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Abstract

This paper extends our work with a theremin-
playing robot accompanist. Here, we consider
that a good accompanist should play with “ex-
pression”: small deviations in volume, pitch
and timing. We propose a Programming by
Playing approach that allows a human flutist
to transfer a performance to a robot therem-
inist, keeping these expressive changes intact.
We also examine precisely what makes music
robots play more or less “robotically, and sur-
vey the eld of musical expression in search of
a good model to make robots play more like
humans.

1 Introduction

A major challenge in human-robot interaction is the
current lack of “humanness” in robot communication.
Whereas humans express emotions using vocal inflection,
expressive gestures and facial expression, robots have
difficulty detecting these implicit emotions. Conversely,
robot speech and movements remain dry, flat and unnat-
ural. How can we make robots both detect these inex-
plicit emotions, and respond in emotionally empathetic,
expressive ways? In the field of computer music, adding
expression to synthesized music has already been a major
goal since the 1980’s [Todd, 1985a]. Musical expression
is the result of adding variations [Sundberg, 1993] to a
neutral (“robotic”) performance, giving pleasing, natu-
ral renditions, sometimes even evoking emotions from
listeners. Furthermore, there is evidence that commu-
nication of emotions in music follow the same patterns
as speech [Juslin and Laukka, 2003]. Thus, we pursue
the possibility that by giving robots musical expression
detection and production abilities, we are one step closer
to natural human-robot interaction.

We first propose a method called Programming by
Playing : our anthropomorphic robot [Mizumoto et al.,
2009] listens to a flutist’s performance with its own mi-
crophone, then replays the piece on the theremin with

Figure 1: HRP-2 robot listens to a performance with its
microphone, then replays it on the theremin by varying
pitch and volume.

the same timing and dynamics as the human (Fig. 1).
In the field of music robots, Solis et al. [Solis et al., 2007]
have already achieved an impressive increase in expres-
siveness by training an artificial neural network (ANN)
to reproduce a human flutist’s vibrato and note length.
However, expression is a multifaceted problem that we
can attack from many angles; for example, many musi-
cians are able to play a given piece in a “sad” or “happy”
manner on demand [Gabrielsson and Juslin, 1996]. How
could we make robots play with emotion, too?

In the second part of this paper, we survey musical
expression research not only from a computational mu-
sic perspective, but also a psychological perspective. We
first review some factors which make a performance ex-
pressive or not, then describe a 5-dimensional musical
expression model [Juslin, 2003] suggested by music psy-
chologist Juslin for the case of human musicians. We
suggest that by extending the Programming by Play-
ing approach to consider such a model, music robots
could both perceive human musician’s emotional inten-
tions, and produce these emotions in their own playing
as well.
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2 A programming by playing approach

Let us begin by considering the simplest method for
giving robots the appearance of human expressiveness:
mimicry. At first sight, translating a human performance
to a robot performance seems like a simple problem of
music transcription. The naive approach would be to
segment the performance into notes (using note onset
detection, for example), extract each note’s pitch and
volume, and create a robot-playable MIDI file that con-
tains each discretized note. This technique has worked
well for piano because a piece can be represented simply
by 3 parameters for each note: note length, pitch, and
key-strike velocity [Raphael, 2009].

We claim that, while MIDI transcription may work
well for piano, this note-level representation is an over-
simplification for continuous instruments such as flute,
voice and violin. Here are some concrete examples:

• Intra-note volume changes over the course of a note
(e.g. crescendo or diminuendo) add fullness and
expression for many continuous instruments. This is
often overlooked because single piano notes cannot
change volume in a controlled manner over time.

• Intra-note pitch variation known as vibrato can vary
in speed and depth within a note. In most MIDI
representations, vibrato speed and depth are set to
constant values, if present at all.

• Pitch bends, or purposely playing slightly flat or
sharp for expressive effect may be discretized to the
nearest semi-tone.

• Articulation such as legato, attacked, staccato is
produced by musicians using carefully composed
note volume envelopes. In MIDI, this is often ab-
stracted into a single average volume per note.

• Timbre. For instruments with timbral characteris-
tics, tones can be “bright” or “dull” depending on
their spectral composition; this information may be
lost, too.

In summary, many critical details that may make a per-
formance expressive can be lost when representing a
piece symbolically! Thus, we must take care to repre-
sent our score in as rich a way as possible.

