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M & BT VOCALOID & 7 DA A Az~ DG AT EE
Singing Synthesizer “VOCALOID” and its possible application to embedded devices
REEFHL HEBHE (v~ (BF) e % —)
Hideki KENMOCHI, Yasuo YOSHIOKA (Yamaha Corporation))

kenmochi@beat.yamaha.co.jp, yass@beat.yamaha.co.jp

Abstract—This paper describes overview of the commer- = — V({32 a7 =5 ¢ ¥ (Q% W THE/F & Hiilz
cial singing synthesis software “WOCALOID,” A proto- A 754~ (Figure 2.). #F7 1 7 7 U (DI IZ EBEO#K
type board where its synthesis engine is ported to a D%@%&A\HE‘?‘_& MHERY LS EER NS TN,

is also shown. Its application possibility as an embeddeﬂﬁ}ii‘/?‘/(c)&i%i?zf 25 MBI Y LT
= B TN

device is discussed.
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3. VOCALOID-board
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Figure 3. VOCALOID-board
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Design and Implementation of Omni-Directional Ball Microphone Array
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*National Institute of Advanced Industrial Science and Technology
fooooooo

tKansai Electric Power Co., Inc.

y-sasaki@aist.go.jp

Abstract

This paper presents a microphone array design
and the evaluation result of the developed mi-
crophone array. We propose an evaluation in-
dex of directional characteristic of Delay and
Sum BeamForming to optimize microphone ar-
ray design. Using beamforming simulation, we
obtain a microphone arrangement which mini-
mizes sidelobes, and improves the basic perfor-
mance of beamforming. It has 64 microphones
in a 350mm diameter ball designed to mount on
a mobile robot and omni-directional directiv-
ity in azimuth and elevation. The performance
of the proposed microphone array is verified in
different real environments. Experimental re-
sults of sound localization show the effective-
ness of the array in some challenging environ-
ment and its robustness for different pressure

sound sources to cover larger areas.
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Figure 1: Directivity pattern of DSBF
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e 00DDDO : 0.2 0.3, 0.4, 0.6, 0.8, 1.0 [m]
e 00DODOODO : 30,50, 70, 90, 110, 130, 150, 170
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a) Mainlobe size

b) Sidelobe gain

¢) Performance Boundary

Figure 2: Consideration of Array Size and Number of Microphones
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Figure 5: Directivity Pattern of Proposed Microphone
Array
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Figure 6: Developed Microphone Array
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Table 1: Spec. of The Microphone Array Board

Microphone Primo EM100PT
Num. of Channels 64
Sampling Frequency 8, 16, 32, 48 [kHz]
Resolution 16 [bit]
AK4563A
Amplifier (Programmable Gain Amp.)
Interface USB 2.0
Power Supply +5 [v]
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Figure 7: Average Sound Localization Error in Static
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Abstract

Human-Robot Interaction using free hand gestures
and speaking word is more importance for humans
which are operating robots in home or office envi-
ronments. In this paper, we propose a novel tech-
nique for learning gesture command and spoken
language command, action corresponding to these
command by just observing interaction behavior of
user with robot operated by a human operator. The
main contribution of this paper is the introduction
of anovel algorithm to segment and cluster patterns
in its perceived signals. Proposed algorithm find
gesture patterns and action patterns by using in-
formation of speech unit. The Experimental result
shows that gesture patterns and action patterns are
able to discovered with 85.0% ,88.0% respectively

by using proposed pattern discovery algorithm.
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Figure 1: Environment for experimentation
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Table 1: The word set used in the experiment
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Figure 2: System flow
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Figure 3: An example of input data
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Figure 4: An example of failure case of segmentation
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Figure 5: A segmentation result by improved method

Figure 6: The approach for decision of segmentation unit
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Figure 8: A failure case of clustering (upper shows the ges-
ture pattern which means Turn right, lower shows the gesture

pattern which means Turn left)
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Abstract

Speech recognition in reverberant environments
is a difficult task. Reverberation has the effect
of degradation of recognition performance due
to acoustic mismatch. We present an optimiza-
tion method of the wavelet parameters for dere-
verberation in automatic speech recognition
(ASR). By tuning the wavelet parameters to
improve the acoustic model likelihood, wavelet-
based dereverberation methods become more
effective in the ASR application. We evalu-
ate several existing wavelet-based methods and
optimize them, based on our proposed scheme.
Experimental evaluations through ASR experi-
ments demonstrate significant improvement for
all methods with the proposed optimization.

Index Terms: Robustness, Speech recognition, Dere-
verberation

1 Introduction

Reverberation is a phenomenon caused by the reflec-
tion of the speech signal in an enclosed environment.
When analyzing in short time fourier transform (STFT),
the current observed speech frame is smeared with the
speech energy of the preceding frames. This degrades
the acoustic quality of the speech signal and is detrimen-
tal to the ASR system. The reverberant speech model
X(f,t) we adopt is based on the additive effects of the
early Xp(f,t) and late X (f,t) reflection,

X(f,t) =~

~
~

XE(fvt) + D XL(fu t)
SHOH(S0) + 2g=y S(fot — ) H(f, d)
(1)
where S(f,t) and H(f,t) are the frequency response of
the clean speech and the room impulse response (RIR),
respectively. D is the number of frames, over which the

Randy Gomez is a research fellow of the Japan Society
for the Promotion of Science (JSPS).
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reverberation (smearing) has an effect. The early reflec-
tion is due to the direct signal and some reflections that
occur at earlier time, while the late reflection, whose
effect spans over frames, can be treated as long-period
noise [1]-[4]. The former is mostly addressed through
Cepstral Mean Normalization (CMN) in the ASR system
as it falls within the frame. In our application, dere-
verberation is defined as suppressing the effects of the
late reflection. Since the late reflection can be treated
as noise, we can apply existing wavelet-based denois-
ing techniques to dereverberation problems based on the
context of our reverberant speech model.

Most of the speech enhancement algorithms are ap-
plied in the frequency domain, using short-time Fourier
transform (STFT) where the time resolution is the same
for all frequency components. Some enhancement meth-
ods are applied in wavelet domain which provides more
flexible time-frequency representation of speech. There
have been a lot of research involving wavelet-based
speech enhancement primarily in denoising [5]-[8]. Orig-
inally, wavelet-based enhancement methods were pro-
posed to address denoising problems. Most recently, it
is expanded to address the effects of reverberation.

Existing wavelet-based methods are generally de-
signed to enhance the speech waveform, but this does
not guarantee an improvement in performance for ASR
application. In this paper, we present a method of op-
timizing the wavelet parameters for dereverberation in
ASR. In our proposed scheme, prior to wavelet-based
dereverberation, the wavelet parameters are optimized
to improve the likelihood of the acoustic model. We ex-
pand existing wavelet-based speech enhancement meth-
ods for the dereverberation application. Then, we incor-
porate the proposed scheme of optimizing the wavelet
parameters for effective dereverberation in the ASR ap-
plication. In this paper, noise and late reflection are
jointly referred to as “contaminant signal”.

The paper is organized as follows; Section 2 gives
the background of the different wavelet-based methods
which we will evaluate and optimize. In Section 3, we
present the optimization method of wavelet parameters.
Experimental set-up and ASR evaluation results are pre-
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sented in Section 4. Finally, we conclude this paper in
Section V.

2 Dereverberation Methods using
Wavelets

In this section, we will discuss existing wavelet-based
methods. Specifically in this paper, we consider five
wavelet-based methods. The last method was previously
proposed by the authors [9].

2.1 WaveShrink

The basic wavelet enhancement approach [10] is based on
the idea that real-world signals do not necessarily require
full resolution treatment. In speech application, a lim-
ited number of wavelet coefficients in the lower band are
deemed sufficient to reconstruct the speech signal. These
coeflicients are characterized by higher values compared
to the contaminant signals (i.e. noise or late reflections).
Thus, by shrinking the contaminant wavelet coefficients,
its effects are removed. In general, the waveshrink ap-
proach is applicable when the contaminant signal is ho-
mogeneously concentrated on the other side of the spec-
trum (e.g. higher frequencies). Problems may arise in
ASR applications, because some parts of speech have
important information in the higher frequencies (i.e con-
sonants and unvoiced regions).

2.2 Thresholding

An improved version of the waveshrink approach is im-
plemented by means of a thresholding algorithm. Unlike
its predecessor, the thresholding approach is more flex-
ible in dealing with the wavelet coeflicients by defining
a threshold criterion. A particular wavelet coefficient of
interest may be shrunk or scaled based on this criterion.
An example based on soft thresholding [11] is defined as

x| < thr

_ 0
v { sign(z)(] x| —thr) @

x| > thr

Based on the threshold thr, Eq. (2) can be interpreted
as setting the contaminant subspace to zero, and im-
plementing a magnitude subtraction in the speech plus
contaminant subspace. The threshold that defines the
subspace of the contaminant signal can be calculated
[11] as

thr = o4/ 2 log(L), (3)

where L is the length of the contaminant signal with
variance 2. Other thresholding criteria are Hard, Firm,
Garrote and Step — garrote. The thresholding technique
has some known problems; If the spectrum of the con-
taminant signal is not uniform, the method has difficulty
in distinguishing the desired subspace from the contam-
inant subspace. Since thresholding is directly applied to
the wavelet coefficients, the quality of the reconstructed
signal is sensitive to the threshold.
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2.3 Improved Wavelet-based Speech
Enhancement System

To address the problems in both the waveshrink and
thresholding methods, a more advanced method is pro-
posed [12]. This system employs an automatic pause de-
tection algorithm using a voice activity detection (VAD)
and introduces several threshold profiles for different
types of contaminant signals. With the VAD, a more ac-
curate estimation of noise power is achieved. In addition
to the VAD, it incorporates speech signal features in the
system. It also implements a mechanism that efficiently
selects suitable parameters for voiced, unvoiced and si-
lence regions, separately. The use of several threshold
profiles enables switching several threshold criteria ac-
cording to the contaminant signal. Consequently, the
system can cope with colored and non-stationary con-
taminant signals.

