The motion of the structure is simulated by the following Linear Ordinary Differ-
ential Equations (LODEs):

m1ÿ1 +K1(y1 − y2) + C1(ẏ1 − ẏ2) = 0, (1)



m2ÿ2 +K1(y2 − y1) + C1(ẏ2 − ẏ1) +K2(y2 − y3) + C2(ẏ2 − ẏ3) = 0, (2)

m3ÿ3 +K2(y3 − y2) + C2(ẏ3 − ẏ2) +K3(y3 − u) + C3(ẏ3 − u̇) = 0, (3)

where yi(i = 1, 2, 3) is the displacement of the ith floor, and u is the displacement of
the ground floor to which input force is obtained as the acceleration ü. Ki and Ci are
positive stifness and damping paremeters.
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Figure 1: An analytical model of MODF structures.

Let us consider the situation that the dynamical properties of the above MODF
structure is gradually changing due to cumulative damages on the structual members
which correspond to the degradation in the stifness property of the springs and the
damping property of the dampers. In real structures, the parameter changes occur
intermittently and the changes are relatively large. Therefore, we can assume that the
patermeters Ki and Ci are subjected to a step function of time t. However, since the
degradation of real structures is proceeding very slowly as compared with their motion,
we can regard the paremters as constants when we observe the motion of the above
MODF structure.

If the acceleration ÿi at every floor was measured, it is possible to identify all
the structural parameters: Ki and Ci. However, in this case, the measurement cost
might be too expensive. The purpose of this paper is to present an efficient method for
detecting the changes of structural parameters. Therefore, let us consider the following
ill-posed problem here: infer all the degradation of structural paremters even when we
cannot measure the accelaration at all the floors.

As one of the remedies for this problem, we propose a hibrid method using the
wavelet transform and neural networks. In this method, the wavelet analysis performs
efficient time-frequency analysis, which accesses to the information on velocity and dis-
placement from the observed acceleration. On the other hand, neural networks realize
a function to estimate the unknown information on points, where the acceleration is
not observed, from the data processed by wavelet analysis.

In the following sections, we will describe such a hybrid approach to a health
monitoring system. Section 2 gives the concrete procedure of applying the wavelet
analysis to the health monitoring for MDOF structures. In Section 3, we describe a
neural system that the health condition is predicted based on the data processed with



the above wavelet analysis. In Section 4, some simulations are carried out in order to
evaluate the proposed health monitoring system. Section 5 presents a conclusion.

2 WAVELET TRANSFORM
The acceleration at the third floor and the acceleration at the first floor are observable.
It is needed to access to information in frequency space near the natural frequency of
the system for identification of Hooke’s constants of springs and it is also needed to
access to information of energy decay near the natural frequency of the system for
identification of damping constants of dampers. For these purposes, wavelet analysis
performs efficient time-frequency analysis. Besides time-frequency analysis, wavelets
are used as a de-noising tool and as a compression tool. Those observed acceleration
data are de-noised and compressed.

When the positions of all the floors are observable, [1] expanded those positions
into the wavelet expansion by orthonormal wavelet bases and identified Hooke’s con-
stants and damping constants using the least square method. In this paper, since the
observable are only acceleration at two points, neural networks are used to estimate
structural parameters. For simplicity, only a model of MDOF structure having three
floors will be studied. This model has six structural parameters. Each floor has two
parameters, one is Hooke’s constant and the other is the damping constant. We will
give a simulation to identify those structural parameters from acceleration at the third
floor and at the first floor. The acceleration are processed by wavelet analysis first
and identified by neural networks. We will explain the processing method by wavelet
analysis in this section.

For the wavelet function ψ(t), the continuous wavelet transform of f(t) is defined
by

(Wψf) (a, b) =
1√
a

∫
f(t)ψ

(
t− b
a

)
dt. (4)

Here a is called the dilation parameter and b is called the position parameter.
The continuous wavelet analysis is often easier to interpret than the discrete wavelet

analysis, such as the wavelet expansion with a wavelet orthonormal basis, since its
redundancy tends to reinforce the traits and makes all information more visible.

We discretize the dilation parameter and the position parameter in (4) carefully.
We want to optimize discretization in dilation, which corresponds to frequency, and to
have redundancy in position, which corresponds to time.

We employ Meyer’s orthonormal wavelet ψ(t) such that, for N ∈ N and α =
(N + 1)/N , the system {

αj/2ψ
(
αjt− k

)}
j,k∈Z

(5)

is an orthonormal basis. Here j is called the scale parameter. Notice that the larger
N becomes, the finer the discretization in frequency becomes.

Choose N = 16 and α = (N + 1)/N = 17/16 = 1.0625. The graph of ψ(t) for
α = 17/16 is shown in Fig. 2. We discretize the dilation parameter a by a = α−j , j ∈ Z.
Since the discretization for the case of an orthonormal wavelet basis is the minimal
discretization, this choice means that we minimize the discretization in frequency for
given N .
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Figure 2: Meyer’s wavelet ψ for α = 17/16.