2.1 An Intermediate Representation: The
Theremin Model

Raphael [Raphael, 2009] has proposed that the essence
of an expressive melodic performance can be represented
using a simple, but capable “theremin model”. The
theremin model takes after the electronic instrument of
the same name that produces a pure sinusoidal pitch.
Players can modulate the theremin’s pitch frequency and
volume independently, by moving their hands closer or
farther from the respective pitch or volume antennas.
We therefore represent a performance as a pitch trajec-
tory and volume trajectory that continuously varies over

Figure 2: Example piece played by human flutist

time. Equation 1 represents the discrete sound signal s
at time t:

s(t) = a(t) ∗ sin(f(t) ∗ 2π ∗ t), (1)

where:

• a(t) is the amplitude (a.k.a. power)

• f(t) is the fundamental frequency (a.k.a pitch)

With a sufficient number of samples per second, this
representation can capture almost all of the subtle in-
formation described in the previous section. For exam-
ple, an attacked note would be equivalent to a sharp in-
crease and quick drop in a(t). Vibrato and note changes
are captured in modulations over time in f(t). Un-
fortunately, timbral characteristics, otherwise known as
tone color, are not representable here, as a theremin’s
sound is characteristically composed of only a pure sine
wave. See [Raphael, 2009] for a modified theremin model
which adds timbre as a function of amplitude using hand-
designed functions.

This simple representation captures the essential de-
tails of a performance while allowing for inter-instrument
transfer. As noted in [Williamon, 2004], ”The commu-
nication of emotion in music is generally successful de-
spite individual differences in the use of acoustic features
among performers... and different musical instruments.”
In more concrete terms, we can take as input a recording
of a human’s performance on flute, and output a perfor-
mance by our robot thereminist.

2.2 Acoustic Processing

The input to our system is a wave file recording of a piece
played by an intermediate flute player. It is recorded us-
ing the robot’s own microphone, sampled at 44.1 kHz.
As an example, consider the excerpt from Clair de Lune
as shown in Fig. 2. Processing of the flute recording
is composed of three parts: robot noise removal, con-
tinuous power extraction, and continuous fundamental
frequency extraction.

2.2.1 Noise Reduction
To increase robustness in our next steps, we first re-

move the robot fan noise also captured during record-
ing. We use a filter called a spectral noise gate, which is
likened to “background subtraction”. By analyzing the
frequency spectrum of a “silent” part of the recording
(ie. when the flutist is not playing) we can reduce the
fan noise by 24 dB from the entire recording (see Fig. 3).
An FFT size of 2048 is used, resulting in 1024 frequency
bands.
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(a)

(b)

Figure 3: Clair de Lune original recording before (a) and
after (b) fan noise reduction.

(a)

(b)

Figure 4: Continuous power a(t) and pitch f(t) extracted
from flutist’s Clair de Lune recording.

2.2.2 Continuous Power Estimation

We now have the filtered recorded signal x(t). To ex-
tract the power a(t), we use window sizes of 512 and sum
the values of x(t)2 of each bin. We then normalize the
result to values between 0 and 1. The resulting power is
plotted in Fig. 4(a).

2.2.3 Continuous Fundamental Frequency
Estimation

Using the same input signal x(t), we estimate the
fundamental frequency at windows of 2048 using multi-
comb spectral filtering and a hopsize of 1024. Instead
of discretizing to the nearest semi-tone on the melodic
scale, we measure to the nearest frequency in Hz. We
can visualize the pitch estimation in Fig. 4(b).

2.3 From Representation to Performance

To convert the theremin model representation to a
performance, we must first consider two constraints:
instrument-related constraints and player (robot) con-
straints. Finally, we can convert our intermediate repre-
sentation to a score playable by our robot thereminist.

2.3.1 Instrument-related Constraints

In this step we modify our performance representation
depending on our target instrument. Consider that dur-
ing silent sections of the recording where a(t) is 0, the
detected frequency f(t) could have an arbitrary number
of possible settings. To relate this situation to other in-
struments, a marimba player, for example, may return to
“home position” during silent rests, and perhaps a flute
player may hold the flute neutral with no keys depressed.
In the case of our target instrument, the theremin, we as-
sume that a theremin player would anticipate the next
note during rests. Concretely, where a(t) is 0, we set
f(t) to the next non-zero value of f(t + k) where k is
positive. Other possible modifications that may fall un-
der Instrument-related constraints may include changing
register (in case the human’s instrument is, for exam-
ple, a bass instrument, and the robot’s instrument is
soprano).

