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Abstract

General results on frame, microlocal analysis, and tight frame
wavelets in �

n are summarized. To perform microlocal analysis of
tempered distributions in �

n , tight frame wavelets, whose Fourier
transforms consist of smoothed characteristic functions of squares or
sectors of annuli in �

2 and cubes in �
3 , are constructed. Singulari-

ties in smooth images are localized in position and direction by means
of the frame coefficients computed in the Fourier domain by using
Plancherel’s theorem.

1 Introduction

In previous work [2], [3], [4], the concept of microlocal analysis was described
in view of studying the singularities of distributions in �n . Initially, the
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microlocal analytic content of a distribution was localized by means of the
coefficients of a multiwavelet expansion. The Fourier transform of the mul-
tiwalets were characteristic functions of boxes or squares that completely
covered the Fourier domain. Next, to have better resolution in the x do-
main, smooth tight wavelet frames were constructed by different smoothings
the box functions [5]. A numerically convenient smoothing was done by ta-
pering the characteristic functions in �2 [6]. Image analysis in the Fourier
domain allows the localization of the microanalytic content and singularities
in position and orientation. It also allows some denoising and compression
of natural and geometric images.

In this paper, a further step is taken in restoring images by removing
singularities that have been localized by the above methods. The theoretical
results have to be adapted to finite images and direct and inverse discrete
Fourier transforms. A simple example is treated where a singularity in the
form of a straight segment is added to a natural image, called the original
image, A, thus producing a scarred image, S. The discrete Fourier transform
of the scarred image, FS, is filtered by means of a wavelet frame with support
in the high frequency part of the transformed image in order to pick up
the singularity. This high pass filter, H removes the low frequencies which
contain the Fourier transform of the original image A. This amounts to
compute the frame coefficients of the transformed image FS. By means of
the Plancherel theorem, the coefficients with larger absolute values localize
the scar in the x domain. The scar is reconstruted by means of its wavelet
frame expansion in the x domain. Because of its finite size, the one-pixel
thick scar is returned to the x domain as a few pixel thick line or segment
after a direct and an inverse discrete Fourier transform. To remove small
perturbations in the returned image, the values at each pixel is rounded to
set the small values to zero. Then the thickness of the line or segment is
found and reduced by setting to zero the pixels off the center line. Then
subtracting this image from the initial scarred image produces the original
image.

2 Frames

We briefly review frame theory based on Mallat [14]. Frame theory was
originally developed by Duffin and Schaeffer [7] to reconstruct band-limited
signals f from irregularly spaced samples {f(tn)}n∈�. A function f is said
to be band limited if its Fourier transform is supported in a finite interval
[−π/T, π/T ], Duffin and Schaeffer were motivated by the classical Shanonn
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sampling theorem, which asserts that

f(tn) =
1

T
〈f(t), hT (t− tn)〉, hT (t) =

sin(πt/T )

πt/T
.

They discussed general conditions under which one can recover a vector f in
a separable Hilbert space H from its inner products 〈f, φn〉 with a family of
vectors {φn}n∈�, where the index set � might be finite or infinite.

A sequence {φn}n∈� is called a frame of H if there exist two constants
A > 0 and B > 0 such that for any f ∈ H

A ‖f‖2 ≤
∑
n∈�

|〈f, φn〉|2 ≤ B ‖f‖2.

The constants A and B are called frame bounds. A frame is said to be tight
if A = B. The operator L : H �→ H defined by

Lf =
∑
n∈�

〈f, φn〉φn, ∀f ∈ H

is called the frame operator. Denote

�2(�) := {x : ‖x‖2
�2(�) :=

∑
n∈�

|x[n]|2 < +∞}.

The definition of frame gives an energy equivalence to invert the operator
U : H �→ �2(�) defined by

Uf [n] = 〈f, φn〉, ∀n ∈ �.

Denote by U∗ the adjoint of U : 〈Uf, x〉 = 〈f, U∗x〉. Then the frame operator
L can be represented as

Lf = U∗Uf =
∑
n∈�

〈f, φn〉φn.

