ON GENERALIZED RIESZ POTENTIALS AND SPACES OF SOME SMOOTH FUNCTIONS

EIICHI NAKAI AND HIRONORI SUMITOMO

ABSTRACT. Let \((X, \delta, \mu)\) be a normal space of homogeneous type of order \(\gamma\). Gatto and Vágı [6] showed that, if \(f\) and \(I_\alpha f\) are in \(L^p(X) (0 < \alpha < \min(\gamma, 1/p))\), then \(I_\alpha f\) is in \(C^p,\alpha(X)\), where \(C^p,\alpha\) is the space of smooth functions of Calderón-Scott [1].

In this paper, we introduce a generalized Riesz potential \(I_\phi\) and extend the result above. With this aim, we extend the Hardy-Sobolev inequality to the Orlicz space.

1. Introduction

Let \(X = (X, d, \mu)\) be a space of homogeneous type, i.e. \(X\) is a topological space endowed with a quasi-distance \(d\) and a positive measure \(\mu\) such that

\[
d(x, y) \geq 0 \quad \text{and} \quad d(x, y) = 0 \quad \text{if and only if} \quad x = y,
\]

\[
d(x, y) = d(y, x),
\]

\[
d(x, y) \leq K_1 (d(x, z) + d(z, y)),
\]

the balls \(B(x, r) = \{y \in X : d(x, y) < r\}\), \(r > 0\), form a basis of neighborhoods of the point \(x\), \(\mu\) is defined on a \(\sigma\)-algebra of subsets of \(X\) which contains the balls, and

\[
0 < \mu(B(x, 2r)) \leq K_2 \mu(B(x, r)) < \infty,
\]

where \(K_i \geq 1 \quad (i = 1, 2)\) are constants independent of \(x, y, z \in X\) and \(r > 0\).

We assume that \(X = (X, d, \mu)\) is of order \(\gamma \quad (0 < \gamma \leq 1)\) and \(Q\)-homogeneous \((Q > 0)\), i.e.

\[
|d(x, z) - d(y, z)| \leq K_3 d(x, y)^\gamma (d(x, z) + d(y, z))^{1-\gamma},
\]

\[
K_4^{-1} r^Q \leq \mu(B(x, r)) \leq K_4 r^Q,
\]

where \(K_i \geq 1 \quad (i = 3, 4)\) are constants independent of \(x, y, z \in X\) and \(r > 0\).

The \(n\)-dimensional Euclidean space \(\mathbb{R}^n\) is of order \(1\) and \(n\)-homogeneous.

For an increasing function \(\phi : (0, \infty) \rightarrow (0, \infty)\), let

\[
I_\phi f(x) = \int_X f(y) \frac{\phi(d(x, y))}{d(x, y)^Q} d\mu(y).
\]

If \(\phi(r) = r^\alpha, 0 < \alpha < Q\), then \(I_\phi\) is the Riesz potential of order \(\alpha\).
For \(f \in L^p(X) \), \(1 < p < \infty \), we consider the sharp functions
\[
\frac{f(x)}{\alpha} = \sup_{x \in B(a,r)} \frac{1}{\alpha} \int_{B(a,r)} |f(y) - f_{\alpha}(a,r)| \, d\mu(y)
\]
where \(f_{\alpha}(a,r) = \mu(B(a,r))^{-1} \int_{B(a,r)} f(y) \, d\mu(y) \) and the supremum is taken over all balls \(B(a,r) \) containing \(x \).

The space \(C^{p,\phi}(X) \) is the set of all functions \(f \in L^p(X) \) with \(f \in L^p(X) \) equipped with the norm \(\|f\|_{C^{p,\phi}} = \|f^{\alpha}\|_p + \|f\|_p \), where \(\|\cdot\|_p \) denotes the \(L^p \)-norm.