2.3.2 Player-related Constraints

Beginner and expert musicians have very different ca-
pacities. In our case, our player is an HRP-2 robot
produced by Kawada Industries. However, in [Mizu-
moto et al., 2009] Mizumoto et al. showed that the
theremin-playing capabilities can be easily transfered to
other robots, including a humanoid robot developed by
Honda. In tests with another Kawada Industries robot,
Hiro, we found that Hiro can change notes faster than
HRP-2, due to a difference in arm weight. Thus, we must
either modify our representation to be “easy” enough
for our particular robot to play, or program these con-
straints into the motor module directly. For now, we
scan our representation for any changes in frequency or
volume that would violate the maximum acceleration of
our robot arm, and remove them.

2.3.3 Generating a Robot-Playable Score

In this final step, we convert our intermediate repre-
sentation score to a robot playable score. In preliminary
experiments, we found that our system could handle a
score with 3 pitch/volume targets per second (i.e., an
update rate of 3 Hz) and still play in real-time using
feedforward control. Using our Programming by Play-
ing method, we thus update our robot’s target note and
volume multiple times per note, achieving more subtle
tone and volume variations.

2.4 Preliminary Results and Improvements

We implemented Programming by Playing coupled with
the theremin volume/pitch model to transfer the per-
formance of “Clair de Lune” by a human flutist to a
robot thereminist. In informal listening tests, the result-
ing performance does indeed sound more natural than
our score-based method, but the reader is encouraged to
evaluate the performance for themselves at
http://winnie.kuis.kyoto-u.ac.jp/members/

angelica/pbp.
Although vibrato could be heard slightly, our maxi-

mum update rate of 3 Hz may have been too little to fully
define vibrato (which previously had been hand defined

24

http://winnie.kuis.kyoto-u.ac.jp/members/angelica/pbp
http://winnie.kuis.kyoto-u.ac.jp/members/angelica/pbp


at 5-10 Hz). It also remains to be seen whether using the
theremin model representation could be applied to in-
strument pairs other than flute-theremin. In particular,
we have not implemented timbre into our performance
representation, though this could be implemented with
a third continuous parameter containing the extracted
spectral centroid of the original recording.

An immediate use for Programming by Playing is al-
lowing a human ensemble player to program the robot
with his own style. That is, it is much easier to synchro-
nize with a duet player that plays with natural timings,
pauses, and articulations similar to one’s own. Other
uses for this version of Programming by Playing could
include embodying famous musicians in a music robot
based on their music recording.

Up until now, we have taken a relaxed approach to
music expressiveness. As previously conjectured, intra-
note volume variation, vibrato, pitch bends, articulation,
and potentially timbre all contribute to making a perfor-
mance more expressive. In the next section, we will see
why these minute details are so important, and examine
how we can exploit them to generate expressive perfor-
mances “from scratch”.

3 Expressive performances

3.1 Definitions

Expression is the most important aspect of a musician’s
performance skills, reports a nationwide survey of music
teachers [Laukka, 2004]. But what is expression exactly?
According to the survey, most teachers define expressiv-
ity as the communication of the emotional content of a
piece, such as joy, sadness, tenderness or anger. Occa-
sionally an expressive performance can even evoke these
emotions in the listener (’being moved’), though it is
not obligatory for music to be expressive [Davies, 1994].
What else makes human performers sound so different
from the “dead-pan” rendition of a piece by a computer?

Another typical definition of expressiveness is “devia-
tion from the score”. Although scores may be marked
with dynamic markings such as decrescendo or ac-
celerando, expert performers contribute other expressive
changes to the score [Palmer, 1997]. Typical examples
include [Kirke and Miranda, 2009]:

• unmarked changes in tempo (such as playing faster
in upward progressions of notes)

• loudness (high notes played slightly louder)

• modifications in articulation (staccato or legato)

• changes in intonation (making notes slightly flatter
or sharper)

• adding vibrato at varying frequencies

• changing the timbre, if applicable to the instrument

The regularity of these deviations suggest that perfor-
mances may be either subject to a set of grammar-like
rules, or learned to some extent, and has thus spawned a
vast number of attempts to reproduce these human-like
qualities using computational methods.

3.2 A Need for Psychological and Physical
Models

Automated computer systems for expressive music per-
formance (CSEMPs) are programs which take a score as
an input and attempt to output expressive, aesthetically
pleasing, and/or human-like performances of the score.
A recent survey of CSEMPs [Kirke and Miranda, 2009]
outlined the various approaches including rule-based, lin-
ear regression, artificial neural network, case-based and
others. There are too many approaches to outline here,
but it is the conclusion of the survey that sparks the
most interest.