The system {φ̃n}n∈� defined by

φ̃n = L−1φn = (U∗U)−1φn

is called the dual frame of {φn}n∈�. If the frame is tight (i.e., A = B), then
φ̃n = A−1 φn. The dual frame satisfies

1

B
‖f‖2 ≤

∑
n∈�

|〈f, φ̃n〉|2 ≤ 1

A
‖f‖2, ∀f ∈ H.
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Denote by ranU the range of U , that is, the space of all Uf with f ∈ H.
If {φn}n∈� is a frame whose vectors are linearly dependent, then ranU is
strictly included in �2(�), and U admits an infinite number of left inverses
Ū−1:

Ū−1Uf = f, ∀f ∈ H.
The left inverse that is zero on ranU⊥ is called the pseudo inverse and
denoted by Ũ−1:

Ũ−1x = 0, ∀x ∈ ranU⊥.

In infinite dimensional spaces, the pseudo inverse Ũ−1 of an injective operator
is not necessarily bounded. This induces numerical instabilities when trying
to reconstruct f from Uf . The pseudo inverse satisfies

Ũ−1 = (U∗U)−1U∗

and
f = Ũ−1Uf =

∑
n∈�

〈f, φn〉 φ̃n =
∑
n∈�

〈f, φ̃n〉φn.

When the frame is tight (i.e., A = B), as φ̃n = A−1 φn,

f = Ũ−1Uf =
1

A

∑
n∈�

〈f, φn〉φn.

In this case, we may assume the frame bound A = 1 without loss of generality
by replacing φn by φn/

√
A.

Let us describe efficient numerical algorithms to recover a signal f from
its frame coefficients Uf [n] = 〈f, φn〉. When the dual frame vectors φ̃n =
(U∗U)−1φn are precomputable, we can recover each f with the sum

f =
∑
n∈�

〈f, φn〉 φ̃n.

But in some applications, the frame vectors {φn}n∈� may depend on the
signal f , in which case the dual frame vectors φ̃n cannot be computed in
advance. It is not efficient to compute the dual frame for each new signal. A
more direct approach applies the pseudo inverse to Uf :

f = Ũ−1Uf = (U∗U)−1(U∗U)f = L−1Lf.

Whether we precompute the dual frame vectors or apply the pseudo in-
verse on the frame data, both approaches require an efficient way to compute
f = L−1g for some g ∈ H. One way is to use the following Richardson’s ex-
trapolation when the frame bounds A and B are known.
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Lemma 1 (Richardson’s Extrapolation) Let g ∈ H. To compute f =
L−1g we initialize f0 = 0. Let γ > 0 be a relaxation parameter. For any
n > 0, define

fn = fn−1 + γ (g − Lfn−1).

If
δ = max {|1 − γA|, |1 − γB|} < 1,

then
‖f − fn‖ ≤ δn ‖f‖, (1)

and hence lim
n→+∞

fn = f .

For frame inversion, Daubechies [8] called this Richardson’s extrapolation
algorithm as the frame algorithm. The convergence rate is maximized when
δ is minimum:

δ =
B −A

B + A
=

1 −A/B

1 + A/B
,

which corresponds to the relaxation parameter

γ =
2

A+B
.

The algorithm converges quickly if A/B is close to 1. If A/B is small then

δ ≈ 1 − 2
A

B
. (2)

Inequality (1) proves that we obtain an error smaller than ε for a number n
of iterations, which satisfies:

‖f − fn‖
‖f‖ ≤ δn = ε.

Inserting (2) gives

n ≈ log ε

log(1 − 2A/B)
≈ −B

2A
log ε.

Thus, the number of iterations is directly proportional to the frame bound
ratio B/A.
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3 Tight Wavelet Frames

Since the dual of a tight frame is a constant multiple of the frame itself, recov-
ering functions from their frame coefficients does not require the calculation
of the dual frame. Hereafter, we shall focus on tight wavelet frames.

Given f ∈ L2(�n), let fjk(x) denote the scaled and shifted function

fjk(x) = 2nj/2f(2jx− k), j ∈ �, k ∈ �
n. (3)

Let � be a finite index set. A system {ψ�
jk}�∈�,j∈�,k∈�n ⊂ L2(�n) is called a

tight wavelet frame with frame bound A if

f(x) =
1

A

∑
�∈�
j∈�

k∈�n

〈f, ψ�
jk〉ψ�

jk(x), ∀f ∈ L2(�n). (4)

We recall that a system {ψ�
jk}�∈�,j∈�,k∈�n ⊂ L2(�n) is called an orthonormal

wavelet basis if it is an orthonormal basis for L2(�n). This is equivalent to
saying that the system {ψ�

jk}�∈�,j∈�,k∈�n is a tight wavelet frame with frame

bound 1 and ‖ψ�‖L2(�n) = 1 for � ∈ �.
The following general theorem which is essentially Theorem 1 stated and

proved in [13] for �n , gives necessary and sufficient conditions to have a tight
wavelet frame in �n with frame bound 1.

