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Abstract
Reverberation poses a problem to the active robot audition sys-
tem. The change in speaker’s face orientation relative to the
robot perturbs the room acoustics and alters the reverberation
condition at runtime, which degrades the automatic speech
recognition (ASR) performance. In this paper, we present a
method to mitigate this problem in the context of the ASR.
First, filter coefficients are derived to correct the Room Trans-
fer Function (RTF) per change in face orientation. We treat
the change in the face orientation as a filtering mechanism
that captures the room acoustics. Then, joint dynamics be-
tween the filter and the observed reverberant speech is inves-
tigated in consideration with the ASR system. Second, we in-
troduce a gain correction scheme to compensate the change in
power as a function of the face orientation. This scheme is also
linked to the ASR, in which gain parameters are derived via the
Viterbi algorithm. Experimental results using Hidden Markov
Model-Deep Neural Network (HMM-DNN) ASR in a reverber-
ant robot environment, show that proposed method is robust to
the change in face orientation and outperforms state-of-the-art
dereverberation techniques.
Index Terms: Robust Robot Audition, Speech Enhancement,
Dereverberation, Automatic Speech Recognition

1. Introduction
Reverberation is a phenomenon caused by the reflections of the
speech signal in an enclosed environment. It smears the orig-
inal speech due to the different time delays of arrival among
the speech reflections. This phenomenon causes mismatch and
degrades the ASR performance. To abate the effect of mis-
match, the reverberant speech is enhanced, which is referred
to as dereverberation. The problem concerning reverberation is
further plagued when the room acoustics is perturbed as a re-
sult of the change in the speaker’s face orientation. This event
alters the RTF resulting to another mismatch at runtime.
Consequently, the change in face orientation affects the direc-
tivity pattern in which the speech is diffused, causing power
issues. There exists different types of dereverberation methods
[1][2][13] but most of these have no mechanism in dealing with
the acoustic perturbation due to the change in the speaker’s face
orientation.

In a human-robot communication scenario, the speaker may
change its face orientation when communicating to the robot at
any given time. Thus, the dereverberation mechanism should
be able to cope with this mismatch as well. In this paper, we
expand and improve our previous work [3] in mitigating the
degradation of the ASR due to the change in the speaker’s face
orientation. The proposed method employs an ASR-inspired
RTF and gain correction mechanisms to actively mitigate the
changes in the room acoustics and the speech power due to the
change in the face orientation. More importantly, the analy-
sis and optimization employed in the proposed method is con-

ducted jointly with the Hidden Markov Models (HMMs) for ef-
fective use in ASR application. These HMMs are used in the
HMM-DNN ASR evaluation.

In our previous work [3], face direction compensation is
achieved through equalization. The work in [3] is purely fo-
cused on the waveform compensation of the RTF and stops
right there without any consideration of the HMMs [3]. Al-
though [3] works well in enhancing the waveform, it has a very
coarse treatment of the effect of dereverberation when applied
to the HMM-DNN ASR. In contrast, the proposed method takes
a HMM-centric approach, in both of the analysis and optimiza-
tion procedures. In the proposed method, the change in the
face orientation is hypothesized to impact the RTF as a filtering
mechanism. Filter coefficients are optimized in the context
of the HMMs as per change in the speaker’s face orienta-
tion. This process ensures the link between the RTF and the
HMMs. Next, we analyze the impact of the change in face the
orientation to the power envelope of the speech signal. Gain
values are derived using the dual nature of the speech signal
(i.e., acoustic waveform and the hypothesis) to characterize
the change in power. This mechanism links the power correc-
tion with the ASR system. Both the filter for RTF correction
and the parameters for gain correction are used in the online
dereverberation. Hence, the proposed method can adapt to the
acoustic perturbation caused by the change in the speaker’s face
orientation. The derivation of these parameters are linked to
the HMMs, a stark contrast from our previous work [3] which
focuses purely on waveform enhancement only.

This paper is organized as follows; in Sec. 2, we show
the background of the adopted dereverberation platform in our
application. The schemes in extracting the filter coefficients,
dereverberation parameter update and calculating gain parame-
ters for power correction as per change in face orientation are
discussed in Sec. 3. Experimental results and discussion are
presented in Sec. 4, and we conclude the paper in Sec. 5.