Since

supp ψ̂(ω) =
[
−2(N + 1)2π

2N + 1
,− 2N2π

2N + 1

]
∪
[

2N2π

2N + 1
,
2(N + 1)2π

2N + 1

]
,

the central frequency of ψ is N(N+1)
2N+1 = 16×17

33 = 8.24 Hz and the central frequency of
αj/2ψ

(
αjt− k

)
is 8.24αj Hz.

Since the natural frequency of the system is approximately 1 Hz, we use eight
wavelets from the scale j = −38, which corresponds to the central frequency αj = 0.82
Hz, to the scale j = −31, which corresponds to the central frequency 1.26 Hz.

As for the discretization of the position parameter b, since the step size must be
no more than 1/αj , which corresponds to the orthonormal case of (5), it is enough
to choose 1/αj = 10.0 for j = −38 and 6.55 for j = −31. For redundancy and for
simplicity in calculation, we discretize b with the same step size, which is 1 sec, at
every scale. We need to pay an attention to repetition caused by this redundancy,
when we calculate the L2-energy of data. The L2-energy of data corresponding to
the scale j has approximately α times repetition comparing to the L2-energy of data
corresponding to the scale j + 1.

The wavelet coefficient Cjk of the acceleration data f(t) for the scale j and the
position k sec is given by

Cjk =
∫
f(t)αj/2ψ

(
αj(t− k)

)
dt. (6)

The L2-energy of the frequency band corresponding to the scale j is estimated by

Ej = αj
√∑

k
|Cjk|2. (7)



The L2-energy near the time k is estimated by

Ek =
√∑

j
|αjCjk|2. (8)

Denote by Cjk the wavelet coefficients of the acceleration at the third floor and by
Dj
k the wavelet coefficients of the acceleration at the first floor.

3 Neural Networks
To predict the deterioration of stiffness and damping in MODF structures, we utilize
conventional three-layer neural networks (NNs) whose information processing is given
by

o
(l+1)
i = f(

∑
j

w
(l)
ij o

(l)
j + θ

(l+1)
i ) (l = 1, 2), (9)

where
f(x) =

1
1 + exp(−x) . (10)

Here, o(l)
i is the output of the ith unit at the lth layer, i.e. o(1)

i and o
(3)
i correspond

to the input and the final output of the NN. θ(l)
i is the ith threshhold at the lth layer,

and w
(l)
ij means a connection weight from the jth unit at the lth layer to the ith unit

at the (l + 1)th layer.
Let us consider the case of the building-like structure stated in Section 1. In this

case, the inputs o(1)
i correspond to the information on the observed acceleration at the

first and fourth floor. This network inputs are generated from the observed acceleration
after a certain normalization (see Section 4):

As described in Section 1, the health condition of a MODF structure is reflected
to the estimation of the structural parameters in the LODEs model (i.e. stiffness
and damping). We construct the NN such that the outputs represent the estimation
for a structural parameter; thus, we prepare six 3-layered NNs for the estimation of
K1 ∼ K3 and C1 ∼ C3. For each structural parameter, three levels of health conditions
are considered: normal, 10% and 20% degredation. The confidence for the health
conditions are respectively represented by the three outputs o(3)

1 , o(3)
2 and o

(3)
3 . The

correspondence between the health conditions and network outputs is defined as shown
in Table 1. For example, when o(3)

2 is the largest, we can see that the NN predicts the
10% degradation of the corresponding parameter (stiffness/damping).

In the learning phase, we adopt the extended Back-Propagation method in which
the one dimensional search and the forgetting effect are introduced at every weight
modification.

4 Simulations
The settings of structual parameters and the external force are defined as follows. Let
the masses bem1 = m2 = m3 = 1.0, Hooke’s constants beK1 = K2 = K3 = 240.0, and
the damping constants be C1 = C2 = C3 = 1.55 for normal values. Then, the natural
frequency of the system is approximately 1 Hz. We assume that these parameters
are step functions. Assume that each Hooke’s constant K1,K2,K3 has three different
values 240.0 (normal value), 216.0 (90% of the normal value), 192.0 (80% of the normal



Table 1: Target outputs of the NN according to the health conditions.

health condition z1 z2 z3

normal 0.8 0.2 0.2
10% degradation 0.2 0.8 0.2
20% degradation 0.2 0.2 0.8

value) and that each damping constant C1, C2, C3 has also three different values 1.55
(normal value), 1.705 (110% of the normal value), 1.86 (120% of the normal value).
Hence, the number of cases to be studied are 36 = 729. The MDOF structure is
vibrated by the external force. For the acceleration of the external force, we input
normal random number made by random seed = 5. Assume that the MDOF structure
begins to vibrate at the time t = 0. The ordinary differential equation for the MDOF
structure is solved by the forth order Runge–Kutta method with the step size 1/1000
sec. We will use the wavelet transform of the data from 200 sec to 1200 sec.

We define the following notaton. U jn is the L2 average of j-th frequency scale
wavelet coefficients for 20 sec, from n sec, at the third floor of the MDOF structure.
And V jn denotes the same average at the first floor.

U jn =
αj

20

√∑n+19

k=n
|Cjk|2, V jn =

αj

20

√∑n+19

k=n
|Dj

k|2.