Theorem 1 Suppose ψ� ⊂ L2(�n) for � ∈ �, then

‖f‖2
L2(�n) =

∑
�∈�
j∈�

k∈�n

∣∣〈f, ψ�
j,k〉

∣∣2 (5)

for all f ∈ L2(�n) if and only if the set of functions {ψ�}�∈� satisfies the
following two equalities:∑

�∈�
j∈�

∣∣∣ψ̂�(2jξ)
∣∣∣2 = 1, a.e. ξ ∈ �

n , (6)

∑
�∈�

j∈�+

ψ̂�(2jξ)ψ̂�(2j(ξ + q)) = 0, a.e. ξ ∈ �
n , ∀q ∈ �

n\(2�)n, (7)

where �+ := � ∪ {0} and q ∈ �n\(2�)n means that at least one component
qj is odd.
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Corollary 1 Under the hypotheses of Theorem 1, any function f ∈ L2(�n)
admits the tight wavelet frame expansion

f(x) =
∑
�∈�
j∈�

k∈�n

〈f, ψ�
jk〉ψ�

jk(x). (8)

By using the localization property of the frame wavelet in the Fourier domain,
one can study the directions of growth of f̂(ξ) by looking at the size of the
frame coefficients

〈f, ψ�
jk〉 = (2π)−n〈f̂ , ψ̂�

jk〉, (9)

where the Fourier transform of f is defined by

F [f ](ξ) = f̂(ξ) :=

∫
�n

e−ixξ f(x) dx

and the inverse Fourier transform of g is defined by

F−1[g](x) := (2π)−n

∫
�n

eixξ g(ξ) dξ.

Moreover, by using the localization property of the frame wavelets in x-space,
one can localize the singular support of f(x) by varying �, j and k in (9).

4 Frame Multiresolution Analysis

The notion of frame multiresolution analysis was introduced by Benedetto
and Li [1]. Let us recall that an (orthonormal) multiresolution analysis con-
sists of a sequence of closed subspaces {Vj}j∈�, of L2(�n) satisfying

(i) Vj ⊂ Vj+1, for all j ∈ �;

(ii) f(·) ∈ Vj if and only if f(2·) ∈ Vj+1, for all j ∈ �;

(iii)
⋂

j∈�Vj = {0};

(iv)
⋃

j∈�Vj = L2(�n);

(v) There exists a function ϕ ∈ V0 such that {ϕ(·−k)}k∈�n is an orthonor-
mal basis for V0.

The function ϕ ∈ L2(�n) whose existence is asserted in the condition (v) is
called an (orthonormal) scaling function of the given orthonormal multires-
olution analysis.

A frame multiresolution analysis consists of a sequence of closed subspaces
{Vj}j∈�, of L2(�n) satisfying (i), (ii), (iii), (iv) and
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(v-1) There exists a function ϕ ∈ V0 such that {ϕ(· − k)}k∈�n is a frame for
V0.

The function ϕ ∈ L2(�n) whose existence is asserted in the condition (v-1)
is called a frame scaling function of the given frame multiresolution analysis.

Let D be a finite index set. An (orthonormal) multiresolution analysis for
multiwavelets consists of a sequence of closed subspaces {Vj}j∈�, of L2(�n)
satisfying (i), (ii), (iii), (iv) and

(v-2) There exists a system of functions {ϕδ}δ∈D ⊂ V0 such that {ϕδ(· −
k)}δ∈D, k∈�n is an orthonormal basis for V0.

The functions {ϕδ}δ∈D whose existence is asserted in the condition (v-2) are
called (orthonormal) multiscaling functions.

A frame multiresolution analysis for multiwavelet consists of a sequence
of closed subspaces {Vj}j∈�, of L2(�n) satisfying (i), (ii), (iii), (iv) and

(v-3) There exists a system of functions {ϕδ}δ∈D ⊂ V0 such that {ϕδ(· −
k)}δ∈D, k∈�n is a frame for V0.