Our main results are as follows:

Theorem 1.1. Let \(1 < p < \infty \), \(1/p + 1/p' = 1 \). Assume that \(\phi \) is increasing, \(\phi(r)/r^{(Q/p-\varepsilon)} \) is decreasing for some \(\varepsilon > 0 \), and \(\int_0^1 \phi(t)/t \, dt + \int_1^\infty (\phi(t)/t^{1+\gamma}) \, dt < \infty \). Let
\[
\psi(r) = \int_0^r \frac{\phi(t)}{t} \, dt + r^\gamma \int_r^\infty \frac{\phi(t)}{t^{1+\gamma}} \, dt, \quad 0 < r < \infty.
\]
If \(f \) and \(F = I_\phi f \) are in \(L^p(X) \), then \(F \) is in \(C^{p,\phi}(X) \) and \(\|F\|_{C^{p,\phi}} \leq C(\|f\|_p + \|f\|_p) \) with a constant \(C \) independent of \(F \) and \(f \).

Remark 1.1. If \(\phi \) is increasing and \(\phi(r)/r^Q \) is decreasing, then \(\phi \) is continuous and
\[
\phi(r) \leq \psi(2r) \leq 2^Q \psi(r),
\]
\[
\phi(r) \leq C_Q \left(\int_0^r \frac{\phi(t)}{t} \, dt + r^\gamma \int_r^\infty \frac{\phi(t)}{t^{1+\gamma}} \, dt \right).
\]

Corollary 1.2. Let \(1 < p < \infty \), \(1/p + 1/p' = 1 \). Assume that \(\phi \) is increasing, \(\phi(r)/r^{(Q/p-\varepsilon)} \) is decreasing for some \(\varepsilon > 0 \), and there is a constant \(C_0 > 0 \) such that
\[
\int_0^r \frac{\phi(t)}{t} \, dt + r^\gamma \int_r^\infty \frac{\phi(t)}{t^{1+\gamma}} \, dt \leq C_0 \psi(r), \quad 0 < r < \infty.
\]
If \(f \) and \(F = I_\phi f \) are in \(L^p(X) \), then \(F \) is in \(C^{p,\phi}(X) \) and \(\|F\|_{C^{p,\phi}} \leq C(\|f\|_p + \|f\|_p) \) with a constant \(C \) independent of \(F \) and \(f \).

Remark 1.2. If \(\phi(r) = r^\alpha \) (\(0 < \alpha < \gamma \)), then \(\phi \) satisfies (1.5). Therefore the result of [6, Theorem 2.1] is contained in this corollary.

To prove the results above, we extend the Hardy-Sobolev inequality to the Orlicz space \(L^\Phi \). The definitions of the N-function \(\Phi \) and the Orlicz space \(L^\Phi \) are in next section.

Theorem 1.3. Let \(1 < s < \infty \). Assume that \(\phi \) is increasing, \(\phi(r)/r^{(Q/s-\varepsilon)} \) is decreasing for some \(\varepsilon > 0 \), and \(\int_0^1 \phi(t)/t \, dt < \infty \). Then there is an N-function \(\Psi \) such that
\[
C^{-1} \phi^{-1} \left(\frac{1}{r^Q} \right) \leq \frac{1}{r^Q/s} \int_0^r \frac{\phi(t)}{t} \, dt \leq C \phi^{-1} \left(\frac{1}{r^Q} \right), \quad 0 < r < \infty,
\]
and \(I_\phi \) is bounded from \(L^s(X) \) to \(L^\Phi(X) \).

Section 3 is for preliminalies. In Section 4 we give proofs of the theorems. In Section 5 we give examples.

The letter \(C \) will denote a constant, not necessarily the same indifferent occurrences.
2. Orlicz spaces

In this section, we recall the definition of Orlicz spaces. A function \(\Phi : [0, \infty) \to [0, \infty) \) is called an N-function if it can be represented as

\[
\Phi(r) = \int_0^r a(t) \, dt,
\]

where \(a : [0, \infty) \to [0, \infty) \) is a left continuous nondecreasing function such that \(a(0) = 0 \) and \(a(t) \to \infty \) as \(t \to \infty \). Let

\[
b(r) = \inf \{ s : a(s) > r \}.
\]

Then

\[
\Psi(r) = \int_0^r b(t) \, dt
\]

is also an N-function, and \((\Phi, \Psi)\) is called a complementary pair.