Vn =
√∑−31

j=−38 |V
j
n |2 denotes the total average energy at the first floor, and Un =√∑

j |U
j
n|2 is the total average energy at the third floor. This energy Vn is used for

the normalizing factor of inputs of the neural network.
We use three-layer neural network model which consists of 45 inputs , 50 hid-

den units and 3 outputs. These 45 inputs are composed of 5 sets of 9 components.
These 9 components are calculated from wavelet coefficients at the same time loca-
tion. At n sec, The first components is Un/Vn. And the second to 5th components
are U−36

n /Vn, U
−35
n /Vn, U

−34
n /Vn,and U−33

n /Vn ,respectively. The following 6th to 9th
components are V −36

n /Vn, V
−35
n /Vn, V

−34
n /Vn,and V −33

n /Vn ,respectively. Then our 9
components made into a bandle In. Here

In =
(
Un
Vn
,
U−36
n

Vn
,
U−35
n

Vn
,
U−34
n

Vn
,
U−33
n

Vn
,
V −36
n

Vn
,
V −35
n

Vn
,
V −34
n

Vn
,
V −33
n

Vn

)
.

Finarry, the 45 inputs of this neural network consist of In, In+10, In+20, In+30, and
In+40.

We make the training data as follows. We set random seed = 5, and the MDOF
structure is vibrated by the external force. For fixed Hooke’s constants and damping
constants, while this external force is applied to our MDOF structure, wavelet coeffi-
cients of the acceleration at the third and first floors are calculated until 1200 sec. From
200 sec, the training data are made every 100 sec. Then 10 training data are gotten
for one set of Hooke’s and damping constants. Next, Hooke’s and damping constans
change to another set, and the training data are made. Because 3 Hooke’s constants



Hooke’s constant K3 K2 K1

Learning of Hooke’s constant 7290 data
First Total Error 1723.7 929.2 1477.9 1217.3 963.2 1526.2
Last Total Error 308.9 434.1 243.4 173.6 153.1 98.6

Percentage of Correct Answers 95 90 98 100 100 100
Prediction of Hooke’s constant 14980 data

Total Error 914.2 1275.6 786.2 781.5 469.3 391.7
Percentage of Correct Answers 80 70 86 87 94 97

Table 2: Learning and prediction of Hooke’s constant K1,K2,K3

and the 3 damping constants have 3 value respectively, 36 = 729 sets of constants are
produced. Therefore, we get 7290 training data.

For making the test data, the random seed = 7 is set, and the same procedure is
carried out. From 200 sec, this test data are made every 50 sec. In this case, 20 test
data are made for one set of Hooke’s and damping constants. Finally, we get 14980
test data.

For 3 Hooke’s constans K1, K2, and K3 respectively, training neural networks and
predicting the test data are carried out. The results are in Table 2. If the state
of maximum of outputs o(3)

1 , o
(3)
2 , o

(3)
3 agrees with the spring health condition at that

time, then this set of outputs is called a correct answer. The neural network is trained
2 times for each spring. About Hooke’s constants, training and prediction are also
possible.

For damping constants C1, C2, C3, training neural network and predicting the test
data also are carried out. However, this procedure did not go well. For exmaple, in the
case of C1, the first total error of this neural network is 1184.8, and the last total is
874.1. The percentage of correct answers is 34%. The total error of test data is 2730.5,
and percentage of correct answers is 35%.

5 Conclusion
For K1 ,it is easier to train neural network and to predict than for K2 or K3. For
K1, the correlation between 45 inputs and 3 target outputs is stronger than for K2 or
K3. That the same external force is adding to the MDOF structure may be a cause.
Concerned with the health condition of damping constants, this procedure did not go
well.

This MDOF structure model is a system of second order linear ordinary differential
equations. However Hooke’s constants can be determined from only acceleration, since
Hooke’s constants are the coefficients of the 0 order derivatives (displacement of the
structure). By the way, the damping constants are the coefficients of the 1 order
derivatives (velocity of the structure). Therefore, it is impossible to estimate the
damping constants from only acceleration. In addition to acceleration, the velocity
and displacement of the structure will be required.

To make the neural network for an estimate of only one damping constant C1 or
C2 or C3, the wavelet coefficients of velocity and displacement are calculated form
the acceleration by the following. f ′(t) denotes the acceleration, and the wavelet



coefficients of velocity f(t) are calculated as a convolution between acceleration and
derivative of wavelet ψ′(t) by integration by parts. The wavelet coefficients of f ′′(t) are
also calculated as a convolution between acceleration and integral of wavelet Ψ(t) =∫ t

1/2
ψ(x)dx.

(Wψf) (a, b) =
1√
a

∫
f(t)ψ

(
t− b
a

)
dt = −

√
a

∫
f ′(t)Ψ

(
t− b
a

)
dt (11)

(Wψf
′′) (a, b) =

1√
a

∫
f ′′(t)ψ

(
t− b
a

)
dt = − 1

a
√
a

∫
f ′(t)ψ′

(
t− b
a

)
dt (12)
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