The functions {ϕδ}δ∈D whose existence is asserted in the condition (v-3) are
called frame multiscaling functions.

5 Microlocal Analysis

Our approach to microlocal analysis is based on the theory of hyperfunc-
tions ([10], [11], [12]). They are powerful tools in several applications; for
example, vortex sheets in two-dimensional fluid dynamics are a realization of
hyperfunctions of one variable. Microlocal analysis deals with the direction
along which a hyperfunction can be extended analytically. In other words, it
decomposes the “singularity” into microlocal directions. Microlocal analysis
plays an important role in the theory of hyperfunctions, partial differen-
tial operators, and many other areas. In this theory, for example, one can
consider the product of hyperfunctions and discuss the partial regularity of
hyperfunctions with respect to any independent variable.

Here, we give only a rough sketch. A more complete treatment of mi-
crolocal filtering can be found in R. Ashino, C. Heil, M. Nagase, and R.
Vaillancourt [2] (See also [5]). The important point is to find directions in
which a hyperfunction can be continued analytically. Let Ω ⊂ �n be an open
set, and Γ ⊂ �n be a convex open cone with vertex at 0. From now on, every
cone is assumed to have vertex at 0. The set Ω + iΓ ⊂ � n is called a wedge.
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Ω+iΓ0
Ω

Figure 1: An infinitesimal wedge Ω + iΓ0.

An infinitesimal wedge Ω + iΓ0 is an open set U ⊂ Ω + iΓ which approaches
asymptotically to Γ as the imaginary part tends to 0. (Figure 1.)

A hyperfunction f(x) can be defined as a sum

f(x) =

N∑
j=1

Fj(x+ iΓj0), x ∈ Ω,

of formal boundary values

Fj(x+ iΓj0) = lim
y→0

x+iy∈Ω+iΓj0

Fj(x+ iy)

of holomorphic functions Fj(z) in the infinitesimal wedges Ω + iΓj0.
A hyperfunction is said to be micro-analytic in the direction ξ0 ∈ �n−1

at x0 ∈ �n or in short, at (x0, ξ0), if there exists a neighborhood Ω of x0

and holomorphic functions Fj on infinitesimal wedges Ω + iΓj0 such that

f =
∑N

j=1 Fj(x+ iΓj0) and

Γj ∩ {y ∈ �
n : y · ξ0 < 0} �= ∅

for all j.
A simple aspect of the relation between micro-analyticity and Fourier

transform is given as follows.

Lemma 2 Let Γ ⊂ �n be a closed cone and x0 ∈ �n . For a tempered
distribution f , if there exists a tempered distribution g such that supp ĝ ⊂ Γ
and f − g is analytic in a neighborhood of x0, then f is micro-analytic at
(x0, ξ) for every ξ ∈ Γc ∩ �n−1, where Γc denotes the complement of Γ.
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Our aim of this paper is to answer to the following questions:

• Is it possible to construct orthonormal or tight frame multiwavelets
Ψ = {ψδ}δ∈D corresponding to each microanalytic direction ξ ∈ �n−1?

• Is it possible to obtain information on the microlocal content of f ∈
L2(�n) from the wavelet coefficients 〈f, ψδ

jk〉?
• Can orthonormal or tight frame multiwavelet filtering separate microlo-

cal contents?

We shall construct orthonormal multiwavelet bases or tight frames which
enable us to obtain information on the microlocal content of signals or func-
tions. Since this separation of microlocal contents can be considered as a
filtering operation, we call it microlocal filtering .

6 One-dimensional Orthonormal Microlocal

Filtering

Our aim is to construct wavelets {φδ}δ∈D having good localization both in
the base space � and in the direction space �0 = {±1} within the limits
of the uncertainty principle. Here good localization at a point (x0, ξ0) ∈
� × �0, which is called good microlocalization, means that φδ is essentially
concentrated in a neighborhood of a point x0 ∈ � and φ̂δ is essentially
concentrated in a conic neighborhood of a point ξ0 ∈ �0.

Define the classical Hardy spaces H2(�±) by

H2(�±) =
{
f ∈ L2(�) : f̂(ξ) = 0 a.e. ξ ≤ (≥) 0

}
.

