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ABSTRACT
This paper presents a multi-modal sound source localization
method for mobile platforms. The sound source localiza-
tion is performed while the robot is autonomously navigating
through the environment by combining the power and bearing
estimation given by a steered response power (SRP) algorithm
with the range estimation obtained from the on-board laser
range finders (LRF). First the positions of the sound sources
in the environment are determined by taking into account the
robot pose which is estimated with a particle filter and the es-
timated power is accumulated in the cells of a grid map cov-
ering the environment. Finally, a local maxima search is per-
formed on this grid map to find the area with higher estimated
sound power that correspond to the sound source locations.

1. INTRODUCTION

Sound source localization has been a topic of interest in the
audio processing community for a long time (see [1]). The
most effective techniques that emerged are either based on the
estimation of the time delay of arrival at microphone pairs,
or on the estimation of a steered response power (SRP) or
on spectral decomposition techniques like the MUSIC algo-
rithm. All these approaches rely on the use of microphone
arrays. Using a robot, it is possible to explore the space and
effectively extend the operational range of sound localization.
Thus a natural framework for sound source localization from
a robot is to use a conventional sound localization algorithm
at different locations and combine the results from all these
different locations [2, 3, 4, 5]. Since these localization results
are obtained for different times, it is important to distinguish
between fixed sound sources and moving sound sources. In
this paper, we are interested in the localization of the environ-
mental noises that are fixed sources.

The authors in [5] rely on triangulation to estimate the
positions of the sound sources using audio scans taken by an
autonomous mobile robot. One of the very interesting ap-
proaches in this area is the use of evidence grids in [3, 6]. The
space to be explored is partitioned into grid cells of fixed size.
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Then the probabilities of having a sound source in each of the
cells are estimated during the exploration. To achieve this, at
a given location, an SRP with phase transform (SRP-PHAT
[7]) is estimated for a grid centered on the robot and these es-
timated powers are used to update the evidence grid. In that
method, the robot is tele-operated to gather sound data in the
vicinity of the sound sources [6].

In this paper, we present a framework for localizing sound
sources using an autonomous mobile robot equipped with a
microphone array. The novelty of the present work is in
obtaining the audio information about the environment us-
ing a multi-modal approach. In particular, the laser range
finder (LRF) data are explicitly used during sound source
localization. Most autonomous mobile robots are equipped
with LRFs and odometry (obtained from the encoders on
the wheels ) to localize themselves in the environment. This
ability to estimate precisely the range of the objects around
the robot is exploited in this paper to solve the problem of
poor range estimation from audio localization techniques. In
the proposed approach, the audio modality is used to estimate
the bearing of the sound sources whereas their ranges are ob-
tained using laser range finders. Consequently, our approach
assumes that the geometric coordinates of sound sources are
detectable by the LRFs on the robot. While this assumption
is a bit restrictive when a two dimensional horizontal plane
is scanned, it will be reasonable when extended to a three
dimensional scan. In the proposed framework, sound source
localization is performed while the robot is autonomously
navigating through the environment. During navigation, the
two on-board LRFs (front and back) provide range scans
and a steered response power (SRP) algorithm generates
audio scans. The SRP gives the bearing of the candidate
sound sources and an estimate of the received audio power.
Combining the bearing, the received power and the range
information, an estimate of the emitted power from candidate
sound sources is computed. The audio and LRF scans are
acquired at regular intervals and for each of the audio scan,
the power of the most powerful emitting candidate sound
source is accumulated on a grid map that covers the environ-
ment. The cells from that grid map contains an average of the
estimated emitted power and a count of the number of visits
(the number of time a cell has been selected). This procedure
requires to transform the sound source positions from the
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robot referential to the room referential. This is performed by
taking into account the robot pose which is estimated with a
particle filter. Finally, a local maxima search on this grid map
finds the locations of the sound sources in the environment
by selecting the cells with higher power.

Fig. 1. Block diagram of the system.

2. PROPOSED APPROACH

A block diagram describing the proposed approach is shown
in Fig. 1. The main processing blocks will be described in the
following sections.