2.4 Wavelet Extrema Clustering

Another method based on the adoption of the speech
production model is the wavelet extrema clustering. It
assumes that the detrimental effects of the contaminant
signal introduce zeros into the overall system and only
affects the speech excitation sequence (not the all-pole
filter) [13]. A class of wavelets are employed to decom-
pose the LPC residuals to calculate the wavelet extrema.
The underlying impulsive structure of the desired speech
(non-reverberant) are captured by locating the extrema
which has the characteristics of being well clustered. The
extrema at each wavelet scale are effective indicators
of the impulses (clean speech) in the contaminated sig-
nal. These are used to reconstruct the non-reverberant
speech.

2.5 Wavelet Filtering with Wiener Gain
We have previously expanded the multi-band wavelet do-
main filtering [9] to address the dereverberation problem
[14]. The general expression of the Wiener gain at band
m [14] is expressed as

S(v,7)?

m

S(v,7)2, + XL(U,T)fn7

Km = (4)
where S(v,7)2, and XL(U,T)fn are wavelet power esti-
mates for the clean speech and the late reflection, respec-
tively. And v and 7 are the wavelet parameters scale and
shift, which will be explained in Section 3. Wavelet fil-
tering is carried out by weighting the reverberant wavelet
coefficients X (v, 7) with the Wiener gains as,

X (v, T)m(enhanced) = X (0, T)m - (5)

In Eq. (5), the Wiener weighting x,, dictates the degree
of suppression of the late reflection to the observed sig-
nal. If the late reflection power estimate is greater than
the estimate of the speech power, then k,, for that band
may be set to zero or a small value. This attenuates
the effect of the late reflection. Moreover, if the power
of the clean speech estimate is greater, the Wiener gain
will emphasize its effect. The enhanced wavelet coeffi-
cients are converted back to the time domain through

K-
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Figure 1: Block diagram of the wavelet optimization scheme.

inverse wavelet transform (IWT). In our previous work
[14], the wavelet parameters are not optimized to track
the clean speech and the late reflection given a reverber-
ant observation.

3 Optimizing wavelet Parameters v and
7 based on Acoutsic Model Likelihood

A wavelet is generally expressed as
1y ) 7

al

where ¢ denotes time, v and 7 are the scaling and shifting
parameters respectively. ¥ (t*TT) is often referred to as
the mother wavelet. Assuming that we deal with real-

valued signal, the wavelet transform (WT) is defined as

1 t—T1

Y(v,7,t) =

(6)

v

Flo,7) = / FOU(, 7, 1), (7

where F(v,7) is the wavelet coefficients and f(t) is the
time-domain function. With an appropriate training al-
gorithm we can optimize 7 and v so that the wavelet
captures specific characteristics of a certain signal of in-
terest. The resulting wavelet is sensitive in detecting the
presence of this signal given any arbitrary signal.

For illustration purpose, we will only show the op-
timization of the wavelet parameters v and 7 for the
wavelet filtering method discussed in Section 2.5. In the
wavelet filtering method, we are interested in detecting
the power of clean speech and late reflection given a re-
verberant signal.

We optimize the wavelet to detect clean speech and
late reflection separately based on the acoustic model
likelihood as shown in Fig. 1. In ASR, we assume that
the speech does not vary for a certain time-frame. Thus,
optimizing a single wavelet template for speech will be
sufficient. In Fig. 1 (top) we illustrate the optimiza-
tion of the wavelet for clean speech. Wavelet coeflicients
S(v,T), extracted through Eq. (7), are converted back
to time domain s, r. Likelihood scores are computed
using the clean speech acoustic model As. The process
is iterated, adjusting v and 7. The corresponding v=a
and 7=a that result to the highest score are selected.
In the case of the late reflection in Fig. 1 (bottom), D
templates are to be optimized for both scale (vq,...vp)

18

and shift (71,...,7p). These correspond to D preced-
ing frames that cause smearing to the current frame of
interest. We note that the effect of smearing is not
constant, thus D templates are created. By estimat-
ing the reverberation time Tgp, we can generate the im-
pulse response and its corresponding late reflection co-
efficients hy. Both T estimation and impulse response
generation are discussed in [15]. Then, late reflection
observations x; are generated by convolving the clean
speech with hy. Next, wavelet coefficients X (v, 7) are
extracted through WT (Eq. (7)). To make sure that
X (v,7) is void of speech characteristics, thresholding
is applied to X (v,7). Speech energy is characterized
with high coefficient values [11] [12] and thresholding
sets these coefficients to zero,
0 ,| X | > thr

XL_{XL X | < thr (8)

thr is calculated similar to that in Eq. (3). The thresh-
olded signal is converted back to time domain Z,, -, and
evaluated against a late reflection model Az,. The pa-
rameters v and 7 are adjusted and the corresponding
v={b1,...bp} and 7={(1,...0p } that result to the highest
likelihood score are selected. We note that the acoustic
model A is trained with clean speech data, while Az,
uses the synthetically generated late reflection data with
thresholding applied.

By using these optimized wavelet parameters, we can
estimate both the clean speech and late reflection power
directly from the observed reverberant signal X (v, )
and use these to estimate the Wiener gain in Eq. (4).
Thus, the speech power estimate becomes

2

m?

S(v,7)? ~ X(a,q) (9)

and the late reflection power X, (v, T)fn estimate

X(blaﬂl)Q ) d=1

d—1 2

—; X (bg,

kild_(f ﬂk) +X(bd56d)$n )
otherwise

X1 (ba, Ba)?, =

(10)
where d (smearing effect) is the d-th frame template (for
k:1,...,D).



Table 1: System specification used in evaluating the system

Sampling frequency

16 kHz

Frame length

25 ms

Frame period

10 ms

Pre-emphasis

1—0.97271

Feature vectors

12-order MFCC,
12-order AMFCCs
l-order AE

HMM

8256 Gaussian pdfs

Training data

Adult by JNAS

Test data

Adult by JNAS

Figure 2: Overall system diagram (Training and Testing).

Table 2: Recognition performance for different wavelet-based methods (No adaptation).

200 ms 400 ms | 600 ms || average
No processing; clean model 68.6 % 413% | 214 % 43.8 %
No processing; reverberant model 75.4 % 61.2% | 321 % 56.2 %
(1) WaveShrink (Sec. 2.1) 759% | 633% |406% | 60.0%
(14) WaveShrink + wavelet optimization 76.7 % 654 % | 449 % 62.3 %
(2) Soft thresholding (Sec. 2.2) 76.5 % 65.8% | 46.7% | 63.0%
(24) Soft thresholding + wavelet optimization 781 % 671 % | 492 % 64.8 %
(3) Improved wavelet-based speech enhancement (Sec. 2.3) 77.3 % 66.7% | 50.6% | 64.8%
(34) Improved wavelet-based speech enhancement + wav. opt. || 79.1 % % | 68.5 % | 54.0 % 67.2 %
(4) Extrema clustering (Sec. 2.4) 78.4 % 671 % |59.7% | 684%
(4+) Extrema clustering + wavelet optimization 80.8 % 69.8% |629% || 1.1 %
(5) Wavelet filtering (Sec. 2.5) 81.5 % 714% [ 645% | 7125 %
(5+) Wavelet filtering 4+ wavelet optimization 83.2 % 74.6 % | 68.6 % 75.5 %

4 Experimental Evaluations

We have evaluated the proposed scheme and the five
wavelet-based methods described in Section 2. Evalua-
tion is carried out in large vocabulary continuous speech
recognition (LVCSR). The training database is from the
Japanese Newspaper Article Sentence (JNAS) corpus
with a total of approximately 60 hours of speech. The
open test set is composed of 200 utterances uttered by
50 speakers. ASR experiments are carried out on the
Japanese dictation task with a 20K vocabulary. The
language model is a standard word trigram model. The
acoustic model is a phonetically tied-mixture (PTM)
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HMMs with 8256 Gaussians in total.
cation is summarized in Table 1.

System specifi-

We experimented in the condition of reverberation
time: Tgp=200 ms, 400 ms and 600 ms. Reverberant
training data are synthetically produced with the auto-
matically generated RIR as discussed in [15]. Test per-
formance is evaluated using real data recorded in a room
with known reverberation time: Tgo=200 ms, 400 ms and
600 ms. In the experiments, we used a total number of
bands M = 5 which was found to be effective [1][3]. The
wavelet used here is the Daubechies wavelet which was
also used in [14].



Table 3: Recognition performance for different wavelet-based methods (MLLR adaptation).