Let \((X, \mu)\) be a measure space. For an N-function \(\Phi \), let

\[
L^\Phi(X) = \left\{ f : \int_X \Phi(\varepsilon |f(x)|) \, d\mu(x) < \infty \text{ for some } \varepsilon > 0 \right\},
\]

\[
\|f\|_\Phi = \inf \left\{ \lambda > 0 : \int_X \Phi \left(\frac{|f(x)|}{\lambda} \right) \, d\mu(x) \leq 1 \right\}.
\]

Let \((\Phi, \Psi)\) be a complementary pair of N-functions. We note that

\[
\int_X |f(x)g(x)| \, d\mu(x) \leq 2\|f\|_\Phi \|g\|_\Psi,
\]

and that

\[
r \leq \Phi^{-1}(r)\Psi^{-1}(r), \quad r \geq 0,
\]

where \(\Phi^{-1} \) and \(\Psi^{-1} \) are inverse functions of \(\Phi \) and \(\Psi \), respectively. Let \((X, d, \mu)\) be a space of homogeneous type, and \(\chi_{B(a, r)} \) be the characteristic function of a ball \(B(a, r) \). Then

\[
\|\chi_{B(a, r)}\|_\Psi = \inf \left\{ \lambda > 0 : \int_X \Psi \left(\frac{\chi_{B(a, r)}(x)}{\lambda} \right) \, d\mu(x) \leq 1 \right\}
\]

\[
= \inf \left\{ \lambda > 0 : \Psi \left(\frac{1}{\lambda} \right) \mu(B(a, r)) \leq 1 \right\}
\]

\[
= \frac{1}{\Psi^{-1}(1/\mu(B(a, r)))} \leq \mu(B(a, r))\Phi^{-1} \left(\frac{1}{\mu(B(a, r))} \right).
\]

3. Preliminaries

In this section, we show lemmas to prove theorems.

Lemma 3.1. Let \(\alpha > 0, \beta > 0, \delta > 0, \phi : (0, \infty) \to (0, \infty) \) be increasing and \(\phi(r)/r^\alpha \) be decreasing. Then, for \(0 < r < \infty \),

\[
\left(\frac{1}{(\alpha + \beta)\delta} \right)^{1/\delta} \phi(r)^{1/\delta} \leq \int_r^\infty \left(\frac{\phi(t)^{\delta}}{t^{\alpha + \beta}} \right)^{1/\delta} \, dt \leq \left(\frac{1}{\beta\delta} \right)^{1/\delta} \phi(r)^{1/\delta}.
\]
Proof. By the increasingness of ϕ we have
\[
\int_{r}^{\infty} \left(\frac{\phi(t)}{t^{\alpha+\beta}} \right)^{\delta} t^{-1} dt = \int_{r}^{\infty} \phi(t)^{\delta} t^{-1-(\alpha+\beta)\delta} dt \\
\geq \phi(r)^{\delta} \int_{r}^{\infty} t^{-1-(\alpha+\beta)\delta} dt = \frac{1}{(\alpha+\beta)\delta} \left(\frac{\phi(r)}{r^{\alpha+\beta}} \right)^{\delta}.
\]
By the decreasingness of $\phi(r)/r^\alpha$ we have
\[
\int_{r}^{\infty} \left(\frac{\phi(t)}{t^{\alpha+\beta}} \right)^{\delta} t^{-1} dt = \int_{r}^{\infty} \left(\frac{\phi(t)}{t^\alpha} \right)^{\delta} t^{-1-\beta\delta} dt \\
\leq \left(\frac{\phi(r)}{r^\alpha} \right)^{\delta} \int_{r}^{\infty} t^{-1-\beta\delta} dt = \frac{1}{\beta\delta} \left(\frac{\phi(r)}{r^{\alpha+\beta}} \right)^{\delta}.
\]

Lemma 3.2. Let $\alpha > 0$, $\beta > 0$, $\alpha + \beta < Q$, $h : (0, \infty) \to (0, \infty)$ be increasing and differentiable, and $h(r)/r^\alpha$ be decreasing. Then there is an N-function Φ such that
\[
C^{-1} \Phi^{-1} \left(\frac{1}{r^Q} \right) \leq \frac{h(r)}{r^{\alpha+\beta}} \leq C \Phi^{-1} \left(\frac{1}{r^Q} \right), \quad 0 < r < \infty,
\]
where $C > 0$ is independent of r.

