音声・画像・映像におけるDeep Learningを用いたパターン認識

Pattern Recognition using Deep Learning for Speech, Image and Video

篠田浩一
Koichi SHINODA
東京工業大学
Tokyo Institute of Technology
shinoda@cs.titech.ac.jp

Abstract

近年、マルチメディア分野では、Deep Learning（深層学習）が盛んに研究されている。特に、音声認識や画像における一般物体認識では、従来法から大幅にエラーを削減し、すでに標準的な技術として商用にも使われている。本稿では、まず、マルチメディア分野における深層学習のこれまでの研究を概観した上で、現段階における課題とそれに対するアプローチを解説する。研究の進展は急であり、そろそろできることとできないことがはっきりしてきた。最後に、今後、深層学習を用いたパターン認識の研究がどのような方向に進んでいくかを議論したい。
Neural network based speech recognition

1989: Time-Delay Neural Network (TDNN)
1994: Hybrid approach of NN and HMM
2000: Tandem connectionist features
2009: DNN phone recognition
2010: Recurrent NN (RNN) for language model
2011: DNN for LVCSR (large vocabulary continuous speech recognition)
← The same as Hybrid approach (1994)

Deep Learning (DL) in ICASSP2014

- 84 of 304 (28%) papers deals with DL
- Four sessions titled “DL” or “NN”
- DL penetrates into most speech sub-areas

Robustness (14), ASR systems (8), Features (7), Language model (5), Speaker recognition (5), Spoken term detection (3), Speech understanding (2), Emotion recognition (2)...

These trends continued in ICASSP2015

Replace GMM with DNN

- GMM (Gaussian Mixture Model) is mixture of experts (MoE), DNN is product of experts (PoE).
 - For GMM, it is difficult deal with multiple events in one window
 - GMM parameter estimation is easier to be parallelized
- DNN can get more info from multiple frames
 - GMM often use diagonal covariance and ignore correlation among them

For high accuracy:

LSTM+Bi-directional RNN

Use LSTM (long-short-term memory) in RNN (Recurrent NN)
RNN: Effectively represents time sequence data
Bidirectional: Use info not only past but also future
LSTM: To use long contexts, make a cell which consists of 4 nodes

For data sparsity:

Speaker adaptation

To avoid overtraining, utilize prior knowledge about speakers

1. Regularization in parameter estimation (Bayesian approach)
2. Linear combination of speaker-cluster NNs
3. Add “speaker code” to NN inputs
4. Estimate activation function parameters

For data sparsity:

Estimate a new parameter of each node

\[
h^i = a(x^i) \circ \phi(W^i h^{i-1})
\]

- \(\circ \): Element-wise multiplication
- \(a(x^i) \): Estimate for each speaker

free parameters = # nodes

Speech Recognition System - Before

- Speech input
- MFCC
- Speech analysis
- Pattern Matching
- GMM+HMM
- Acoustic model
- Language model
- n-gram
- Recognition result

Speech Recognition System - After

- Speech input
- Log filter bank
- DNN+HMM
- Acoustic model
- Language model
- RNN
- Recognition result

For end-to-end:

2010: Recurrent NN for language model

Elman network

\[
s(t) = f(Uw(t) + Wx(t - 1))
\]

\[
y(t) = g(Vs(t))
\]

Input \(x(t) \)

Output \(y(t) \)

A word vector

Reduce error by 12-18% from the traditional n-gram model in WSJ (Wall Street Journal) task

Mikolov et al. “Recurrent neural network based language model”, INTERSPEECH2010

For end-to-end:

MFCC is no more needed

Mel filter bank features reduced 5-10% errors from MFCCs

- MFCC was used to de-correlate the Mel filter bank features
- In DNN, such de-correlation process is not needed

DNN for speech synthesis

- Use DNN in reverse - input: label, output: data
- Output GMM parameters, mean and variance

Zen et al., Deep mixture density networks for acoustic modelling in statistical parametric speech synthesis”, ICASSP2014

ImageNet Challenge: ILSVRC 2012

- Detect images of 1000 categories
- 1.2 million training samples
- Error 16%

Various applications

ImageNet Challenge: ILSVRC 2012

- Detect images of 1000 categories
- 1.2 million training samples
- Error 16%

Cat Human face

- Unsupervised learning
- 10 billion images from YouTube videos, each 200x200 pixels
- Sparse autoencoder with 9 layers, 1 billion nodes

Le et al., “Building high-level features using large scale unsupervised learning”, ICMIL2012

CATVREVID

(TREC Video Retrieval Evaluation)

Spinned out from Text REtrieval Conference (TREC) in 2001.
Organized by NIST(National Institute of Standard and Technology)
Aim : Promote research on video contents analysis and search
International, Competitive, Closed
Homepage: http://trecvid.nist.gov