200 ms 400 ms | 600 ms || average
No processing; clean model 70.3 % 432 % | 24.8% 46.1 %
No processing; reverberant model 76.5 % 632% | 351% 58.2 %
(1) WaveShrink (Sec. 2.1) 76.4 % 64.8% | 41.1% || 60.8 %
(14) WaveShrink + wavelet optimization 779 % 672 % | 464 % 63.8 %
(2) Soft thresholding (Sec. 2.2) 77.8 % 675 % | 471 % 64.1 %
(24) Soft thresholding + wavelet optimization 79.0 % 68.6 % | 51.4% 66.3 %
(3) TImproved wavelet-based speech enhancement (Sec. 2.3) 78.5 % 679% |521% | 65.1%
(34) Improved wavelet-based speech enhancement + wav. opt. || 80.0 % % | 69.56 % | 56.2 % 68.5 %
(4) Extrema clustering (Sec. 2.4) 79.6 % 682% | 61.5% | 69.7%
(44) Extrema clustering + wavelet optimization 81.5 % 70.7% | 64.1 % 721 %
(5) Wavelet filtering (Sec. 2.5) 82.7 % 727% | 66.9% 741 %
(54) Wavelet filtering + wavelet optimization 84.2 % 76.3 % | 69.5 % 76.6 %

The process flow of the experiment is shown in Fig.
2. During training, we optimize the wavelet parame-
ters. Using the optimized wavelet parameters, we im-
plemented the wavelet-based dereverberation methods
discussed in Section 2, then trained individual acoustic
models. During testing, the optimized wavelet parame-
ters were used together with the wavelet-based derever-
beration methods to process the reverberant test data.
Then, processed data were evaluated in ASR. In our ex-
periments, the actual optimization of the wavelet pa-
rameters may vary for each of the different wavelet-
based dereverberation methods, depending on individual
unique requirements. Nevertheless, the criterion of max-
imizing the likelihood for the ASR application is main-
tained for all the methods.

We also implemented a model adaptation based
on Maximum Likelihood Linear Regression (MLLR)
[16][17]). Model adaptation is used to minimize the mis-
match between training and testing conditions. The
MLLR adaptation estimates linear transformations for
groups of model parameters to maximize the likelihood
of the adaptation data. In our adaptation experiment,
we used 50 adaptation utterances.

We show the ASR performance in word accuracy for
all methods in Tables 2-3. The conventional acoustic
model training based on Baum-Welch is used in Table
1 (No adaptation). In Table 2, acoustic model adapta-
tion was implemented using MLLR. In the case of the
MLLR, the adaptation data is limited to using only 10
adaptation utterances. In usual case, several adaptation
utterances are used (more than 10) for improved per-
formance. In this experiment, we only wanted to verify
whether adaptation works in our proposed method.

For reference, we show on the top the results when the
reverberant data are not processed and matched against
clean and reverberant acoustic models, respectively. We
show the results based on waveshrink and thresholding
(Sections 2.1 and 2.2 ) in (1) and (2), respectively. The
improvement in (14) and (2+) from (1) and (2) are
the results when the wavelet parameters are optimized.
The improved wavelet-based enhancement system that
incorporates VAD and threshold profiles (Section 2.3) is
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shown in (3). In (34+), an improvement in performance
is attained when wavelets are optimized as compared to
(3). Another method based on extrema clustering (Sec-
tion 2.4) is provided in (4) together with the optimized
wavelet version in (44). The result of our previous dere-
verberation approach (Section 2.5) [14] is shown in (5),
while the result of incorporating wavelet optimization
discussed in Section 3 is given in (5+).

The results in Tables 2-3 show that all the methods
(1-5) benefit from the proposed method. By optimizing
the wavelet parameters, the dereverberation process is
more tuned to improving the acoustic model likelihood.
As a result, it becomes more effective in the ASR appli-
cation. Moreover, we observe a consistent improvement
in recognition performance when the model adaptation
was conducted. Thus, the proposed optimized derever-
beration method also works in the context of adaptation.

We note that in (1),(2) and (3), dereverberation
is implemented by means of directly thresholding the
wavelet parameters. This may have detrimental effects
to the speech recognition performance due to the non-
smooth nature of the thresholding function. In our
method, thresholding is only used to select the the op-
timal wavelet parameters and not directly applied to
the wavelet coeflicients. The actual weighting of the
wavelet coeflicients is through Wiener filtering, which
is a smoother weighting function based on the power
ratio of the estimated clean speech and late reflection.
Moreover, (1),(2),(3),(4) and (5) are originally based on
improving the speech quality (hearing) of the derever-
berated signal. However, improving the speech quality
may not necessarily translate to improvement in ASR
performance. Thus, when we optimized the system for
ASR, we have achieved improvement in the recognition
performance.

5 Conclusion

Wavelet-based speech enhancement approach has been
successfully used in addressing denoising problems. Its
application has been extended to reverberant scenarios.
Although satisfactory improvement in signal-to-noise ra-



tio has been reported, the existing approach is primar-
ily optimized for improved human perception. In our
method, we are interested in optimizing the wavelet-
based dereverberation for ASR.

We proposed to optimize the wavelet parameters used
in dereverberation in ASR. This scheme guarantees that
the optimized parameters improve the model likelihood
used in ASR. We have evaluated existing wavelet-based
methods. Moreover, we have shown that our approach
is effective in improving the ASR performance when ap-
plied to different wavelet-based dereverberation meth-
ods. In the future, we investigate the effects of contami-
nated noise and extend this work to deal with both noisy
and reverberant environment conditions.
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Abstract

This paper extends our work with a theremin-
playing robot accompanist. Here, we consider
that a good accompanist should play with “ex-
pression”: small deviations in volume, pitch
and timing. We propose a Programming by
Playing approach that allows a human flutist
to transfer a performance to a robot therem-
inist, keeping these expressive changes intact.
We also examine precisely what makes music
robots play more or less “robotically, and sur-
vey the eld of musical expression in search of
a good model to make robots play more like
humans.

1 Introduction

A major challenge in human-robot interaction is the
current lack of “humanness” in robot communication.
Whereas humans express emotions using vocal inflection,
expressive gestures and facial expression, robots have
difficulty detecting these implicit emotions. Conversely,
robot speech and movements remain dry, flat and unnat-
ural. How can we make robots both detect these inex-
plicit emotions, and respond in emotionally empathetic,
expressive ways? In the field of computer music, adding
expression to synthesized music has already been a major
goal since the 1980’s [Todd, 1985a]. Musical expression
is the result of adding variations [Sundberg, 1993] to a
neutral (“robotic”) performance, giving pleasing, natu-
ral renditions, sometimes even evoking emotions from
listeners. Furthermore, there is evidence that commu-
nication of emotions in music follow the same patterns
as speech |Juslin and Laukka, 2003]. Thus, we pursue
the possibility that by giving robots musical expression
detection and production abilities, we are one step closer
to natural human-robot interaction.

We first propose a method called Programming by
Playing: our anthropomorphic robot [Mizumoto et al.,
2009] listens to a flutist’s performance with its own mi-
crophone, then replays the piece on the theremin with
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Figure 1: HRP-2 robot listens to a performance with its
microphone, then replays it on the theremin by varying
pitch and volume.

the same timing and dynamics as the human (Fig. I_D
In the field of music robots, Solis et al. [Solis et al., 2007]
have already achieved an impressive increase in expres-
siveness by training an artificial neural network (ANN)
to reproduce a human flutist’s vibrato and note length.
However, expression is a multifaceted problem that we
can attack from many angles; for example, many musi-
cians are able to play a given piece in a “sad” or “happy”
manner on demand [Gabrielsson and Juslin, 1996]. How
could we make robots play with emotion, too?

In the second part of this paper, we survey musical
expression research not only from a computational mu-
sic perspective, but also a psychological perspective. We
first review some factors which make a performance ex-
pressive or not, then describe a 5-dimensional musical
expression model |Juslin, 2003] suggested by music psy-
chologist Juslin for the case of human musicians. We
suggest that by extending the Programming by Play-
ing approach to consider such a model, music robots
could both perceive human musician’s emotional inten-
tions, and produce these emotions in their own playing
as well.
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2 A programming by playing approach

Let us begin by considering the simplest method for
giving robots the appearance of human expressiveness:
mimicry. At first sight, translating a human performance
to a robot performance seems like a simple problem of
music transcription. The naive approach would be to
segment the performance into notes (using note onset
detection, for example), extract each note’s pitch and
volume, and create a robot-playable MIDI file that con-
tains each discretized note. This technique has worked
well for piano because a piece can be represented simply
by 3 parameters for each note: note length, pitch, and
key-strike velocity [Raphael, 2009).

We claim that, while MIDI transcription may work
well for piano, this note-level representation is an over-
simplification for continuous instruments such as flute,
voice and violin. Here are some concrete examples:

e Intra-note volume changes over the course of a note
(e.g. crescendo or diminuendo) add fullness and
expression for many continuous instruments. This is
often overlooked because single piano notes cannot
change volume in a controlled manner over time.

e [ntra-note pitch variation known as vibrato can vary
in speed and depth within a note. In most MIDI
representations, vibrato speed and depth are set to
constant values, if present at all.

e Pitch bends, or purposely playing slightly flat or
sharp for expressive effect may be discretized to the
nearest semi-tone.

e Articulation such as legato, attacked, staccato is
produced by musicians using carefully composed
note volume envelopes. In MIDI, this is often ab-
stracted into a single average volume per note.

e Timbre. For instruments with timbral characteris-
tics, tones can be “bright” or “dull” depending on
their spectral composition; this information may be
lost, too.

In summary, many critical details that may make a per-
formance expressive can be lost when representing a
piece symbolically! Thus, we must take care to repre-
sent our score in as rich a way as possible.

2.1 An Intermediate Representation: The
Theremin Model

Raphael [Raphael, 2009] has proposed that the essence
of an expressive melodic performance can be represented
using a simple, but capable “theremin model”. The
theremin model takes after the electronic instrument of
the same name that produces a pure sinusoidal pitch.
Players can modulate the theremin’s pitch frequency and
volume independently, by moving their hands closer or
farther from the respective pitch or volume antennas.
We therefore represent a performance as a pitch trajec-
tory and volume trajectory that continuously varies over
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Figure 2: Example piece played by human flutist

time. Equation 1 represents the discrete sound signal s
at time t:

s(t) = a(t) * sin(f(t) * 27 * t),

(1)
where:

e a(t) is the amplitude (a.k.a. power)

e f(t) is the fundamental frequency (a.k.a pitch)

With a sufficient number of samples per second, this
representation can capture almost all of the subtle in-
formation described in the previous section. For exam-
ple, an attacked note would be equivalent to a sharp in-
crease and quick drop in a(t). Vibrato and note changes
are captured in modulations over time in f(t). Un-
fortunately, timbral characteristics, otherwise known as
tone color, are not representable here, as a theremin’s
sound is characteristically composed of only a pure sine
wave. See [Raphael, 2009] for a modified theremin model
which adds timbre as a function of amplitude using hand-
designed functions.