2. Background
Microphone array processing based on beamforming and blind
separation described in [9][17] is employed to convert the multi-
microphone observed signals to a separated reverberant signal
(single-channel). In our previous method [4][13], the smear-
ing effect of reverberation is adopted from [15][5] and is solely
dependent on the room transfer function (RTF) given as

r(ω) = AE(ω)c(ω) +AL(ω)c(ω)
= e(ω) + l(ω),

(1)

where r(ω) is the separated reverberant speech w.r.t. ω fre-
quency [9][17] and the right side of Eq. (1) is the reverberation
model, where c(ω) is the clean speech, AE(ω) and AL(ω) are
the early and late reflection components extracted from the full
RTF A(ω). Both AE(ω) and AL(ω) are experimentally pre-
determined in [13]. r(ω) can be treated as the superposition
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of e(ω) and l(ω), known as the early and late reflections, re-
spectively. In this paper, we represent both AE(ω) and AL(ω)
simply as the full RTF A(ω). We note that the measured A(ω)
is matched with a speaker talking in front of the robot and hy-
pothetically, a change in the face orientation would require
different sets of RTF measurements which is a cumbersome
process. Hence, we propose a correction method that does
not require any measurement.

In [13] we treat l(ω) as long-period noise which is detri-
mental to the ASR, and dereverberation is defined as suppress-
ing l(ω) while recovering e(ω) estimate. The latter is further
processed with Cepstrum Mean Normalization (CMN) during
ASR. Eq. (1) simplifies dereverberation into a denoising prob-
lem, and through spectral subtraction (SS) [10], the estimate
ê(ω) in frame-wise manner j is given as

|e(ω, j)|2 =


|r(ω, j)|2 − |l(ω, j)|2

if |r(ω, j)|2 − |l(ω, j)|2 > 0

β|r(ω, j)|2 otherwise,

(2)

where β is the flooring coefficient. In real condition, l(ω, j) is
unavailable, precluding the power estimate |l(ω, j)|2. There-
fore, the observed reverberant signal r(ω, j) is used instead of
l(ω, j). This is made possible through a scheme in [13] serv-
ing as a workaround to this problem. The scheme introduces
a multi-band suppression parameter δm optimized via the ASR
likelihood criterion given as

δm = arg max
δδδm,c∆

P (yδ
δδm,c∆ |w;λλλ), (3)

where λλλ and w are the speech acoustic and language models,
respectively. c∆ is the discrete step in the search space while
δδδm,c∆ are the suppression parameter values to be searched
upon. For a given set of bandsQQQ = {Q1, . . . , Qm, . . . , , QM},
in the frequency ω, the dereverberation parameter δm dictates
the extent of the suppression of the reverberant effects. The
new estimate ê(ω, j) through the modified SS becomes

|e(ω, j)|2 =


|r(ω, j)|2 − δm|r(ω, j)|2

if |r(ω, j)|2 − δm|r(ω, j)|2 > 0

β|r(ω, j)|2 otherwise.

(4)

It is obvious that the dereverberation platform in Eq. (4) is
dependent on the dereverberation parameter δm. Consequently,
δm depends on the RTF A(ω) as depicted in the model in Eq.
(1) and needs to be corrected depending on the speaker’s face
orientation. Although Eq. (1) is effective for waveform en-
hancement, its formulation has no relation with HMM analysis.
Thus, dereverberation performance is very limited to the orig-
inal face orientation. In this paper, we will show the method
of effectively correcting A(ω) as a function of the speaker’s
face orientation. The simplified block diagram of the proposed
method is shown in Fig. 1. In the proposed method, the mech-
anism for RTF and power correction is implemented via an of-
fline training scheme according to the change in the face orien-
tation θ. The updated suppression parameters δ̂θm resulting from
RTF compensation with αθA(ω) and the gain parameters Gθmτ
are stored for online dereverberation use. Details on Fig. 1 are
discussed in the following section.

3. Methods
3.1. Microphone-array and Visual Processing

Sound source separation described in [9][17] is used to obtain
the separated reverberant signal rθ , where θ is the speaker’s face
orientation. It is defined by setting a straight line between the
human and the robot (facing each other) as a reference axis. The
change in speaker orientation is defined as the angular change
θ from the reference axis from the human side. In our work
we consider a deviation −30 ≤ θ ≤ 30, where θ = 0 is the
reference angle in which the generic RTF is defined. The angle
θ is estimated using the Kinect sensor.