Each function of the classical Hardy spaces H2(�±) has good localization in
the direction space �0 = {±1}. Hence if we construct wavelets the classi-
cal Hardy spaces H2(�±) having good localization in the base space, those
wavelets have good microlocalization.

In these examples, an orthonormal wavelet function ψ+ and an orthonor-
mal scaling function φ+ for orthonormal wavelets of H2(�+) are defined by

ψ̂+ = χ[2π,4π], φ̂+ = χ[0,2π].

From the two-scale relation

2φ̂+(2ξ) = m0(ξ)φ̂+(ξ)
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Figure 2: The Fourier transform of the orthonormal wavelet functions ψ+

and ψ−.

it is found that the corresponding lowpass filter is

m0(ξ) = 2χ[0,π](ξ) = 2φ̂+(2ξ)

on [0, 2π), and extended 2π-periodically. From the two-scale relation

2ψ̂+(2ξ) = eiξ m0(ξ + π)φ̂+(ξ) = m1(ξ)φ̂+(ξ)

it is found that the corresponding highpass filter is

m1(ξ) = eiξ m0(ξ + π) = 2ψ̂+(2ξ)

on [0, 2π), and extended 2π-periodically.
By the same argument, we have an orthonormal wavelet function ψ− and

an orthonormal scaling function φ− for orthonormal wavelets of H2(�−).
Since

L2(�) = H2(�+) ⊕H2(�−),

{ψ+, ψ−} and {φ+, φ−} can be regarded as orthonormal multiwavelet func-
tions and orthonormal multiscaling functions, respectively, of L2(�). This
decomposition of L2(�) into the orthogonal sum of the classical Hardy spaces
H2(�±) corresponds to the intuitive definition of hyperfunction:

f(x) = F+(x+ i0) − F−(x− i0),

where F+(z) and F−(z) are holomorphic in the upper half plane and in the
lower half plane, respectively.

It must be remarked that Auscher [9] essentially proved that there is no
smooth orthonormal wavelet ψ in the classical Hardy space H2(�+), that is,

there is no orthonormal wavelet ψ whose Fourier transform ψ̂ is continuous
on � and satisfies the regularity condition:

∃α > 0; |ψ̂(ξ)| = O
(
(1 + |ξ|)−α−1/2

)
at ∞.
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The decay of a function at infinity in x space corresponds to the smoothness of
its Fourier transform in ξ space. Hence the non-existence of smooth wavelets
implies that it is impossible to have any smooth orthonormal wavelet having
good microlocalization. Thus our aim comes to the construction of smooth
tight frame wavelets having good microlocalization.

7 Multi-dimensional Orthonormal Microlocal

Filtering

The following notation will be used.

• η = (η1, . . . , ηn) ∈ H := {±1}n.

• ε = (ε1, . . . , εn) ∈ E := {0, 1}n \ {0}, j ∈ �+.

• Qη :=
∏n

k=1 [0, ηk], ε. ∗ η := (ε1η1, . . . , εnηn).

• Qj,ε,η :=
{∏n

k=1 [ηk(�k−1), ηk�k]+2j(ε.∗η) : 1 ≤ �1, . . . , �n ≤ 2j, �1, . . . , �n ∈
�
}
.

• �
E×H
+ is the set of all functions from E ×H to �+.

Theorem 2 Fix j ∈ �+, ε ∈ E, η ∈ H. For a cube Q ∈ Qj,ε,η, define ψQ by

ψ̂Q = χ2πQ,

where χ2πQ is the characteristic function of the cube 2πQ. For ρ ∈ �
E×H
+ , let

Qρ :=
⋃

(ε,η)∈E×H

Qρ(ε,η),ε,η.

Then Ψ := {ψQ}Q∈Qρ
is a set of orthonormal wavelets. Define ϕη by

ϕ̂η := χ2πQη .

Then {ϕη}η∈H are frame scaling functions for these wavelets.
In particular, when ρ(ε, η) is constant, Ψ are multiwavelets.

Figure 3 illustrates the 2-D multiwavelets constructed in Theorem 2. Mul-
tiwavelets are masks in Fourier space — they are characteristic functions of
cubes 2πQ. The left part of Fig. 3 shows 12 multiwavelet functions. For finer
resolution in Fourier space, we need a greater number of multiwavelets. The
right part of Fig. 3 shows 27 multiwavelet functions.
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Figure 3: 2-D orthonormal multiwavelet functions in Fourier space.