Proof. Let
\[
\Phi^{-1} \left(\frac{1}{r^Q} \right) = \int_{r}^{\infty} \frac{h(t)}{t^{\alpha+\beta}} t^{-1} dt.
\]
Applying Lemma 3.1 with $\delta = 1$, we have (3.1). Next we show $\Phi'(u) > 0$. Let
\[
u = \Phi^{-1} \left(\frac{1}{r^Q} \right), \quad v = \frac{1}{r^Q}.
\]
Then $v = \Phi(u)$ and
\[
\frac{dv}{du} = \frac{du}{dr} \frac{dv}{dr} = \left(-\frac{Q}{r^{Q+1}} \right) \left(-\frac{h(r)}{r^{\alpha+\beta+1}} \right) = \frac{Q}{r^{Q-\alpha-\beta} h(r)}
\]
is strictly decreasing with respect to r. Hence
\[
\frac{d^2 v}{du^2} = \left(\frac{dv}{du} \right) \frac{du}{dr} > 0.
\]

Remark 3.1. If ϕ is increasing and $\phi(r)/r^\alpha$ is decreasing, then $h(r) = \int_{r}^{\infty} (\phi(t)/t) dt$ is increasing and differentiable, and $h(r)/r^\alpha$ is decreasing. Actually,
\[
\frac{d}{dr} \left(\frac{h(r)}{r^\alpha} \right) = \frac{r h'(r) - \alpha h(r)}{r^{\alpha+1}} = \frac{1}{r^{\alpha+1}} \left(\phi(r) - \alpha \int_{0}^{r} \frac{\phi(t)}{t^\alpha} t^{-1} dt \right)
\]
\[
\leq \frac{1}{r^{\alpha+1}} \left(\phi(r) - \alpha \frac{\phi(r)}{r^\alpha} \int_{0}^{r} t^{-1} dt \right) = 0.
\]

Lemma 3.3. Let ϕ be increasing and $\phi(r)/r^Q$ be decreasing. If $2K_1 d(x, x') \leq d(x, y)$, then
\[
\left| \phi(d(x, y)) \left(\frac{d(x, y)}{d(x', y)} \right)^{Q} \phi(d(x', y)) \right| \leq C d(x, x') \phi(d(x, y)) \left(\frac{d(x', y)}{d(x, y)} \right)^{Q\gamma},
\]
where $C > 0$ is independent of $x, x', y \in X$.

Proof. By mean value theorem, for \(u < r_0 < v \), we have
\[
0 \leq \frac{\phi(u)}{u^Q} - \frac{\phi(v)}{v^Q} \leq \phi(u)\left(\frac{1}{u^Q} - \frac{1}{v^Q}\right) = \phi(u)(v - u) \frac{d}{dr}\left(-\frac{1}{r^{Q}}\right)_{r=r_0} = Q\phi(u)(v - u) \frac{1}{r_0^{Q+1}} \leq Q(v - u) \frac{\phi(u)}{u^{Q+1}}.
\]

Let \(u = \min(d(x, y), d(x', y)) \) and \(v = \max(d(x, y), d(x', y)) \). Then
\[
v - u \leq K_3 d(x, x')^\gamma (d(x, y) + d(x', y))^{1-\gamma} \leq K_3 \left(K_1 + \frac{3}{2} \right)^{1-\gamma} d(x, x')^\gamma d(x, y)^{1-\gamma},
\]
and
\[
\frac{d(x, y)}{2K_1} \leq u \leq d(x, y).
\]