This simple representation captures the essential de-
tails of a performance while allowing for inter-instrument
transfer. As noted in [Williamon, 2004], " The commu-
nication of emotion in music is generally successful de-
spite individual differences in the use of acoustic features
among performers... and different musical instruments.”
In more concrete terms, we can take as input a recording
of a human’s performance on flute, and output a perfor-
mance by our robot thereminist.

2.2 Acoustic Processing

The input to our system is a wave file recording of a piece
played by an intermediate flute player. It is recorded us-
ing the robot’s own microphone, sampled at 44.1 kHz.
As an example, consider the excerpt from Clair de Lune
as shown in Fig. Processing of the flute recording
is composed of three parts: robot noise removal, con-
tinuous power extraction, and continuous fundamental
frequency extraction.

2.2.1 Noise Reduction

To increase robustness in our next steps, we first re-
move the robot fan noise also captured during record-
ing. We use a filter called a spectral noise gate, which is
likened to “background subtraction”. By analyzing the
frequency spectrum of a “silent” part of the recording
(ie. when the flutist is not playing) we can reduce the
fan noise by 24 dB from the entire recording (see Fig. (3.
An FFT size of 2048 is used, resulting in 1024 frequency
bands.



(b)

Figure 3: Clair de Lune original recording before[(a)] and
after fan noise reduction.

(b)

Figure 4: Continuous power a(t) and pitch f(t) extracted
from flutist’s Clair de Lune recording.

2.2.2 Continuous Power Estimation

We now have the filtered recorded signal x(t). To ex-
tract the power a(t), we use window sizes of 512 and sum
the values of z(t)? of each bin. We then normalize the
result to values between 0 and 1. The resulting power is

plotted in Fig.

2.2.3 Continuous Fundamental Frequency
Estimation

Using the same input signal z(t), we estimate the
fundamental frequency at windows of 2048 using multi-
comb spectral filtering and a hopsize of 1024. Instead
of discretizing to the nearest semi-tone on the melodic
scale, we measure to the nearest frequency in Hz. We
can visualize the pitch estimation in Fig.

2.3 From Representation to Performance

To convert the theremin model representation to a
performance, we must first consider two constraints:
instrument-related constraints and player (robot) con-
straints. Finally, we can convert our intermediate repre-
sentation to a score playable by our robot thereminist.
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2.3.1 Instrument-related Constraints

In this step we modify our performance representation
depending on our target instrument. Consider that dur-
ing silent sections of the recording where a(t) is 0, the
detected frequency f(t) could have an arbitrary number
of possible settings. To relate this situation to other in-
struments, a marimba player, for example, may return to
“home position” during silent rests, and perhaps a flute
player may hold the flute neutral with no keys depressed.
In the case of our target instrument, the theremin, we as-
sume that a theremin player would anticipate the next
note during rests. Concretely, where a(t) is 0, we set
f(t) to the next non-zero value of f(t + k) where k is
positive. Other possible modifications that may fall un-
der Instrument-related constraints may include changing
register (in case the human’s instrument is, for exam-
ple, a bass instrument, and the robot’s instrument is
soprano).

2.3.2 Player-related Constraints

Beginner and expert musicians have very different ca-
pacities. In our case, our player is an HRP-2 robot
produced by Kawada Industries. However, in [Mizu-
moto et al., 2009] Mizumoto et al. showed that the
theremin-playing capabilities can be easily transfered to
other robots, including a humanoid robot developed by
Honda. In tests with another Kawada Industries robot,
Hiro, we found that Hiro can change notes faster than
HRP-2, due to a difference in arm weight. Thus, we must
either modify our representation to be “easy” enough
for our particular robot to play, or program these con-
straints into the motor module directly. For now, we
scan our representation for any changes in frequency or
volume that would violate the maximum acceleration of
our robot arm, and remove them.

2.3.3 Generating a Robot-Playable Score

In this final step, we convert our intermediate repre-
sentation score to a robot playable score. In preliminary
experiments, we found that our system could handle a
score with 3 pitch/volume targets per second (i.e., an
update rate of 3 Hz) and still play in real-time using
feedforward control. Using our Programming by Play-
ing method, we thus update our robot’s target note and
volume multiple times per note, achieving more subtle
tone and volume variations.

2.4 Preliminary Results and Improvements

We implemented Programming by Playing coupled with
the theremin volume/pitch model to transfer the per-
formance of “Clair de Lune” by a human flutist to a
robot thereminist. In informal listening tests, the result-
ing performance does indeed sound more natural than
our score-based method, but the reader is encouraged to
evaluate the performance for themselves at

http://winnie.kuis.kyoto-u.ac.jp/members/
angelica/pbp.

Although vibrato could be heard slightly, our maxi-
mum update rate of 3 Hz may have been too little to fully
define vibrato (which previously had been hand defined


http://winnie.kuis.kyoto-u.ac.jp/members/angelica/pbp
http://winnie.kuis.kyoto-u.ac.jp/members/angelica/pbp

at 5-10 Hz). It also remains to be seen whether using the
theremin model representation could be applied to in-
strument pairs other than flute-theremin. In particular,
we have not implemented timbre into our performance
representation, though this could be implemented with
a third continuous parameter containing the extracted
spectral centroid of the original recording.

An immediate use for Programming by Playing is al-
lowing a human ensemble player to program the robot
with his own style. That is, it is much easier to synchro-
nize with a duet player that plays with natural timings,
pauses, and articulations similar to one’s own. Other
uses for this version of Programming by Playing could
include embodying famous musicians in a music robot
based on their music recording.

Up until now, we have taken a relaxed approach to
music expressiveness. As previously conjectured, intra-
note volume variation, vibrato, pitch bends, articulation,
and potentially timbre all contribute to making a perfor-
mance more expressive. In the next section, we will see
why these minute details are so important, and examine
how we can exploit them to generate expressive perfor-
mances “from scratch”.

3 Expressive performances
3.1 Definitions

Expression is the most important aspect of a musician’s
performance skills, reports a nationwide survey of music
teachers [Laukka, 2004). But what is expression exactly?
According to the survey, most teachers define expressiv-
ity as the communication of the emotional content of a
piece, such as joy, sadness, tenderness or anger. Occa-
sionally an expressive performance can even evoke these
emotions in the listener ('being moved’), though it is
not obligatory for music to be expressive [Davies, 1994].
What else makes human performers sound so different
from the “dead-pan” rendition of a piece by a computer?

Another typical definition of expressiveness is “devia-
tion from the score”. Although scores may be marked
with dynamic markings such as decrescendo or ac-
celerando, expert performers contribute other expressive
changes to the score [Palmer, 1997]. Typical examples
include [Kirke and Miranda, 2009]:

e unmarked changes in tempo (such as playing faster
in upward progressions of notes)

e loudness (high notes played slightly louder)
e modifications in articulation (staccato or legato)

e changes in intonation (making notes slightly flatter
or sharper)

e adding vibrato at varying frequencies
e changing the timbre, if applicable to the instrument

The regularity of these deviations suggest that perfor-
mances may be either subject to a set of grammar-like
rules, or learned to some extent, and has thus spawned a
vast number of attempts to reproduce these human-like
qualities using computational methods.
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3.2 A Need for Psychological and Physical
Models

Automated computer systems for expressive music per-
formance (CSEMPs) are programs which take a score as
an input and attempt to output expressive, aesthetically
pleasing, and/or human-like performances of the score.
A recent survey of CSEMPs [Kirke and Miranda, 2009]
outlined the various approaches including rule-based, lin-
ear regression, artificial neural network, case-based and
others. There are too many approaches to outline here,
but it is the conclusion of the survey that sparks the
most interest.

According to the review, “Neurological and physical
modeling of performance should go beyond ANNs and
instrument physical modeling. The human/instrument
performance process is a complex dynamical system for
which there have been some deeper psychological and
physical studies. However, attempts to use these hy-
potheses to develop computer performance systems have
been rare.” [Kirke and Miranda, 2009] They cite an at-
tempt to virtually model a pianist’s physical attributes
and constraints [Parncutt, 1997 as one of these rare
cases. Thus, in the following sections, we delve deeper
into the phenomenon of expression, in order to better
understand this challenge.

3.3 Factors

What factors can make a performance expressive or not?
Though researchers typically focus on how the performer
is expressive, the phenomenon can involve environmen-
tal factors, too. We briefly overview these factors from
[Juslin, 2003|, to better understand the variables in-
volved.

3.3.1 The Piece

The musical composition itself may invoke a particu-
lar emotion. For example, Sloboda [Sloboda, 1991] found
that certain scores consistently produced tears in listen-
ers: scores containing a musical construct called melodic
appogiaturas. Shivers were found in participants dur-
ing points of unprepared harmonies or sudden dynamic
change in the score. Score-based emotions have been
well-studied, and in a recent review of 102 studies by
Livingstone et al. |Livingstone et al., 2010], it was found
that happy emotions are most correlated with pieces
in major keys, containing simple harmonies, high pitch
heights, and fast written tempos. Loud pieces with com-
plex harmonies, in a minor key with fast tempos were
considered “angry”, and so on. Though we choose not to
treat this score-based emotion in the present paper, this
is useful to know so we do not confuse emotion evoked by
a written score with emotion projected by a performer.