8 Multi-dimensional Frame Microlocal Filter-

ing

Smooth tight multiwavelet frames are obtained by convolving characteristic
functions of cubes πQ so that the support of the smoothed functions have
support inside cubes 2πQ. This is achieved by considering the next inside
annulus of cubes πQ in the left part of Fig. 3.

Let ϑ(t) be a C∞
0 (�)-function of one variable satisfying

ϑ(t) ≥ 0, ϑ(t) = ϑ(−t),
∫
�

ϑ(t) dt = 1, ϑ(t) =

{
1, |t| ≤ 1

3
;

0, |t| ≥ 2
3
.

For α > 0 and ξ = (ξ1, ξ2, . . . , ξn) ∈ �n , let

ϑα(ξ) =
1

αn

n∏
j=1

ϑ
(ξj
α

)
.

Theorem 3 Fix j ∈ �+, ε ∈ E, η ∈ H, and α ∈ (0, 1/2). Define

λQ(ξ) := (ϑα ∗ χπQ)(ξ) =

∫
�n

ϑα(ξ − ζ)χπQ(ζ) dζ, Q ∈ Qj,ε,η,

where χπQ is the characteristic function of the cube πQ. For ρ ∈ �
E×H
+ , let

τρ(ξ) :=
∑

j∈�,Q∈Qρ

|λQ(2jξ)|2,
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and, for Q ∈ Qρ, define ψQ(x) by

ψ̂Q(ξ) := τρ(ξ)
−1/2 λQ(ξ).

Then Ψ := {ψQ}Q∈Qρ is a set of tight frame wavelets.

Theorem 3 follows from Theorem 1.

9 Numerical Restoration of Images

In this section, we apply the above theory to the restoration of finite images
represented by matrices. Since the Fourier transform of a finite region gives
rise to oscillations of the type of cardinal sine, care must be taken in the
restoration process.

The restoration process involves the following steps.

• The figure A to be restored is Fourier transformed into B.

• B is filtered by multiplication with a tapered characteristic function
with support far from the origin and at right angle with the singularity
to be localized. This produces C.

• In view of the Plancherel theorem, the wavelet coefficients of C,

〈f̂ , ψ̂�
jk〉 = const.〈f, ψ�

jk〉,

are constructed in the Fourier domain and used in the x domain, to
produce D which is the wavelet frame expansion (8) of Corollary 1.

• The extra width of D, caused by the side lobes in the support of ψ�
jk,

is narrowed to eliminate oscillations due the cardinal sine effect when
transforming functions with finite support.

• A tuned multiple of D is subtracted from A to restore the original
image E.

In Fig. 4, the scarred woman image is restored. One notices in the top
right part of the figure the wide width of the negative of the Fourier transform
of the one-bit wide short scar. The frame expansion of the inverse Fourier
transform of the top right part produced a five-bit wide segment. The width
of this segment was reduced to one bit shown as a negative in the bottom
left part of the figure. A multiple of the bottom left part of the figure, as
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a positive, was subtracted from the top left part to produce the restored
woman figure shown in the bottom right part. In this case, only one frame
wavelet was used as highpass filter in the top right part of the figure in the
Fourier domain. Using a second filter in the lower left part of the Fourier
domain does not seem to modify the final result.

In Fig. 5, the boy image with a diagonal line is restored. One notices in
the top right part of the figure the narrow width of the negative of the Fourier
transform of the one-bit wide long diagonal line. The frame expansion of the
inverse Fourier transform of the top right part produced an eight-bit wide
segment. The width of this segment was reduced to one bit. Moreover, fine
tuning required that the fourth root of this segment be taken. The result is
shown as a negative in the bottom left part of the figure. A multiple of the
bottom left part of the figure, as a positive, was subtracted from the top left
part to produce the restored woman figure shown in the bottom right part.
In this case, two frame wavelets were used as highpass filters in the top right
and bottom left parts of the figure in the Fourier domain. Using only one
filter in the upper right or lower left part in the Fourier domain does not
seem to modify the final result.
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right: positive restored woman figure.
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