According to the review, “Neurological and physical
modeling of performance should go beyond ANNs and
instrument physical modeling. The human/instrument
performance process is a complex dynamical system for
which there have been some deeper psychological and
physical studies. However, attempts to use these hy-
potheses to develop computer performance systems have
been rare.” [Kirke and Miranda, 2009] They cite an at-
tempt to virtually model a pianist’s physical attributes
and constraints [Parncutt, 1997] as one of these rare
cases. Thus, in the following sections, we delve deeper
into the phenomenon of expression, in order to better
understand this challenge.

3.3 Factors

What factors can make a performance expressive or not?
Though researchers typically focus on how the performer
is expressive, the phenomenon can involve environmen-
tal factors, too. We briefly overview these factors from
[Juslin, 2003], to better understand the variables in-
volved.

3.3.1 The Piece

The musical composition itself may invoke a particu-
lar emotion. For example, Sloboda [Sloboda, 1991] found
that certain scores consistently produced tears in listen-
ers: scores containing a musical construct called melodic
appogiaturas. Shivers were found in participants dur-
ing points of unprepared harmonies or sudden dynamic
change in the score. Score-based emotions have been
well-studied, and in a recent review of 102 studies by
Livingstone et al. [Livingstone et al., 2010], it was found
that happy emotions are most correlated with pieces
in major keys, containing simple harmonies, high pitch
heights, and fast written tempos. Loud pieces with com-
plex harmonies, in a minor key with fast tempos were
considered “angry”, and so on. Though we choose not to
treat this score-based emotion in the present paper, this
is useful to know so we do not confuse emotion evoked by
a written score with emotion projected by a performer.

3.3.2 The Listener

The musical background and preferences of the lis-
tener may have an effect on the perceived expressiveness
of a piece. For example, listeners with less musical edu-
cation appear to rely more heavily on visual cues (such
as gestures or facial expression) rather aural cues when
deciding on an affective meaning of a musical perfor-
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mance [Thompson et al., 2005]. However, even children
at the age of 5 years are able to differentiate happy and
sad pieces based on whether the tempo is fast or slow,
and six-year-olds can classify additionally based on ma-
jor versus minor mode [Dalla Bella et al., 2001]. Inter-
estingly, detection of basic emotions such as joy, sad-
ness, and angry even appear to be cross-cultural: West-
ern and Japanese listeners are able to distinguish these
emotions in Hindustani ragas [Balkwill and Thompson,
1999]. Thus, though we should take care during evalu-
ations of expressiveness, we should know that detection
of emotion in music is not as elusive as it may seem.

3.3.3 The Context
The performance environment, acoustics or influence

from other individuals present can also affect the expres-
sion perceived [Juslin, 2003]. For example, music at a
patriotic event may evoke more emotion in that context
than in another. Another example is Vocaloid’s virtual
singer Hatsune Miku, who performs at concerts to a large
fanbase despite being a synthetic voice and personality.
In these cases, perceived expressiveness may also depend
on factors such as visual and cultural context.

3.3.4 The Instrument
Whereas percussion instruments such as piano can

only vary timing, pitch and volume, continuously con-
trolled instruments such as flute and violin have many
more expressive features. They can change timbre to ob-
tain “bright” versus “dull” tones [Raphael, 2009], have
finer control over intensity and pitch, and can produce
vibrato. Interestingly, human voice is also in this set of
continuously controlled instruments. Since many studies
find that timbre, pitch variations and vibrato [Living-
stone et al., 2010] can have an effect on the perceived
expressiveness, the choice of instrument can limit or ex-
tend the ability to convey a particular emotion.

3.3.5 The Performer
Clearly the most important factor of expression lies

in the performer, which is why this factor has been so
extensively studied. The musician’s structural interpre-
tation, mood interpretation, technical skill and motor
precision can all affect the perceived expressiveness. We
explore the expressive aspects of a performer in detail in
the next section.

3.4 A Model for Performer Expressiveness

Up until now, performer expressiveness has been infor-
mally described by a large number of performance fea-
tures, such as playing faster and louder, and with more
or less vibrato. Are there any models that can bring
order and sense to these empirically derived findings?