3.3.2 The Listener

The musical background and preferences of the lis-
tener may have an effect on the perceived expressiveness
of a piece. For example, listeners with less musical edu-
cation appear to rely more heavily on visual cues (such
as gestures or facial expression) rather aural cues when
deciding on an affective meaning of a musical perfor-



mance [Thompson et al., 2005]. However, even children
at the age of 5 years are able to differentiate happy and
sad pieces based on whether the tempo is fast or slow,
and six-year-olds can classify additionally based on ma-
jor versus minor mode |[Dalla Bella et al., 2001]. Inter-
estingly, detection of basic emotions such as joy, sad-
ness, and angry even appear to be cross-cultural: West-
ern and Japanese listeners are able to distinguish these
emotions in Hindustani ragas [Balkwill and Thompson,
1999]. Thus, though we should take care during evalu-
ations of expressiveness, we should know that detection
of emotion in music is not as elusive as it may seem.

3.3.3 The Context

The performance environment, acoustics or influence
from other individuals present can also affect the expres-
sion perceived [Juslin, 2003]. For example, music at a
patriotic event may evoke more emotion in that context
than in another. Another example is Vocaloid’s virtual
singer Hatsune Miku, who performs at concerts to a large
fanbase despite being a synthetic voice and personality.
In these cases, perceived expressiveness may also depend
on factors such as visual and cultural context.

3.3.4 The Instrument

Whereas percussion instruments such as piano can
only vary timing, pitch and volume, continuously con-
trolled instruments such as flute and violin have many
more expressive features. They can change timbre to ob-
tain “bright” versus “dull” tones [Raphael, 2009], have
finer control over intensity and pitch, and can produce
vibrato. Interestingly, human voice is also in this set of
continuously controlled instruments. Since many studies
find that timbre, pitch variations and vibrato |Living-
stone et al., 2010] can have an effect on the perceived
expressiveness, the choice of instrument can limit or ex-
tend the ability to convey a particular emotion.

3.3.5 The Performer

Clearly the most important factor of expression lies
in the performer, which is why this factor has been so
extensively studied. The musician’s structural interpre-
tation, mood interpretation, technical skill and motor
precision can all affect the perceived expressiveness. We
explore the expressive aspects of a performer in detail in
the next section.

3.4 A Model for Performer Expressiveness

Up until now, performer expressiveness has been infor-
mally described by a large number of performance fea-
tures, such as playing faster and louder, and with more
or less vibrato. Are there any models that can bring
order and sense to these empirically derived findings?
Four computational models for expressive music per-
formance were considered in [Widmer and Goebl, 2004):
KTH’s rule-based model [Bresin et al., 2002], Todd’s
model based on score structure [Todd, 1985b|, Mazzola’s
mathematical model [Mazzola, 2003], and Widmer’s ma-
chine learning model [Widmer and Goebl, 2004]. How-
ever, according to the CSEMP review, they are still not
sufficient. As the review points out, we should search for
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a model that adheres to certain requirements: it should
take into account psychological and neurological factors,
as well as physical studies.

Music psychologist Juslin proposed a 5-faceted model
[Juslin, 2003] [Juslin et al, 2002] that separates
expressive performance into a manageable, but all-
encompassing space: Generative rules, Emotion pat-
terns, Random variance, Motion-inspired patterns, and
Stylistic unexpectedness (called GERMS). Details of
each element are described shortly. Juslin et al. im-
plemented the first 4 parts of the model in 2002 using
synthesis [Juslin et al., 2002], and tested each facet in
a factorial manner. Their results, along with evidence
that each of these facets corresponds to specific parts
of the brain [Juslin and Sloboda, 2010], make this model
promising. Even if Juslin’s model is not quite correct, we
claim that it is still very useful for designing factorized
modules for robot expression.

3.4.1 Generative rules for musical structure

Similar to speech prosody, musicians add beauty and
order to their playing by adding emphasis to remark-
able events |Juslin and Sloboda, 2010]. By adding the
following features, the musician makes their structural
interpretation of a piece clear:

o Slow at phrase boundaries [Clarke, 1988]

e Play faster and louder in the center of a phrase
[Todd, 1985b)

e Micropause after phrase and subphrase boundaries
[Friberg, A. And Sundberg, J. And Fryden, 1987

e Strong beats louder, longer,
[Palmer and Kelly, 1992]

and more legato

A complete and slightly different ruleset is listed in
Juslin’s experiments |Juslin et al., 2002]. Listeners rated
synthesized pieces with this component as particularly
“clear” and “musical”.

3.4.2 Emotion

We previously defined musical expression partly as the
ability to communication emotion. Particular sets of mu-
sical features can evoke emotions, such as happiness, sad-
ness, and anger. Livingstone et al. recently surveyed 46
independent studies and summarized the main acous-
tic features corresponding to each of 4 basic emotions
[Livingstone et al., 2010]. We reproduce here the most
notable of each group. Note that the order may mat-
ter (i.e., first features characterizing the emotion more
strongly). In the case of conflicting reports, we removed
the one with less experimental backing.

1. Happy: Tempo fast, Articulation staccato, Loud-
ness medium, Timbre medium bright, Articulation
variability large, Note onset fast, Timing variation
small, Loudness variability low, Pitch contour up,
Microstructure regularity regular, FO sharp

2. Angry: Loudness loud, Tempo fast, Articulation
staccato, Note onset fast, Timbre bright, Vibrato



large, Loudness variability high, Microstructural
regularity irregular, Articulation Variability large,
Duration contrasts sharp

3. Sad: Tempo slow, Loudness low, Articulation
legato, FO flat, Note onset slow, Timbre dull, Ar-
ticulation variability small, Vibrato slow, Vibrato
small, Timing variation medium, Pitch variation
small, Duration contrasts soft

4. Tender: Loudness low, Tempo slow, Articulation
legato, Note onset slow, timbre dull, Microstruc-
tural regularity regular, Duration contrasts soft

In the evaluation of this factor, happiness versus sadness
were implemented by varying tempo, loudness, and ar-
ticulation. Upon adding emotional cues, listeners judged
the piece as “expressive” and “human” by a large factor.

3.4.3 Randomness

Humans, unlike computers, cannot reproduce the ex-
act same performance twice. In studies on finger tap-
ping [Madison, 2000], even professional musicians varied
3-6% (of the inter-onset interval) in tapping precision. It
is thus why some software programs such as Sibelius add
some random fluctuation to make MIDI playback sound
more human [Kirke and Miranda, 2009]. Interestingly,
these fluctuations are not completely random; the varia-
tion can be simulated by a combination of 1/f noise and
white noise [Gilden et al., 1995]. Motor delay noise was
simulated in |Juslin et al., 2002] by adding white noise
to each note onset time and sound level. Internal time-
keeper lag was added by white noise as a function of the
note length, filtered to obtain 1/f pink noise.

Although the idea of making robots purposely less pre-
cise sounds intriguing, it remains to be seen whether mu-
sic robots do actually play as perfectly as the computer
clocks that control them. Do they achieve perfect tim-
ings despite variations in environment such as network
lag and motor delay? In computer synthesis tests this
randomness factor made performances more “human”
over the neutral versions.

3.4.4 Motion constraints

The fourth component refers to two kinds of motion
constraints. One pertains to voluntary patterns of hu-
man biological motion. Mainly, the final ritardandos of
musical performances has been found to follow a func-
tion similar to that of runners’ decelerations [Friberg and
Sundberg, 1999, but more examples can be found in
[Juslin et al., 2002]. The other kind of motion constraint
is information that specifies that the performer is human.
For example, a pianist could not physically play two dis-
tant notes faster than two notes side-by-side. This is an
involuntary motion constraint.

In terms of robot implementation, safety mechanisms
are probably already programmed into lower level mo-
tor controls of our music robots. This corresponds to
the latter, involuntary constraint. However, similar to
the Player-related constraints described in our Program-
ming by Playing approach, it could be possible to add
additional motor constraints that mimic natural human
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movement curves. For example, our pitch or volume tra-
jectories could be smoothed or interpolated with splines.
As for the effect of adding the biological motion con-
traint: listeners rated synthesized pieces more “human”.

3.4.5 Stylistic unexpectedness

Despite the systematic discovery of many common ex-
pressive features among musicians, humans of course
have the freedom to change their style on a whim. For
examples, some performers may intentionally play the
repeat of a same phrase differently the second time, or
a musician may pause longer than usual for dramatic
effect. Indeed, in a study on pianists playing the same
piece, it was found that graduate students had rather ho-
mogenous timing patterns, whereas experts showed more
originality and deviations [Repp, 1997].

This element was not included in Juslin’s tests due to
the difficulty in implementation. Indeed, this could be
the crux of what gives originality to a robot’s perfor-
mance. Could we use Programming by Playing to learn
the probabilistic tendency of one or many human artists?
Could we shape a music robot’s “personality” based on
this factor (more or less showmanship, or extroversion)?
How exactly to approach this module is an open area for
research, and perhaps Al in general.

3.5 Towards an Expressive Music Robot

It seems clear that an expressive music robot should thus
have 5 modules:

1. Prosody controller: to clarify music structure

2. Emotion controller: to store and produce an in-
tended emotion

3. Humanness controller: to add randomness to im-
itate human imprecision

4. Motor smoothness controller: to mimic human
biological movement

5. Originality controller: to add unexpected devia-
tions for originality

Although we are still far from implementing this model
in full, we have started by implementing the Prosody and
Emotion controller. We start with a hand-entered score
of the traditional folk song, Greensleeves. Then, it is
modified using the generative rules for musical structure
mentioned previously. We then address Emotion using
Programming by Playing. Focusing on the articulation
feature, we record a flutist playing notes in each of the
Happy (staccato) and Sad (legato) styles.