Hence
\[
(v - u)\frac{\phi(u)}{u^{Q+1}} \leq Cd(x, x')^\gamma \frac{\phi(d(x, y))}{d(x, y)^{Q+\gamma}}.
\]

Therefore we have (3.2). \(\square \)

The following is used in the proof of Theorem 1.1. For all balls \(B \) and for all integrable functions \(f \) on \(B \),
\[
\frac{1}{\mu(B)} \int_B |f(y) - f_B| \, d\mu(y) \leq 2 \inf_c \frac{1}{\mu(B)} \int_B |f(y) - c| \, d\mu(y).
\]

4. PROOFS OF THEOREMS

Proof of Theorem 1.3. By Lemma 3.2 and Remark 3.1 we have an N-function \(\Phi \) with the property (1.6). For \(r > 0 \), let
\[
J_1 = \int_{d(x, y) < r} f(y) \frac{\phi(d(x, y))}{d(x, y)^Q} \, d\mu(y) \quad \text{and} \quad J_2 = \int_{d(x, y) \geq r} f(y) \frac{\phi(d(x, y))}{d(x, y)^Q} \, d\mu(y).
\]

Since \(\phi(r)/r^Q \) is decreasing,
\[
|J_1| \leq Mf(x) \int_{d(x, y) < r} \frac{\phi(d(x, y))}{d(x, y)^Q} \, d\mu(y),
\]
where \(M \) is the Hardy-Littlewood maximal function (see Stein[9, p.57]). By (1.2) and (1.4) we have
\[
\frac{\phi(d(x, y))}{d(x, y)^Q} \, d\mu(y) \leq \frac{\phi(r_j)}{r_j^Q} \mu(B(x, 2r_j)) \leq C \phi(r_j) \leq C' \int_{r_j}^{2r_j} \frac{\phi(t)}{t} \, dt, \quad r_j = 2^{-j}r, \; j = 1, 2, \ldots.
\]

From (4.1) and (4.2) it follows that
\[
|J_1| \leq CMf(x) \int_0^r \frac{\phi(t)}{t} \, dt.
\]
Next we estimate $|J_2|$. Let $1/s + 1/s' = 1$. Let $\chi_{B(x,r)}$ be the characteristic function of $B(x, r)$. By Hölder inequality we have

$$|J_2| \leq \|f\|_s \left\| \frac{\phi(d(x, \cdot))}{d(x, \cdot)^Q} \chi_{B(x,r)}(\cdot) \right\|_{s'} = \|f\|_s \left(\int_{d(x,y) \geq r} \left(\frac{\phi(d(x,y))}{d(x,y)^Q} \right)^{s'} \mu(y) \right)^{1/s'}.$$

By (1.2) and (1.4) we have

$$\int_{r_j \leq d(x,y) < 2r_j} \left(\frac{\phi(d(x,y))}{d(x,y)^Q} \right)^{s'}\mu(y) \leq \left(\frac{\phi(r_j)}{r_j^Q} \right)^{s'} \mu(B(x, 2r_j)) \leq C \left(\frac{\phi(r_j)}{r_j^Q} \right)^{s'} \leq C' \int_{r_j}^{2r_j} \left(\frac{\phi(t)}{t^Q} \right)^{s'} t^{-1} dt, \quad r_j = 2^j r, \; j = 0, 1, 2, \ldots.$$

By Lemma 3.1 we have

$$\left(\int_{r}^{\infty} \left(\frac{\phi(t)}{t^Q} \right)^{s'} t^{-1} dt \right)^{1/s'} \leq C \frac{\phi(r)}{r^{Q/s}}.$$

From (4.4), (4.5) and (4.6) it follows that

$$|J_2| \leq C \|f\|_s \frac{\phi(r)}{r^{Q/s}}.$$

By (4.3) and (4.7) we have

$$|I_\phi f(x)| \leq C \left(Mf(x) + \|f\|_s \frac{1}{r^{Q/s}} \right) \int_0^r \frac{\phi(t)}{t} dt.$$
Proof of Theorem 1.1. Fix $x \in X$; we will estimate $F\psi^s_\phi(x)$. Let $B = B(a, r)$ be a ball containing x and $\tilde{B} = B(a, 2r)$. Let χ be the characteristic function of \tilde{B}. Set $F = F_1 + F_2$ with $F_1 = I_\phi(f\chi)$ and $F_2 = I_\phi(f(1 - \chi))$.