2.1. Map Building

The map building is performed in advance. The aim is to cre-
ate a map that describes the environment in which the robot
is due to navigate autonomously. The environment is repre-
sented by an occupancy grid, namely a grid which cells are
either empty (open space) or occupied (walls and structures).
The occupancy grid map is referred to as the geometric map
in the remainder.

In this work we use them for building grid maps. To build
the map, we controlled the robot with a joystick through the
environment gathering odometry and laser sensor informa-
tion. Then we used iterative closest point based SLAM to
correct the trajectory of the robot and to align the laser sensor
scans [8] using the 3DToolkit library framework [9], [10].
With the resulting aligned scans the occupancy grid map was
created [11], [12]. The map obtained for one of the test envi-
ronments is shown in Fig. 2.

2.2. Robot Localization

The goal of the robot localization task is to precisely estimate
the pose (location and orientation) of the robot in the geo-
metric map representing the environment. We used a particle

filter approach to estimate the robot position with a weighted
set of M particles. Each particle has a pose given by the state
vector {xm(k), ym(k), θm(k), wm(k)} containing a candi-
date position and orientation of the robot and the associated
weight. While the robot moves, each particle also moves
based on the odometry readings and the probabilistic motion
model, which describes the uncertainty in the robot motion
(prediction step). In the correction step, the particle filter
estimates the posterior density by considering measurement
likelihood. This likelihood is estimated from the LRF scans
using the ray casting approach likelihood model in [13]. The
map update depends on the state of the particle dispersion and
the matching of the laser scans. The particles, which are more
likely to be correct after ray casting, have a higher likelihood
score, and therefore, more weight. Particle re-sampling is
performed regularly and the robot pose {x(k), y(k), θ(k)} is
given by the average weight of the particles.

2.3. Audio scanning

In order to present this framework in greater detail, let us first
briefly describe the SRP approach to sound source localiza-
tion (see [7] and references herein). The goal of sound source
localization is to estimate the position of sound sources in
a search space using the audio observation. At the sampled
time k, the observed signals from the Q microphones of the
array are v1(k), · · · , vQ(k). Because the geometry of the mi-
crophone array is precisely known, it is possible to focus the
array using spatial beam forming to estimate the sound from
a spatial location. The beam forming output is denoted by

s(k, [x, y, z]) = F(v1(k), · · · , vQ(k), [x, y, z]), (1)

where [x, y, z] are the coordinates of the focus point in the ar-
ray referential. The SRP is obtained by computing the power
of this output over T samples

J(k, [xn, yn, zn]) =
1

T

T−1∑
τ=0

s2(k − τ, [xn, yn, zn]) (2)

for a set of N locations [xn, yn, zn]n∈[1,N ] in the search
space. The locations corresponding to the peaks of the SRP
gives the sound sources’ positions. There are several ways
to obtain the beam forming output, compute the power and
select the set of locations. In the remainder, the SRP obtained
at the time k that contains the power from the N locations is
referred to as the kth audio scan.

In this paper, the SRP processing is done in the frequency
domain after applying a short time Fourier transform (STFT)
to the observed signals sampled at 48kHz (the analysis win-
dow is 25 ms long and the shift of the window is 10 ms). Then
the SRP is computed for the frequency band [1000, 6000] Hz
using 10 STFT frames for averaging the power. Thus a new
audio scan is available every 100 ms. A delay and sum beam-
former is used to focus the observations.
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A particularity of sound source localization algorithm is
that the estimation of a source range is imprecise whereas
its bearing estimate is accurate. Thus spherical coordinates
[ρ, θ, φ] are often used to describe the search space. Contrary
to [3], we assume the far field conditions hold (ρ large com-
pared to array aperture) and a bearing only scan is performed.
Namely the kth scan is a set of N angles θn(k) ∈ [0, 2π] with
their associated power Jn(k). In our approach the distances
are obtained using the LRF scans as explained in Sect. 2.4.

Note that these scans are computed in search spaces in the
array’s frame of reference (as the position of the focus point
have to be known in the array’s frame of reference). Thus it is
necessary to transform the poses of the robot at these locations
to a global coordinate system to localize the sound sources in
the global referential.