3.2. Room Transfer Function Correction

Suppose that the observed reverberant speech at a particular
face orientation θ when processed by a filter is given as

xθ[h] =

K−1∑
k=0

αθk rθ[h− k], (5)

where rθ and αθk are the observed reverberant speech and the
filter coefficients, respectively. We note that the room acoustics
information is captured in the observed reverberant speech via
reflections on the enclosed space. We use the actual signal rθ

to analyze the reverberation condition as per change in face di-
rection θ through the filter αααθ . The filter of length K is given
as

αααθ = [αθ0, α
θ
1, ..., α

θ
K−1]T . (6)

The objective is to estimate αααθ in the context of the ASR. The
resulting estimate captures the room acoustics at θ, and later
used not just to correct the change in θ but making sure that
the correction is more likely to improve the ASR performance.
Since we are interested of the ASR’s output (hypothesis), the
actual signal x is immaterial. The hypothesis is expressed as

ŵwwθ = argmax
www

log (P (f (xθ)(αααθ)|www)P (www), (7)

where f (xθ)(αααθ) is the extracted feature vector from the utter-
ance, www is the phoneme-based transcript, P (f (xθ)(αααθ)|www) is
the acoustic likelihood (i.e., using reverberant acoustic model)
and P (www) is due to the language (i.e., using language model).
The latter can be ignored since phoneme-based transcript www is
known, thus, argmax in Eq. (7) acts on αααθ and rewritten as

α̂ααθ = argmax
αααθ

log P (f (xθ)(αααθ)|www). (8)

In ASR, the total log likelihood in Eq. (8) when expanded [14]
to include all possible state sequence is expressed as

Γ(αααθ) =
∑
j

log P (f
(xθ)
j (αααθ)|ŝj), (9)

where sj is the state at frame j. Eq. (9) heralds the formulation
in the context of the HMMs via the state sequence. By using
the∇ operator, the total probability is maximized w.r.t the filter
coefficient in Eq. (6), thus,

∇αααθ Γ(αααθ) =

{
∂Γ(αααθ)

∂αθ0
,
∂Γ(αααθ)

∂αθ1
, ...,

∂Γ(αααθ)

∂αθK−1

}
. (10)
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Figure 1: Overall System Structure.

Assuming a Gaussian mixture distribution with mean vector
µjv and diagonal covariance matrix ΣΣΣ−1

jv , respectively. Eq. (10)
can be shown similar to that in [8] as

∇αααθ Γ(αααθ) = −
∑
j

V∑
v=1

γjv
∂f

(xθ)
j (αααθ)

∂αααθ
ΣΣΣ−1
jv (f

(xθ)
j (αααθ)−µjv),

(11)
where γjv is the posteriori of v-th mixture and j-th frame of

the most likely HMM state. ∂fj
(xθ)(αααθ)

∂αααθ
is the Jacobian matrix

of the reverberant feature vector. The filter coefficients are ob-
tained using [11][12] based on Eq. (11). Correcting a generic
RTF to the current face orientation θ of the speaker is given as

Âθ(ω) = αθ(ω)A(ω) (12)

where αθ(ω) is the face orientation-compensating filter in the
frequency domain. It follows that a new dereverberation param-
eter can be extracted from the corrected RTF,

Âθ(ω)⇒ δ̂θm (13)

The updated dereverberation parameters δ̂θm are stored for on-
line use in Sec 3.4.

3.3. Speech Power Compensation via Gain Correction

The change in face orientation does not only impact the RTF,
but it also affects the power level of the separated signal rθ .
To mitigate the effect of the latter, we employed a power com-
pensation scheme via gain correction. The process of deriving
the gain is depicted in Fig. 2. Two sets of reverberant speech
database are prepared, one is recorded facing directly the robot
θA (s.t. θ = 0), and the other set with face orientation θB (s.t.
θB 6= 0). θA is the reference face orientation in which θB is to
be corrected to. The utterances are classified according to the
time-duration referred to as template τ . Same duration utter-
ances are grouped together (time-duration classification). We
note that reverberation is characterized by the smearing phe-
nomenon in which the power of the previous sound frames are
carried over to the current frame. In this regard, the effect of
reverberation is directly related to the duration of the speech ut-
terance. Hence, it is noteworthy to analyze the impact of both
the changes in the face orientation and speech duration, respec-
tively. Consequently, the reverberant utterances are referred to
as rθAτ and rθBτ , respectively. Next, we analyze the change in
power dynamics per change in face orientation θB relative to
θA.

Figure 2: The offline training scheme used to calculate gain
parameters for power gain correction.

To effectively establish the correspondence of the sound
units (i.e. phonemes) between the two utterances in θB and θA,
the utterances are aligned via the Viterbi algorithm using a
known acoustic speech model λ. This is a very crucial step be-
cause we want to model the change in power similar to the con-
cept of the reverberation phenomenon in which the energy of
the current frame is affected by the previous frames. To achieve
that, we need to have a correct association of the sound-frames
between the speech database A and B. The alignment will guar-
antee that the particular sound of the current frame of interest in
rθA likely corresponds the same sound in rθB , one-to-one cor-
respondence is achieved. Moreover, the alignment scheme links
the power analysis between the acoustic waveform and the hy-
pothesis which are both used by the ASR system.