To estimate $(F_1)^s_\psi^\psi(x)$, let $1 < s < p$. By Theorem 1.3 we have an N-function Φ with the property (1.6) and

\[(4.8) \quad \|I_\phi f\|_\Phi \leq C\|f\|_s. \]

Let Ψ be the complement of Φ. From (2.1), (2.3), (1.6), (1.4) and (4.8), it follows that

\[
\frac{1}{r^{Q\psi(r)}} \int_B |I_\phi(f\chi)(z)| \, d\mu(z) \leq \frac{2}{r^{Q\psi(r)}} \|\chi_B\|_\psi \|I_\phi(f\chi)\|_\psi
\]

\[
\leq \frac{2}{r^{Q\psi(r)}} \mu(B) \Phi^{-1} \left(\frac{\mu(B)}{1} \right) \|I_\phi(f\chi)\|_\psi \leq C \frac{1}{r^{Q\psi(r)}} \|f\chi\|_s
\]

\[
= C \left(\frac{1}{r^Q} \int_B |f(z)|^s \, d\mu(z) \right)^{1/s} \leq C' M_s(f)(x),
\]

where $M_s(f) = [M(|f|^s)]^{1/s}$. By (3.3) we have

\[(4.9) \quad (F_1)^s_\psi^\psi(x) \leq C M_s(f)(x). \]

Second we estimate $(F_2)^s_\psi^\psi(x)$. Observe that

\[
I_\phi(f(1 - \chi))(z) - I_\phi(f(1 - \chi))(a)
\]

\[
= \int_{(\tilde{B})^c} f(y) \left(\frac{\phi(d(z, y))}{d(z, y)^Q} - \frac{\phi(d(a, y))}{d(a, y)^Q} \right) \, d\mu(y),
\]

then by Lemma 3.3 we have

\[(4.10) \quad \int_B |I_\phi(f(1 - \chi))(z) - I_\phi(f(1 - \chi))(a)| \, d\mu(z)
\]

\[
\leq C \int_{B} |z - a|^\gamma \left(\int_{(\tilde{B})^c} \frac{\phi(d(a, y))|f(y)|}{d(a, y)^{Q+\gamma}} \, d\mu(y) \right) \, d\mu(z).
\]

To estimate the inner integral we write

\[
\int_{(\tilde{B})^c} \frac{\phi(d(a, y))|f(y)|}{d(a, y)^{Q+\gamma}} \, d\mu(y) \leq \sum_{k=1}^\infty \int_{2^{k+r} \leq d(a, y) < 2^{k+1+r}} \frac{\phi(2^kr)|f(y)|}{(2^kr)^{Q+\gamma}} \, d\mu(y)
\]

\[
\leq \sum_{k=1}^\infty \frac{(2^{k+1+r})^Q}{(2^kr)^{Q+\gamma}} \frac{\phi(2^kr)}{(2^kr)^{Q+\gamma}} \int_{B(a, 2^{k+1+r})} |f(y)| \, d\mu(y)
\]

\[
\leq C \left(\sum_{k=1}^\infty \frac{\phi(2^kr)}{(2^kr)^\gamma} \right) Mf(x) \leq C' \left(\sum_{k=1}^\infty \int_{2^{k-1+r} \leq t < 2^{k+r}} \frac{\phi(t)}{t^{1+\gamma}} \, dt \right) Mf(x)
\]

\[
= C' \left(\int_r^\infty \frac{\phi(t)}{t^{1+\gamma}} \, dt \right) Mf(x) \leq C' \frac{\psi(r)}{r^\gamma} Mf(x).
\]

Using the estimate (4.10) and (3.3) we get

\[(4.11) \quad (F_2)^s_\psi^\psi(x) \leq C Mf(x) \leq CM_s(f)(x). \]
By (4.9), (4.11) and the fact that the sharp function operator is subadditive, we have

\[F^\sharp_\psi(x) \leq CM_*(f)(x). \]

Finally, using the strong type \(p/s \) of \(M \) we have

\[\| F^\sharp_\psi \|_p \leq C\| f \|_p. \]

This concludes the proof of Theorem 1.1.