2.4. Emitted power estimation

The audio scans {θn(k), Jn(k)} are in the robot coordinate
frame and the goal of the fusion procedure is to combine them
with the range estimation from the LRFs and the knowledge
about the robot pose in the global referential in order to esti-
mate the position of the sound sources in the geometric map.

The main idea is to use the range estimation in the direc-
tions given by the SRP and combine it with the estimate of
the received powers to estimate the powers that was emitted
by the potential sound source candidates. For this purpose,
the phase transform is not used as it discards the amplitude of
the signals of interest.

For each of the directions θn(k), an estimated range ρn(k)
is given by the LRFs (the closest ray in the LRF scans is se-
lected). Then, for estimated ranges in [dmin, dmax], the esti-
mated emitted power is

Cn(k) = Jn(k)

(
ρn(k)

dmin

)α
(3)

where α controls the effect of the distance on the power (in
free field α = 2). Namely, the received power is corrected
by the estimated distance to the sound source candidate in
order to compensate for the power drop during propagation
between the source and the array, see the circles representing
the propagation in Fig. 3. A maximum distance dmax is set
because the audio power decreases rapidly with the distance
and sound sources are covered by the background noise for
long distances.

For each of the audio scan, only the largest emitted power
estimateCm(k) = maxnCn(k), obtained for {θm(k), ρm(k)},
is considered. By combining the robot pose with the maxi-
mum power location {θm(k), ρm(k)} a position in the global
referential is obtained. That position correspond to a cell
{i, j} of a grid map covering the room. This transform is
illustrated in Fig. 4.

The average estimated power Pij(k) of that cell is ob-

tained by taking

Pij(k) =
Pij(k − 1)Kij(k − 1) + Cm(k)

Kij(k − 1) + 1
(4)

Kij(k) = Kij(k − 1) + 1 (5)

where Kij(k) denotes the number of time for which the cell
{i, j} is visited (Kij(0) = 0). This count is also used to
remove cells that have been seen very few times. The grid
map containing the average power is referred to as power map
in the remainder.

Then the sound source localization is performed by find-
ing the cells that have higher power in the power map.
Namely, a local maxima search algorithm is used on the
power map to find the candidate sound sources.

In practice, a small neighborhood of the cell {i, j} is se-
lected and the power Cm(k) is distributed in that neighbor-
hood. The size of the neighborhood is taken as ∆θρn(k)
where ∆θ is the angular resolution of the audio scan. The N
cells in this neighborhood receive the power Cm(k)

N and are
counted as visited one time. This smearing of the power is
performed in order to take into account the larger uncertainty
for longer ranges.

Fig. 2. Geometric map of the corridor with sound sources and
robot trajectory.

3. EXPERIMENTS

For experimental validation we used a pioneer robot. This
robot has a differential drive configuration and was equipped
with two motor encoders and two laser range finder (UTM-
30LX from Hokuyo, maximal range 30 m). The experimental
platform can be observed in Fig. 5.

The microphone array is composed of 16 Sony ECM-
C10 microphones mounted on a circular frame (diameter 31
cm). The audio capture interface is a Tokyo Electron Device
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Fig. 3. Received and emitted powers.

Fig. 4. Cell update using robot referential coordinates and
robot pose.

Limited TDBD16AD-USB that samples the signals at 48kHz.
The experimental evaluation of the approach was conducted
in a corridor. Different sound sources of known intensities
were setup in the environment.

Fig. 2 depicts the geometric map of the environment. The
dimension of the cells in this map is 5 cm x 5 cm. The grid
map used for localization has also 5 cm x 5 cm cells.

The robot navigates autonomously in the corridor using
a set of way points that defined a loop covering all parts of
the corridor In the remainder, a run corresponds to the robot
performing one loop in the corridor. The sound source local-
ization is performed during these runs.