Frame-wise power spectral analysis is conducted to the
aligned utterances r̄θAτ and r̄θBτ for face orientation θ and the
template τ , respectively. The reverberant power of both are
compared and analyzed. Then, band coefficients that minimizes
the error between the two are extracted. The minimization of the
error means minimizing the power mismatch between r̄θAτ and
r̄θBτ . For a total of O utterances indexed by o in a template τ ,
the error to be minimized is given as

EθBτ (j) =
1

O

∑
o

∑
ω∈Q

|r̄θAτ (ω, o, j)−GθBτm(ω, o, j)r̄θBτ (ω, o, j)|2,

(14)
where GθBτm is the gain for the given set of bands QQQ =

{Q1, . . . , Qm, . . . , QM} of template τ . r̄θAτ (ω, o, j) and
r̄θBτ (ω, o, j) are the j-th frame viterbi-aligned utterance o from
the speech database A and B, respectively. Since we are in-
terested of the power dynamics for each frame in a given
template τ , the summation in Eq. (14) is conducted on the
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Table 1: Recognition performance in word accuracy (%)

Reverberation Time = 940 msec.@ Distance = 2.0 m θ = −30 θ = −15 θ = 0θ = 0θ = 0 θ = +15 θ = +30

(A) No Enhancement 45.5 % 53.0 % 64.7 % 54.7 % 48.6 %
(B) Based on Feature Adaptation [16] 55.1 % 62.2 % 70.0 % 62.9 % 56.4 %
(C) Based on Wavelet Extrema [2] 57.3 % 63.7 % 71.8 % 63.2 % 57.1 %
(D) Based on LP Residuals [1] 59.7 % 65.4 % 74.2 % 66.1 % 59.3 %
(E) Based on Equalization (Previous work) [3] 68.1 % 75.9 % 81.3 % 76.5 % 69.3 %
(F-a) Proposed Method (RTF Comp. (Sec. 3.2)) 74.9 % 77.4 % 81.3 % 78.1 % 75.7 %
(F-b) Proposed Method (RTF and gain Comp. (Sec. 3.2 & Sec. 3.3)) 76.8 % 79.2 % 81.3 % 79.9 % 77.0 %
(G) Dereverberation with θ-matched RTF (Upperlimit) [13] 78.7 % 80.4 % 81.3 % 80.7 % 79.3 %

Reverberation Time = 940 msec. @ Distance = 3.0 m θ = −30 θ = −15 θ = 0θ = 0θ = 0 θ = +15 θ = +30

(A) No Enhancement 30.7 % 37.2 % 52.7 % 40.5 % 32.1 %
(B) Based on Feature Adaptation [16] 37.0 % 43.4 % 58.7 % 44.7 % 36.8 %
(C) Based on Wavelet Extrema [2] 40.5 % 48.7 % 62.4 % 49.0 % 42.3 %
(D) Based on LP Residuals [1] 45.2 % 51.3 % 66.1 % 52.5 % 45.8 %
(E) Based on Equalization (Previous work) [3] 52.6 % 58.3 % 73.9 % 59.1 % 52.1 %
(F-a) Proposed Method (RTF Comp. (Sec. 3.2)) 58.0 % 65.2 % 73.9 % 66.7 % 59.1 %
(F-b) Proposed Method (RTF and gain Comp. (Sec. 3.2 & Sec. 3.3)) 63.8 % 67.3 % 73.9 % 68.8 % 64.9 %
(G) Dereverberation with θ-matched RTF (Upperlimit) [13] 65.8 % 69.2 % 73.9 % 70.4 % 66.7 %

same frame index across O. For a given template τ of j
frames, we extract a sequence of multi band m gain values of
[Gθ
τm(ω, 1), . . . ,Gθ

τm(ω, j), . . . ,Gθ
τm(ω, J)], for power cor-

rection. These values are then stored for online use in Sec 3.4.

3.4. Online Dereverberation

In the online mode (see Fig. 1), the visual processing scheme
identifies the face orientation θ while the microphone array pro-
cessing scheme converts the multichannel signal to a single
channel separated reverberant signal rθ . RTF and gain correc-
tion due to the change in face orientation θ as discussed in Sec
3.2-3.3 are used for dereverberation. Specifically, the adopted
dereverberation platform based on spectral subtraction in Eq.
(4) is rewritten as

|êθτ (ω, j)|2 =


|rθτ (ω, j)|2 − δ̂θmGθτm(ω, j)|rθτ (ω, j)|2

if |rθτ (ω, j)|2−
δ̂θmG

θ
τm(ω, j)|rθτ (ω, j)|2 > 0

β|rθτ (ω, j)|2 otherwise.
(15)

Note that δ̂θm and Gθτm are the pre-stored values discussed in
Sec 3.2-3.3 and are selected based on θ as identified through
the visual processing scheme.