Four computational models for expressive music per-
formance were considered in [Widmer and Goebl, 2004]:
KTH’s rule-based model [Bresin et al., 2002], Todd’s
model based on score structure [Todd, 1985b], Mazzola’s
mathematical model [Mazzola, 2003], and Widmer’s ma-
chine learning model [Widmer and Goebl, 2004]. How-
ever, according to the CSEMP review, they are still not
sufficient. As the review points out, we should search for

a model that adheres to certain requirements: it should
take into account psychological and neurological factors,
as well as physical studies.

Music psychologist Juslin proposed a 5-faceted model
[Juslin, 2003] [Juslin et al., 2002] that separates
expressive performance into a manageable, but all-
encompassing space: Generative rules, Emotion pat-
terns, Random variance, Motion-inspired patterns, and
Stylistic unexpectedness (called GERMS). Details of
each element are described shortly. Juslin et al. im-
plemented the first 4 parts of the model in 2002 using
synthesis [Juslin et al., 2002], and tested each facet in
a factorial manner. Their results, along with evidence
that each of these facets corresponds to specific parts
of the brain [Juslin and Sloboda, 2010], make this model
promising. Even if Juslin’s model is not quite correct, we
claim that it is still very useful for designing factorized
modules for robot expression.

3.4.1 Generative rules for musical structure
Similar to speech prosody, musicians add beauty and

order to their playing by adding emphasis to remark-
able events [Juslin and Sloboda, 2010]. By adding the
following features, the musician makes their structural
interpretation of a piece clear:

• Slow at phrase boundaries [Clarke, 1988]

• Play faster and louder in the center of a phrase
[Todd, 1985b]

• Micropause after phrase and subphrase boundaries
[Friberg, A. And Sundberg, J. And Fryden, 1987]

• Strong beats louder, longer, and more legato
[Palmer and Kelly, 1992]

A complete and slightly different ruleset is listed in
Juslin’s experiments [Juslin et al., 2002]. Listeners rated
synthesized pieces with this component as particularly
“clear” and “musical”.

3.4.2 Emotion
We previously defined musical expression partly as the

ability to communication emotion. Particular sets of mu-
sical features can evoke emotions, such as happiness, sad-
ness, and anger. Livingstone et al. recently surveyed 46
independent studies and summarized the main acous-
tic features corresponding to each of 4 basic emotions
[Livingstone et al., 2010]. We reproduce here the most
notable of each group. Note that the order may mat-
ter (i.e., first features characterizing the emotion more
strongly). In the case of conflicting reports, we removed
the one with less experimental backing.

1. Happy: Tempo fast, Articulation staccato, Loud-
ness medium, Timbre medium bright, Articulation
variability large, Note onset fast, Timing variation
small, Loudness variability low, Pitch contour up,
Microstructure regularity regular, F0 sharp

2. Angry: Loudness loud, Tempo fast, Articulation
staccato, Note onset fast, Timbre bright, Vibrato

26



large, Loudness variability high, Microstructural
regularity irregular, Articulation Variability large,
Duration contrasts sharp

3. Sad: Tempo slow, Loudness low, Articulation
legato, F0 flat, Note onset slow, Timbre dull, Ar-
ticulation variability small, Vibrato slow, Vibrato
small, Timing variation medium, Pitch variation
small, Duration contrasts soft

4. Tender: Loudness low, Tempo slow, Articulation
legato, Note onset slow, timbre dull, Microstruc-
tural regularity regular, Duration contrasts soft

In the evaluation of this factor, happiness versus sadness
were implemented by varying tempo, loudness, and ar-
ticulation. Upon adding emotional cues, listeners judged
the piece as “expressive” and “human” by a large factor.

3.4.3 Randomness
Humans, unlike computers, cannot reproduce the ex-

act same performance twice. In studies on finger tap-
ping [Madison, 2000], even professional musicians varied
3-6% (of the inter-onset interval) in tapping precision. It
is thus why some software programs such as Sibelius add
some random fluctuation to make MIDI playback sound
more human [Kirke and Miranda, 2009]. Interestingly,
these fluctuations are not completely random; the varia-
tion can be simulated by a combination of 1/f noise and
white noise [Gilden et al., 1995]. Motor delay noise was
simulated in [Juslin et al., 2002] by adding white noise
to each note onset time and sound level. Internal time-
keeper lag was added by white noise as a function of the
note length, filtered to obtain 1/f pink noise.

Although the idea of making robots purposely less pre-
cise sounds intriguing, it remains to be seen whether mu-
sic robots do actually play as perfectly as the computer
clocks that control them. Do they achieve perfect tim-
ings despite variations in environment such as network
lag and motor delay? In computer synthesis tests this
randomness factor made performances more “human”
over the neutral versions.