We extract volume envelopes for each type as shown
in Fig. and apply the volume envelopes to all notes
in the continuous volume representation. Our result is
two different performances, one to convey sad emotion
and the other conveying happiness. It is unclear whether
the robot performances effectively convey the emotions
as desired, but expressiveness again seems improved over
the neutral version. In addition, we have achieved ex-
pressiveness without resorting to mimicry.



(a) (b)

Figure 5: Volume envelopes for staccato and legato ar-
ticulations.

In an ideal version of Programming by Playing, more
features (not only articulation) should be extracted. By
extracting these acoustic features automatically, perhaps
similar to [Mion and De Poli, 2008, we could recognize
the emotional content of the human musician.

4 Conclusion and future work

In this paper, we introduced a paradigm called Program-
ming by Playing. We showed how it could be used for
expressive robot performance through both mimicry and
generation. A key point of the approach was that small
details in performance can have a great impact on a
performance’s expressive content; thus, a good symbolic
representation is important.

We also tried to demystify the phenomenon called ex-
pression — by applying a 5-facet model to music robot
design, we realize that features for structural clarity and
emotion are distinct. Another interesting find was that
in order to sound more human, we may need to add
slight human imprecision. This may be contrary to our
current efforts to make “virtuoso” music robots that play
faster, but more unrealistically. And finally, the key in-
gredient missing before music robots will be accepted is
a kind of originality or “personality”, giving the element
of surprise to performances.

All of these factors may be applicable to robot de-
sign in general, for example making synthetic voice and
movement less “robotic”. Yet, what is the goal for music
robots? Do we want them to sound more realistic, more
human? If that is the case, this complex phenomenon
called expression may be the missing ingredient.
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ABSTRACT captured by a distant microphone array requires heavy com-

. . . .. __..putation.
This paper presents a text-independent speaker identification

system for meetings. During the meeting, all of the meeting FOr @ meeting rooms equipped with a microphone array or
participants carry a microphone while a human tracker monWith distributed mlcrophon_es, the observed audio streams are
itors their movements. The human tracker is based on scalSu@lly processed to obtain one stream for each active partic-
ning laser range finder and gives the positions of all the pafPant (for example with audio beamforming in [7]).
ticipants at any time. The position information is used to track Nowadays, with the proliferation of portable devices (lap-
the geometry of the distributed microphone array formed byop computers, PDAs and smart phones), it is not rare that in
all of the microphones. Using the geometry of the distributedi meeting situation, each of the participants may be carrying
array it is possible to cancel interfering speeches and nois@sdevice having a microphone. Thus the speaker localization
from the audio stream assigned to each of the participantand the acquisition of the data streams may be performed us-
Then, using these processed audio streams, the participaimg these microphones [8, 9]. Such a set of microphones is
are identified by means of Gaussian mixture models (GMMYeferred to as a distributed array. These approaches usually
that were trained before hand. The proposed system is abiequire the different devices to communicate together in or-
to perform identification of simultaneously speaking partic-der to acquire all the audio streams, then distributed or cen-
ipants and is thus a good candidate system for meeting diralized processing may be applied to perform localization,
arization task. In particular, the use of laser range findergdiarization or other tasks.
is a novel approach that makes the position estimation im-  As the first step in developing a multi-modal front-end for
mune to acoustic noise and reverberation. An experimendpeaker diarization exploiting a distributed array, this paper
conducted with three subjects reproducing a meeting configtiscusses the signal processing involved in the speaker iden-
uration demonstrates the performance of the system for idefification task (at this first step networking problems are not
tification. treated yet). The proposed front-end exploits audio data from
the tie microphones and position information given by a hu-
1. INTRODUCTION man tracker system based on laser range finders (LRF) [10].
During the meeting, the positions of the different participants
These last years, the speech recognition community has be@fe tracked using the LRF and one audio stream is obtained
intensively working on the transcription of meetings [1, 2, 3].for each of the participants using a tie microphone (a micro-
An important task in meeting transcription is speaker diarizaPhone fixed in front of the torso). Then speaker identifica-
tion (i.e. to find "Who spoke when”). tion is performed by using Gaussian mixture models (GMM)
In a meeting, it is desirable to impose the least constraintdf the mel-frequency cepstral coefficients (MFCCs) extracted
to the participants. For example participants should be affom theses audio streams [11]. For each participant, the tie
lowed to seat freely. Thus a convenient speaker diarizatioMicrophone fixed on their torso is dominated by their voice
system should be flexible relatively to the positioning of thewhen talking. But the speech signal from the tie microphones
participants. For hands-free diarization, single microphoné"so contains environmental noises and interferences from the
[4] or multiple microphones [5] approaches were proposedother participant voices if they are talking. If a participant is
Using multiple microphones, it is possible to estimate theSilent, the interfering voice of the person, or persons, talking
position of the speakers using the time differences of arrivatt that moment is likely to be the dominant signal. Thus it
[6]. However, in a real environment, the accuracy of the posilS ecessary to implement a accept/reject system to detect the
tion estimation is reduced because of reverberation and noisgctive channels.
Moreover, prior to diarization, separating the audio streams With this system, the participants are able to seat freely,
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Distributed array LRFs the potential occupancy of each particle’s position. By com-

{ ——————————————— t n i£ r puting a weighted average across all particles{the/} po-
Distributed arrayl. H K sition is calculated at a frequency of approximatafyHz.
Geometry T uman tracker Details of the algorithm are presented in [10].
i _______________ { ~n At a given timet, the estimated number of participants
in the meeting isn(t) and their estimated positions are
Channel {zi(t), yi(O) bien(e)-
separation
i ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ { n 2.2. Noise cancellation
supl\yla(?(lassesion Each of the participants is wearing a tie microphone attached
______ in the front of their torso. The position of these microphones
Jf‘ “““““ T - N are given by the LRF based tracking system that tracks the
Likelihood Trained position of the torso of all the participants. In this paper, we
computation GMMs assume for simplicity that the correspondence between a mi-
t— ______________ Jf:, n crophone and a given position is known. Thus the set of tie
Likelinood Trained m|croph0|jes defines a distributed microphone array whose
Normalization GGMM geometry is known. . . .
The goal of the noise cancellation module is to provide
f ‘‘‘‘‘‘‘‘‘ T —n an audio stream for each of thet) detected participants
speaker activity that contains less interference from the other participants and
fewer environmental noise than the unprocessed streams from
Fig. 1. Outline of the speaker identification system. the tie microphones (the observed signals). These streams are

obtained by filtering the observed signals in the frequency do-

main. After performing &’ bins short time Fourier transform
to stand and even move during the meeting because the LRESTFT), the vector of observation in ttf¢gh frequency bin is
tracks their positions. Moreover using LRF based tracking

is preferable to using audio data for tracking as it insensitive Xl(ff k)
to the acoustic noise and to the reverberation. It is also an X(f, k) = Xa(f, k)
interesting alternative to camera based tracking as it is very ’ :
precise. Note that the number of participants is estimated by X, (f, k)
the human tracker independently of the fact that they are talk-
ing or not. wherek denotes the frame index.
Experiments were conducted in a realistic meeting situa- Let us define
tion to demonstrate the capacity of the proposed front-end to S1(f.k)
identify active participants. Saf f: k)
S(fk) =1
2. METHOD So(f, k)

Fig. 1 gives an outline of the proposed front-end for speakethe vector containing the speech of all participants at frame
identification. A presentation of the different modules fol-index & and frequency birf. Considering only direct path
lows. propagation we can write the mixing process as

X(f. k) = A(f,k)S(f,k)

whereA (f, k) is the matrix of general term

2.1. Laser range finder

The motion of the participants in the meeting area is mon
itored usingr LRFs mounted on pole around the meeting
area’s perimeter (represented by the circles in Fig. 5). The Aii(f k) = m
scanning laser range finders are mounted above the obstacles, “
like the table and chairs, to a height where the torso of thevith cis the celerity of sound and; (k) the distance between
participants (sitting or standing) could be easily observed. Tthe jth speech source (the mouth of tjth participant) and
reduce the errors due to noise and occlusion, each persontiseith microphone (fixed to théh participant).

tracked with a particle filter using a linear motion model with ~ The distancer;;(k) is decomposed in two termg, the
random perturbations. The likelihood is evaluated based odistance between the mouth of thil participant and the

e d2mfri;j(k)/c
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Fig. 2. Noise suppression.
microphone fixed to his/her torso (assumed constant), angl3. Corpus and GMM

d;j(k), the distance between the microphoresnd j. We
have
(kY = g2 g2, ing the MFCCs (12MFCCs and the energy, their derivatives
rii(F) 4 diy (k). and their accelerations) extracted from the audio streams of
The distances!;;(k) are obtained using the positions given each participant by means of GMMs corresponding to the tar-
by the human tracker whereas the distanteme assumed to get speakers [11]. In this experiment, nine speakers were con-
be known. sidered (5 females and 4 males). In the remainder of the pa-
A separation matrix is obtained by taking the inverse ofper, the speakers are designated by the lefers c, - - - ,i}.
the mixing matrix For each speaker a common training set@f Japanese sen-
~ tences from the INAS database [14] was recorded using a tie
B(f,k) = A7 (f, k). microphone while sitting at the table in the experiment room.
Then the separated audio streams forrttparticipants are Then a GMM was trained for each of the speakers usjng the
100 utterances. The GMM for all the speakers are designated
Y (f, k) = B(f, k)X(f, k). by {A\a; X, --, Ai}. A general GMM was also trained us-
ing the900 utterances (referred to as GGMM in Fig. 1). The
Rather than using these separated streams, better resiisneral GMM is designated by;.
were obtained by applying a post-filter approach as the ones g test set was recorded in the same room while monitor-
in [12, 13] (see Fig. 2 where = 3). ing the speaker movement with the LRF based human tracker
Let us define the noise estimate system. Only threda, b, ¢} of the nine speakers were sit-
ting around the table and were not constrained of any manner
(see Fig. 5). Three different sets & sentences from the
whereD; is a diagonal matrix with all entries set to one ex-JNAS database were prepared and each speaker was assigned
cept theith entry which is nullN; (£, k) is the estimate of the one of these sets. Using these s8f#) test utterances were
contribution in the observed signals of all the signals exceptecorded. First each of the speaker was reading alone its test
theith participant speech. Then an estimate of the contribuset (the two other persons are sitting around the table but are
tion of theith participant speech is obtained by using specfemaining silent). These are the test $gts7; and7.. Then
tral shaping (We use a post-filter similar to the one used ithe three combinations of two speakers simultaneously read-

Text-independent speaker identification is performed by scor-

N;(f,k) = A(f,k)D;Y(f, k)

[12, 13]) The gain for théth signal is
[ XO(f F)P?