4. Experimental Results
4.1. Setup

We evaluate the proposed method in large vocabulary con-
tinuous speech recognition (LVCSR) based on a HMM-DNN
framework. The training database is the Japanese Newspaper
Article Sentence (JNAS) corpus with a total of approximately
60 hours of speech. The test set is composed of 200 sentences
uttered by 50 speakers. The vocabulary size is 20K and the
language model is a standard word trigram model. Speech is
processed using 25ms-frame with 10 msec shift. The fBank fea-
tures of 40 dimensions. The HMM-DNN has 6 layers with 2048

nodes. The reverberation time is approximately 940 msec., and
testing is conducted at 2.0 m and 3.0 m distances, respectively.
Speaker face orientation θ is defined in degree. The generic
RTF matching that of the model training is at θ = 0, in which
the speaker is directly facing the robot. The test speakers’ face
orientation deviates at θ = −30,−15,+15,+30, respectively.
Key to evaluating the results of the different methods is the ro-
bustness of the recognition performance as θ deviates from θ =
0 (matched condition) to −30 ≤ θ ≤ +30 (mismatched condi-
tions). The test data are recorded at θ = −30,−15,+15,+30.
This is done by re-playing the clean test database using a loud-
speaker at angle θ and distances 2.0m and 3.0m, respectively.
Hence, we use real reverberant speech.

4.2. ASR Performance

The ASR results are shown in Table 1. Method (A) is when no
enhancement is employed while method (B) is the result based
on feature adaptation by [16]. Instead of suppression, method
[16], minimizes the reverberant mismatch through adaptation of
the feature vector. The result in method (C) is based on wavelet
extrema clustering [2], which operates in the wavelet domain to
remove the effects of reverberation. Method (D) is based on the
Linear Prediction residual approach [1]. By exploiting the char-
acteristics of the vocal chord, it is able to remove the effects
of reverberation. The method in (E) is based on our previous
work [3] which employs an equalization technique to mitigate
the change in face orientation. The proposed method (F-a) is
evaluated when only the RTF compensation is in effect (Sec.
3.2); and (F-b) when both the RTF and gain compensation are
employed (Sec. 3.2 and Sec 3.3), respectively. In method (G),
the result of using a θ-matched RTF is shown; RTF are mea-
sured for each microphone and for each change in θ. The result
in method (G) serves as the upperlimit for the adopted derever-
beration platform. We note that methods (E)-(G) use the same
dereverberation platform and differs only in the mitigation of
the change in the face orientation. Therefore, methods (E)-(G)
have the same performance at θ = 0.

Table 1 shows that the proposed method outperforms the
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existing methods and the previous work [3]. The recogni-
tion performance is robust to degradation when face orientation
changes relative to the original condition θ = 0. Moreover, it
outperforms the previous work in method (E) [3]. This is be-
cause the proposed method is linked to the ASR system. The
formulation to mitigate the change in the face orientation (i.e.,
RTF and gain corrections) evolves within the HMM construct.
This hinged the optimization procedure to the ASR system it-
self. In contrast, the previous work and the rest of the methods
are focused primarily on the waveform enhancement only.

5. CONCLUSION
In this paper, we have shown the method of analyzing the im-
pact of the change in the face orientation through the alteration
of both the RTF and power. These two creates a mismatch
that degrades ASR performance when using the dereverberation
framework. Moreover, we compensate its impact to the RTF by
correcting it using optimized filter coefficients, specifically de-
rived in the context of ASR. Also, the impact in power is cor-
rected as per change in face orientation. Considerable amount
of time is needed when measuring new RTFs. In the proposed
method, the re-measurement of the RTF as a function of the
face orientation can be avoided, this allows the robot to actively
mitigate its impact online. We have compared our results with
existing dereverberation methods, our previous work and the
method when using a matched RTF.

Currently, our work is limited to the definition of the change
in face orientation based on our experiment. In real world, the
face orientation is more unpredictable resulting to unsymmet-
rical face orientation relative to the robot. In our future work,
we will improve the current system to include random face di-
rections. Although the proposed method involves the concept
HMM in deriving the dereverberation and gain parameters, we
did not consider actual model adaptation in this work. Hence,
the latter will be part of our future work as well.
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