3.4.4 Motion constraints
The fourth component refers to two kinds of motion

constraints. One pertains to voluntary patterns of hu-
man biological motion. Mainly, the final ritardandos of
musical performances has been found to follow a func-
tion similar to that of runners’ decelerations [Friberg and
Sundberg, 1999], but more examples can be found in
[Juslin et al., 2002]. The other kind of motion constraint
is information that specifies that the performer is human.
For example, a pianist could not physically play two dis-
tant notes faster than two notes side-by-side. This is an
involuntary motion constraint.

In terms of robot implementation, safety mechanisms
are probably already programmed into lower level mo-
tor controls of our music robots. This corresponds to
the latter, involuntary constraint. However, similar to
the Player-related constraints described in our Program-
ming by Playing approach, it could be possible to add
additional motor constraints that mimic natural human

movement curves. For example, our pitch or volume tra-
jectories could be smoothed or interpolated with splines.
As for the effect of adding the biological motion con-
traint: listeners rated synthesized pieces more “human”.

3.4.5 Stylistic unexpectedness
Despite the systematic discovery of many common ex-

pressive features among musicians, humans of course
have the freedom to change their style on a whim. For
examples, some performers may intentionally play the
repeat of a same phrase differently the second time, or
a musician may pause longer than usual for dramatic
effect. Indeed, in a study on pianists playing the same
piece, it was found that graduate students had rather ho-
mogenous timing patterns, whereas experts showed more
originality and deviations [Repp, 1997].

This element was not included in Juslin’s tests due to
the difficulty in implementation. Indeed, this could be
the crux of what gives originality to a robot’s perfor-
mance. Could we use Programming by Playing to learn
the probabilistic tendency of one or many human artists?
Could we shape a music robot’s “personality” based on
this factor (more or less showmanship, or extroversion)?
How exactly to approach this module is an open area for
research, and perhaps AI in general.

3.5 Towards an Expressive Music Robot

It seems clear that an expressive music robot should thus
have 5 modules:

1. Prosody controller: to clarify music structure

2. Emotion controller: to store and produce an in-
tended emotion

3. Humanness controller: to add randomness to im-
itate human imprecision

4. Motor smoothness controller: to mimic human
biological movement

5. Originality controller: to add unexpected devia-
tions for originality

Although we are still far from implementing this model
in full, we have started by implementing the Prosody and
Emotion controller. We start with a hand-entered score
of the traditional folk song, Greensleeves. Then, it is
modified using the generative rules for musical structure
mentioned previously. We then address Emotion using
Programming by Playing. Focusing on the articulation
feature, we record a flutist playing notes in each of the
Happy (staccato) and Sad (legato) styles.

We extract volume envelopes for each type as shown
in Fig. 5, and apply the volume envelopes to all notes
in the continuous volume representation. Our result is
two different performances, one to convey sad emotion
and the other conveying happiness. It is unclear whether
the robot performances effectively convey the emotions
as desired, but expressiveness again seems improved over
the neutral version. In addition, we have achieved ex-
pressiveness without resorting to mimicry.
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(a) (b)

Figure 5: Volume envelopes for staccato and legato ar-
ticulations.

In an ideal version of Programming by Playing, more
features (not only articulation) should be extracted. By
extracting these acoustic features automatically, perhaps
similar to [Mion and De Poli, 2008], we could recognize
the emotional content of the human musician.

4 Conclusion and future work

In this paper, we introduced a paradigm called Program-
ming by Playing. We showed how it could be used for
expressive robot performance through both mimicry and
generation. A key point of the approach was that small
details in performance can have a great impact on a
performance’s expressive content; thus, a good symbolic
representation is important.

We also tried to demystify the phenomenon called ex-
pression – by applying a 5-facet model to music robot
design, we realize that features for structural clarity and
emotion are distinct. Another interesting find was that
in order to sound more human, we may need to add
slight human imprecision. This may be contrary to our
current efforts to make “virtuoso” music robots that play
faster, but more unrealistically. And finally, the key in-
gredient missing before music robots will be accepted is
a kind of originality or “personality”, giving the element
of surprise to performances.

All of these factors may be applicable to robot de-
sign in general, for example making synthetic voice and
movement less “robotic”. Yet, what is the goal for music
robots? Do we want them to sound more realistic, more
human? If that is the case, this complex phenomenon
called expression may be the missing ingredient.
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