TokyoTech participated from 2006 (9 years)

2014 TRECVID task

- **Semantic Indexing (SIN)**
 - Detect generic objects, scenes, actions
- **Surveillance Event Detection (SED)**
 - Detect specific actions from surveillance video
- **Instance Search (INS)**
 - Given a still image of an object, search video clips including it
- **Multimedia Event Detection (MED)**
 - Detect complex “event”
- **Multimedia Event Recounting (MER) (Pilot)**
 - Explain “event” detected

Semantic Indexing

Detect concepts from a set of video shots
Shot: The minimum unit of video
No. Concepts: 60
Training set: 549,434 shots, 800 hours
Test set: 332,751 shots, 400 hours
Frequency of Appearance (2011 task)

Number of positive samples in 264,673 training video shots

- Outdoor (29,997 shots)
- Singing (3875 shots)
- Airplane (371 shots)

1% of development data

346 semantic concepts

Bag of Visual Words

1. Quantize local features (e.g., SIFT) by using a codebook (Code word: Visual Word)
2. Use a code histogram as an input to SVM

Recent Trend

Tackle the data sparseness problem

- **More features**
 - SIFT, Color SIFT, SURF, HOG, GIST, Dense features
- **Multi-modal**
 - Use Audio : Singing, Dance, Car, etc.
- **Multi-frame**
 - Not only key frames
- **Soft clustering**
 - Reduce quantization errors. GMM etc.

Less effective than expected

- **Global features such as color histogram**
 - Local features are enough (no complementary info)
- **Speech recognition, OCR**
 - Do not have performance high enough to contribute
- **Object location**
 - Fail to detect. Many concepts do not have “location”
- **Context between concepts**
 - Too Little data

TokyoTech Framework

- 1) SIFT-Har
- 2) SIFT-Har
- 3) SIFT-Dense
- 4) HOG-Dense
- 5) HOG-Sub
- 6) MFCC

Main runs scores – 2014 submissions

- NIST medium baseline run
- Median: 0.317
- Type O runs
- Type A runs (only LAVC for training)
- Type E runs (no annotation)
Deep Learning

Main Stream
Local features
Bag of
Visual Words
GMM supervectors,
Fisher kernels,...

GMM

DNN Sub stream

5-10% extra gain

Score Fusion

BoF is also deep learning!
Fisher Kernel based method is 5-layer DNN

<table>
<thead>
<tr>
<th>stage</th>
<th>operation</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM prediction</td>
<td>$f(X) = \gamma \cdot \phi(X)$</td>
<td>non-linear</td>
</tr>
<tr>
<td>per image</td>
<td>square root, normalize</td>
<td>linear</td>
</tr>
<tr>
<td>per image</td>
<td>compute average of $\phi(x_i)$</td>
<td>non-linear</td>
</tr>
<tr>
<td>per descriptor</td>
<td>multiply by y_i in $y_i(j)$</td>
<td>non-linear</td>
</tr>
<tr>
<td>preprocessing</td>
<td>Z^2-normalization</td>
<td>non-linear</td>
</tr>
<tr>
<td>SIFT</td>
<td>local pooling</td>
<td>linear</td>
</tr>
<tr>
<td>PCA projection</td>
<td></td>
<td>linear</td>
</tr>
<tr>
<td>gradient filter</td>
<td></td>
<td>linear</td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Schematic description of a Fisher kernel SVM as a 5-layer feedforward architecture (from bottom to top).

TRECVID Multimedia Event Detection (MED) task
- Extract “complex event” from many video clips (shot sequences)
 e.g. “Batting a run in”, “Making a cake”
- Database: Home video 2000 hours
- Sponsored by IAPRA (The Intelligence Advanced Research Projects Activity)

Deep Learning at present
- Can be better than human in “well-defined” tasks with large data

MED task
- Multimedia
 Visual features, audio features, speech recognition, OCR
- Dynamic nature
- Training data for each event may be very small

Problems of Deep Learning
- How to deal with more complex problems such as MED?
- Only for “end-to-end” problems
 - Do we really need to solve them?
 - What is “semantics”?
- How to combine many modes in multimedia application
 - Combinatorial explosion
 - Time sequence

What we can do...
- Time Sequence
- Segmentation and Recognition
- Signal and symbol processing

Summary
- Deep learning is already de-facto in speech recognition
- Now, we are busy with replace “traditional” units by “DNN” units in a speech recognition system
 - What I explained today is only a small part of them
- Still ad-hoc, not enough theoretical background
 - How to optimize structures?
 - Why is Deep learning better?
 - How to combine acoustic and language models?

Speech is “lighter” compared with the other media.
Good test bed for exploring Deep learning!