G (f k) = :
SR XD (f, k)2 + | NP (f, k)2

where the superscrigy) denotes thgth component and: is
a parameter controlling the noise reduction. Tthecompo-
nent of the filtered target speech is

VG (£,8) X0 (£, k)2

, (7)

5() XWV(f, k)
T X0 R
Finally the speech estima,%(f, k) is obtained by taking

Si(f.k) = B(f,k)Zi(f,k)

whereB{(f, k) is theith row of the matrixB(f, k) (the row
corresponding to théh participant).
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ing were recorded (test sefs,, T,. andTy.). Finally, the
three speakers were reading simultaneously (test.sekt

Training and scoring were performed with Htk 3.41 [15]
using the whole test utterances.

2.4. Activity detection

The GMMs are used to determine for each utterance which
of the participants are active. For decision based on likeli-
hood, it is usual to apply some sort of normalization [16, 17].
In this paper, for a given streaf§), of a given test utterance
the likelihood given by the GMMs are normalized using the
following likelihood ration

B(Sk|Ai) = log p(Sk|A:) — log p(Sk|Ac).



Then the accept/reject procedure is conducted by comparing
the largest normalized likelihood

(SlA;) = maxp(Sk|\)

to a threshold

o if §(§k|)\j) > ¢ then speakey is active in streans).

o if p(§k|>\j) < e then no speaker is active in stredip

For each utterance, this test is conducted for all the audio
streams.

3. EXPERIMENTS

Fig. 4. Spectra of unprocessed audio streams (left) and pro-
cessed audio streams (right) when speakeandb are talk-

ing.
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Fig. 3. Deletion (blue), insertion (red) and substitution Fig. 5. Pole mounted LRFs (circles), table (rectangle), posi-

(green) versus thresholdfor single speakgr (top row), two tion origin (cross) and probability densities of the three speak-
speakers (second row), three speakers (third row) and all casgs position (distances are in mm)

(bottom) for unprocessed (left) and processed audio streams

(right).

e A deletion error occurs when the largest normalized
likelihood associated to the audio stream of an active

The experiment setup is described in Fig. 5. The four cir-
P P g speaker is smaller than the threshegld

cles in the corners represent the pole mounted LRFs used by
the human tracker, the cross gives the position origin and the o A substitution error occurs when the largest normalized

probability densities of the positions of the three speakers dur- likelihood associated to the audio stream of an active

ing the experiment also appear. In this first step, the tie mi-  speaker is larger than the threshelout is not the cor-

crophones are still wired microphones connected to the same  rect one (for examplp?(§k|)\a) is the largest normal-

computer. ized likelihood but the audid), is associated to the
Note that for all test sets except the testBgf., at least speakeb).

one of the speakers is silent. The results of the speaker iden-

tification experiment are given in terms of deletion, insertion ~ Two different cases were compared where the audio
and substitution errors: stream of each speaker is obtained by

. . . e her or his own tie microphone (unprocessed),
e An insertion error occurs when the largest normalized R
likelihood associated to the audio stream of a silent e the processed streass), she or he is assigned (pro-

speaker is larger than the thresheld cessed withy = 17).
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Table 1. Deletion percentage for selected threshold.

unprocessed processed
one speaker 2.67 0
two speakers 3.33 0.67
three speakers 0 0
all 8.83 25

Table 2. Insertion percentage for selected threshold.

positions)[9]. But with the proposed approach, the localiza-
tion is performed by the human tracker thus synchronization
may be a less sensitive issue.

5. CONCLUSION

In this paper, we proposed an experiment to test the use of
LRF based human tracker in a multi-modal front-end for

speaker diarization in a meeting situation. Since the positions
of all the participants are known at each instant, it is possible

unprocessed processed . : o , :
to use this information for monitoring a set of tie micro-
one speaker 2 0 g : :
phones worn by the participants. Then applying appropriate
two speakers 4 0.67 ; : L X
three speakers 0 0 array processing techniques to this distributed microphone
Sﬁ) il 10 5 array, it was possible to improve the accuracy in a speaker
a detection and identification task.
The insertion, deletion and substitution percentages are 6. ACKNOWLEDGEMENTS
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Abstract - Pitch extraction is important for
communication robots, since pitch may carry
information about intention, attitude or emotion
expression from the user’s speech. However, current
pitch extraction methods are not robust enough in real
noisy environments. In the present work, we make use of
microphone-array technology, and evaluate pitch
extraction of multiple speakers in real noisy
environments. The MUSIC method for sound source
localization, adaptive beamformer for source separation
and SACF method for pitch extraction have been used.
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Fig. 1. (a) The geometry of the 14-element microphone
array. (b) Robovie wearing the microphone array.
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Fig. 2. A map of the UCW hallway, with locations of the
robot and the ceiling loudspeakers.
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Ch1-14

Microphone array Y Ch1-14
(14 channels) % 16-ch -
A/D B> Tothe Sound Localization
2 lex"a he  Ch15.16 Ch10,15,16
(c0§etote Chis, 16
subject’s mouths, Cross-channel -
for training) time-frequency | Pitch =
binary masking estimation
LPC \
Clean| | analysis Reference
referenc| p'ttCh
contour
SS?U;ZT LPCinverse | ACF Peak
9 filtering picking

Fig. 3. Obtaining the reference pitch contours from the
reference microphones.
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Fig. 4. Overall block diagram of the evaluated pitch
extraction.
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2extramics.

4 ms frame
(for analysis) N
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(14 channels) matrix Eigen
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Fig. 5. The MUSIC-based sound localization algorithm,
and related parameters.
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Fig. 6 Speech separation using adaptive beamformer

Fig. 7 Example of beamformer gain for a target source
close to 0 degrees, and interference sources at 50 and -60
degrees.
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Fig. 9 Example of SACF peak pruning.
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Fig. 10 Pitch extraction performance results for each
trial in UCW.
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Abstract

In this paper, first, a new permutation solv-
ing method using probability statistics model
is proposed for realizing high performance ICA-
based noise reduction used in a spoken dialogue
robot. In this method, a shape difference be-
tween probability density functions of sources
can cope with the permutation problem in real-
istic sound mixtures consisting of point-source
speech and diffuse noise. Next, to achieve high
recognition accuracy for the early utterance of
the target speaker, we introduce a new rapid
ICA initialization method combining image in-
formation and a pre-stored initial separation fil-
ter bank. The experimental results show that
the proposed approaches can remarkably im-
prove the word recognition accuracy in the real-
time ICA-based noise reduction developed in

the robot dialogue system.

1 0000

O0DoO0Do0OooOooooooDoooooooog
goboobooboobooouooboobooon
o00oo0ooo0o0oooooUooooooooooog
000000000000 0oooooooooooog
gofdoboooboobuooouooboobuoooo
O00000000O000O00 (independent component
analysis: ICA) 1]00000ICADOOOOOODOO
OO00o0DoU0oo0DooUooDoUooOoooooog
00000 [2J00000TakahashiD OO DO DOOOO0OO
00000000000 (blind spatial subtraction array:
BSSA) 3000000000000 OO0O00OBSSAOD
0dd0oooo0oooooogrcAoooooooon
00000000000 (spectral subtraction: SS) [4]0

41

0000000000000 0000000000000
000000 50000000000 BSSAOOOOO
00000000000000000000000000
O000ICADODOOOOOOOOOOODOODOODO
00000000000 (null beamformer: NBF) [6]0
000000000000 ICADDOODOOODOOODOO
0000000000000 0O00O00DO00o0oo0O0o
0O00IcA0OO0OOOOOOOOOOOOOOO0OO
0000000000 000O00000000O0000O0
00000000000000000000000 ICA
00000000 ICA (FDICA)ODODODODODODDOOOO
0000000000000 0O0000O000ooonoo
0000000000000000000000000
0000000000000 0000O0O0000O000O0
0000000000000 000o0o0on
0000000000000 000D000OO0o0ooo
0000000000000000000000000
0000000000000000000000000
0ICAODOODOODOODOOOOOOODOOODOOOOO
00000000000000000000000000
00000000000 D000ICAODDOODOOOOO
0000000000000000000000000
000000000000000000000ICADO
00000000000000000000000000
0000000000000000000000000
0000000 00O0O0oOO0o0ooooo