Several (up to three) sound sources were placed in the en-
vironment (these locations are in the scan plane of the LRFs).
These sound sources are loudspeakers playing recorded
sounds. There was the sound of an air conditioning unit
(S1 with a sound pressure of 78.5 dBA measured at 5 cm),
the sound of a desktop computer fan (S2 at 77.5 dBA) and the
sound of a server rack (S3 at 77 dBA). The sound pressure in
the quiet corridor was around 42 dBA. The activation pattern

Omni-Directional

16 Microphone

Array 

User Laptop Computer

Motors & Encoders

Mobile Platform

Front Laser

(UTM)

Back Laser

(UTM)

Multi-Channel 

Audio Capture 

Card

Fig. 5. Experimental robot platform with omni-directional
microphone array and two laser range sensors.

Table 1. Parameters used during all runs.
∆θ α dmin dmax

3o 0.5 0.3m 3m

of the sound sources for the runs can be observed in Table 2
and their positions are reference in Fig. 2. The parameters are
given in Table 1. Note that α is set to a small value in order
to avoid far estimate concentrating the power.

4. RESULTS

The power map is obtained by taking the accumulated power
of the cells Pij(k) for which the number of visits Kij(k) is
greater than 10% of the maximal number of visits. Thus an
updated power map is available after each audio scan. Fig. 6-
(a) shows the power map obtained at the end of the run 1 and
Fig. 6-(b) shows the result of the local maxima search. The
locations of the local maxima appear as black circles. The
ground truth, i.e. the real positions of the sound sources are
given as black crosses. For each of the sources the errors are
given in Table 2. The results for run 2 are also in the table.

Figs. 7-(a) presents the power map difference (in dB) that
is obtained by taking the difference of the power map for run
1 (three sound sources) and run 3 (no sound source). Figs. 7-
(b) shows the same results for run 2 (two sound sources) and
run 3 (no sound source).

5. DISCUSSION

The power map in Fig. 6-(a) illustrates the fact that large
areas of higher power appear around the locations of the
sources. Note that a few small areas with high power are
also present in the power map. After local maxima search,
the proposed approach successfully estimated the positions
of the sound sources see Fig. 6-(b) (the three local maxima
close to the true sources’ location are the one with higher
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(a) (b)

Fig. 6. (a) Power map for the run 1 , (b) local maxima search results (x) are the ground truth and (o) are the local maxima.

Table 2. Sound source localization results.
Run Active Detected Error(m)

Sources Sources
S1 S1 0.29

1 S2 S2 0.22
S3 S3 0.07
S1 S1 0.11

2 S3 S3 0.18
3

values). The average localization error was 0.17 m and the
maximum error 0.29 m. Considering that the loudspeakers
are not point sources but may span several cells and the local-
ization was performed while moving, an error in the obtained
range indicates a precise localization.

Another interesting point of the proposed approach is that
the power maps contain estimates of the emitted power (these
estimates are obtained by correcting the SRP without phase
transform with a function of the estimated range, see Eq.3).
Consequently, it makes sense to estimate sound source local-
ization by using difference of power map in dB (equivalent
to a power ratio). A background power map obtained when
there is no sound source of interest (here the run 3) can be
subtracted to a power map obtained when some sources of
interest are present. In Figs. 7-(a) and (b), the difference of
power maps clearly show the locations of the active sound
sources. The local maxima search proved to be more easily
conducted on the difference of power maps as they have larger
dynamics and contains less false alarms (spurious local max-
ima). When it is not possible to obtain a good background
power map, the local maxima search is to be applied on the
power map.

6. CONCLUSIONS

This paper presented a framework for localizing environmen-
tal sound sources using an autonomous mobile robot equipped
with encoders, laser sensors and a 16 channel microphone ar-
ray. The sound source localization results obtained in the ex-
periments had an average distance error of 0.17 m using local
maxima search, showing that the proposed framework is ca-
pable of localizing sound sources. Up to 3 sources within an
8m x 8m space were localized. The method is also robust to-
wards false positive detections and noise effects produced by
echoes. The novelty of the approach is in the combination of
the audio scans with the LRFs scans. These kind of sound
localization approach will aid the robot in attaining a better
knowledge about environmental noise. It can be used for bet-
ter speech recognition (suppressing the known environmental
noise), effective human-robot interaction, and also for surveil-
lance of environments. With the available framework, it is
possible to extend the work to 3-Dimensional sound source
localization that is more informative.
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