2 ICAO0O0OO0OOOOooOg

21 ICAODOOODOODO

obooOooOobooobobOooocoobOoooooon
goobooobooooboboooobobooooon
goooooOoOoOoOoIlcAoooooooooooooo
obooboooboboooboobooooooboboon
0000000 2000000000 JO0000000


nakadai
タイプライターテキスト
人工知能学会研究会資料
JSAI Technical Report
SIG-Challenge-B002-8

nakadai
タイプライターテキスト
社団法人　人工知能学会
Japanese Society for
Artificial Intelligence


gboooooboooobooboooooboobooooobaon

z(f,7) = h(f,0)s(f,7,0) + n(f,7) (1)
0000x(f,7) = [z:1(f,7),...,zs(f,7))T 000000
O000hR(f,0) = [hi(f,0),....,hs;(f,0)T 000000

O0000000D0O00000DO000Os(f,7,0)0
ooo0o00n(f,7)=[m(f,7),....,ns(f,7)]T 00000
000000000000 DO000fO000O0DOOODODO
00000000000 00D0DO0O0ODODO0O0O0
O0D00D0O000O000OFDICAODODOODODODO
ODO0000OO0o0ooo

O(fv T, 9) = WICA (f? 9)$(f, 7_) (2)
o(f.7,0) =[o1(f,7,0),...,0(f 7,0)]" (3)

000 o(f,r,/)) D0 ODDODDOOODOOKOOOOOOO
Wica(£,0)0 6000000000000 0O0O0OOO0O
obooooooooboooobobobooooban
goooooo

(f,0) = plI w

—{p(o(f,7,0)0" ica(f:0
Wiga(f.9) (4)

000 pO0O00D00OpOO0ODODOOOOODOMYOOO
MOOOOODOOO(),000000¢()000000
00000000000000000000000000
0000000000 oy(f,7,0) 0000000000
00000000 q(f,7,6) 0000

p+1]
ICA

(f,7,0))-1W

q(f,7,0) =lo1(f,7,0),...,0u—-1(f,7,0),0,
0U+1(fa7_a 0), . 'aOK(f,T,e)]T

()

oobooOoooooooooooobooooboooon
ooooooooooooo

d(faTaa):[(jl(f’T’H)a"-an(f’Tao)]T (6)
= WfrCA(f7 e)q(fa T, 0) (7)

000O0MTOO00O M O Moore-Penrose 1 00000
ODoOdOolcAdDUODOODoDUOoOOoUOOoOoDOooOooDOon
0000000000000 00oooooooonagon
odooooooooooDoOoooooooooooon
OICAOODO FDICAODODOOUODODODOODOOO
oooooooooooooooood

22 0ODOOOOO
000000000000 000000D0000OO
Wiener filter (WF) [10[0 00000ICAODODODOO
000000000000000000000000 WF
0000000000

|z;(f, 7. 0)
|z (f; 7, 0)* + Blg; (f, 7, 0) |2

9;(f,7,0) = (8)

000 g(f,76)0j0000000000000040
00000000000000000000000000
000000000 g(f,70) 000000000000
0000000000000000000000000

j(f’T’e)
| j(fv'rvo)‘
(9)

Doo0s"?(f,7,6)0 j00000000000000
0000000000OWFODOOOOOOOO0O0000
000000000000000000 (delay and sum:
DS)00000000000000000000000
00

(WF f77—6 \/gj f77—6|xj(f77—9)|

sps(f,7) = wos(f,0)T[sV (£, 7,0), ..., s (f, 7, 0)]T
(10)
wps(f,0) = [V (£,0),..., 0PI (f,0)T (11)
g 077 (F6) = exp (~izn(f/N)fdysing)e)  (12)
000 sps(f,7) 000000000 Owps(f,0)0 DSO

0000000000060 DSODOOODOODOOO
0000000000000000000000000
000000 £00000000000d; (j=1,...,J)
00000000O0O0ONDO DFTOOc0000000

3 b1 Jooboooboogd

gobooogon

0000000000000 0000000000000
0000 [6[7[fD00D0000D00O000OO0O0O0O0O
0000000000000000000000000
0000000000000 0000000000000
0000000O00ICADDODOODDOOOOOOONOO
000000000000 0000000000000
000000000000 0000000000000
0000000000000000000000000
00000000000000000000000000
0000000000000000000000000
00000 Q00000000000 00C0O0oNooDO
00000000000000000000000000
0000000000000000000000000
0 (PDF)00O

P(x)

(13)

T(a)ge”’

INa) = /000 e %dy (14)

oboooboobdbOz>0000000000000O
O0000e>00060>00000000ab0000

42



Room1 Room2

/

/Loudspeaker
(target speech)

—

Robot

\&

1m

\

\&anel

Reverberation time : 300 ms Reverberation time : 430 ms

Figure 1: Layout of two reverberant rooms used in our

simulation.
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Figure 3: result of preliminary experiment 2.
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Abstract

This paper proposes an active artificial pinna
that is able to change the form imitating ani-
mals do in order to localize the sound source.
The shape of the proposed pinna provides direc-
tivity to the sound source that locates in front
of the pinna, and it has an ability to steer the
direction by the active motion. A kinematic
model to control the pinna is also proposed in
this paper. In order to clarify the characteris-
tics of the proposed pinna with respect to au-
ditory functions, its directivity and the effect
on the frequency response by the deformation

were studied with the developed device.
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Figure 1: H4v/ v F®O#l (Shimoda 5 IZ & % [Shimoda,
2006])
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Figure 2: Active artificial pinna: photo and sketch
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Figure 3: Control system
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Figure 4: Kinematic model

2L0L$D. HNORS%E 7 fliEdY OlliEf 0 & Y
B EATCEABILEZ @5 X — Y SEHEAOHE HY D
fifE ¢ THRDOT I L LT3 (Fif4(b)). BN TEHMD S
 PYRU,0=0¢=0DKD POEEE (r,0,a)T &
LIk D . KB (0,0) DHF P D FEREIR

r
P

R.(0) | Ry (¢) 0
a 0

—acosfsing + rcost

(1)

asin ¢sinf — rsin 6

a cos @

THb. 2T Ry, Ry BZThZTh Z fhe Y @i by
D alfiE 25 % KT

XT, (0,9) (0,0) LB H Q DERE
(r,d,0)T £ §2&, Z filiE Y OREELZL > T (reosd +
dsin®, —rsinf+dcosf,0)T NeBINd. PQ DEI X
Va2 ¥ d2 T,QROEX% bl 35%, R DML

b
R = 0Q+——=QP
Ot v el
cosf sinf —cosfsing r
= —sinf cosf sinfsing d*ﬁ
0 0 cos ¢ *ﬁ
LB%.

SO RANDNRIZ N IVE & dHE

12 = (sin ¢, cos 0, sin 0, sin ¢ sin 0, sin pcos O)c + ¢y (2)



EEITD. 2T FEBNI NIV EHEERT. R
IZDOWTE FRRIZ (2) ICHY 9 2 BfRE 155 Z & A3 kD
DT, LI DRIVEZL N2, ZOET NS /60
% BfRE HIL T 6,0 & RkDD . EERITIZIEIE R
2782 72 OBMHENIZ kDS Z 8128208, 10| < 1, |9] < 1
DRALT AU (2) 1% 0, p IZDVT—RKIZRZ DT, 1, 1" D
ZOR BT S Z L TERBOEMMEE 55 Z & B KD .
21 OEX (| ££7Y), 0, ¢ D525 N1
¢

ilo)

DR EE ND . 2L ¢, 0 OEEE 52 /22, U
1Y EZ2LEDLD I ENIEROME 5.2 % iEH)
ZEFINEHEOTWVWS. ZIT

L m6,9)

0] (3)

d
2 =
il

J(0,¢) =
cos ¢ 0 0 cos¢sinf  cos¢cosf
c
0 —sinf cosf singcosf —singsind
ThHb.

PLE (2) BED 3) &> TEME YA Y EIDMD
HEEEETIVED Nz,

4 HE

HifiiE TTHIAL ZEMZOWT, B LR AR5 .
ZITIE BNOKRESBHATHD BN/ v FL EHEHIR
MM HEBEE FANE e Uk B8, BN/ v Fik
HIRD EFARICNT 2 BEEE U TR EEZ 525
ZEMLVN, ARETIERE T2 BENAORRE(CHH
ULTWb DT, HifiD ¢ DI L2 FEZX L. M
FOHMBEE 0 IZDOWTIFZESRE —@EITRo 2% £ AKEH
WNTORHAMEIZDWTHHN, BAOEEHRICOVTEH
L7,

4.1 BIEAZE

4.1.1 FERHBEEY

JEABRE D HIEIL L F DO FNETIT> 72. TSP[Suzuki,
1992){Z 5% BREIE 52 U, Fig5 IZmRT LD ICENDY A
JaRve BMLEOS A 70Ky TING DIE5% %
HEU 7. ¥, TSP 5 5% ZHEL 7215513+ 75 Rk
D BLEEZLND DT, BNTOREFL BMEHETO
FEOMOEMEE 780 AARZ N VIETROE-EL DR H
DO JEHPBEREE Z2 2. 2 TSR O Rtk % TRk
95L& AL 28 DT, BANZ FHEIX MATLAB O
tfesimate 12 & V) 4096 sEBD A —/N—Fw T% £ES 8192
MO FFT Tiro 7=,

ELRBRTIIAY =& BEAEIK 1m, BMEEOY A 7 1E
E AR 20cm B ISR EL 72, BAriE THA P 2B
NS #£5 3cm, B L, AT 2cm, F 5em @ 4581 (

50

¢ D 215, 05, —14.1 &, —37.7 & (Zx6) 2 #IEL ,
ZTNTNDEBIB T TSP &% 9 HEFHIL TWa.
{5513 44100Hz THY 7)) V7L BIEL 72 D% ILEkL
TWB 720, FEIL T Y TEDORER GA7ZEH DIZB->T
W5 .

Im

Figure 5: Impulse response measurement
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Figure 6: Directivity measurement
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Figure 7: Frequency response of the proposed pinna
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Figure 8: Directivity
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