5. Examples

For functions \(\theta, \kappa : (0, \infty) \to (0, \infty) \), we denote \(\theta(r) \sim \kappa(r), u < r < v, \) if there is a constant \(C > 0 \) such that

\[C^{-1}\theta(r) \leq \kappa(r) \leq C\theta(r), \quad u < r < v. \]

Let \(0 \leq \alpha_i < \infty \) and \(-\infty < \beta_i < \infty \) \((i = 1, 2)\). For constants \(r_1 \) and \(r_2 \) \((0 < r_1 < 1/e, e < r_2)\), let

\[\phi(r) = \begin{cases} k_1 r^{\alpha_1}(1/\log(1/r))^{\beta_1}, & 0 < r < r_1, \\ 1, & r_1 \leq r \leq r_2, \\ k_2 r^{\alpha_2}(\log r)^{\beta_2}, & r_2 < r < \infty, \end{cases} \]

where \(k_1 = (r_1^{\alpha_1}(1/\log(1/r_1)))^{\beta_1} \) and \(k_2 = (r_2^{\alpha_2}(\log r_2))^{\beta_2} \).

If \(\alpha_1, \alpha_2 > 0 \), then

\[\int_0^r \frac{\phi(t)}{t} \, dt \sim \phi(r). \]

If \(\alpha_1, \alpha_2 < \gamma \), then

\[r^\gamma \int_r^\infty \frac{\phi(t)}{t^{1+\gamma}} \, dt \sim \phi(r). \]

If \(\alpha_1 = 0, \beta_1 > 1 \), i.e. \(\phi(r) = k_1(1/\log(1/r))^{\beta_1}, 0 < r < r_1, \) then

\[r^\gamma \int_r^\infty \frac{\phi(t)}{t^{1+\gamma}} \, dt \sim \phi(r) \leq C \int_0^r \frac{\phi(t)}{t} \, dt = C'(1/\log(1/r))^{\beta_1-1}, \quad 0 < r < r_1, \]

i.e. \(\psi(r) \sim (1/\log(1/r))^{\beta_1-1}, 0 < r < r_1 \).

If \(\alpha_2 = \gamma, \beta_2 < -1 \), i.e. \(\phi(r) = r^\gamma(\log r)^{\beta_2}, r > r_2, \) then

\[\int_0^r \frac{\phi(t)}{t} \, dt \sim \phi(r) \leq Cr^\gamma \int_r^\infty \frac{\phi(t)}{t^{1+\gamma}} \, dt = C' r^\gamma(\log r)^{\beta_2+1}, \quad r > r_2, \]

i.e. \(\psi(r) \sim r^\gamma(\log r)^{\beta_2+1}, r > r_2 \).

Let \(\alpha_1 = 0, 0 < \alpha_2 < \gamma, \beta_1 > 1 \). Choose \(r_1 \) and \(r_2 \) so that \(\phi \) is increasing and that \((1/r)^n/p\phi(r) \) and \((1/r)^n/p \int_0^r (\phi(t)/t) \, dt \) are decreasing. For \(x \in \mathbb{R}^n, 1 < \delta < p \), let

\[f(x) = \begin{cases} (1/|x|)^n/p(1/\log(1/|x|))^{\delta/p}, & |x| < r_1, \\ 0, & |x| \geq r_1. \end{cases} \]
Then $f \in L^p(\mathbb{R}^n)$. Let Φ and Φ_1 be N-functions such that

$$\Phi^{-1}\left(\frac{1}{r^n}\right) \sim \frac{1}{r^{n/p}} \int_0^r \frac{\phi(t)}{t} dt \quad \text{and}$$

$$\Phi_1^{-1}\left(\frac{1}{r^n}\right) \sim \frac{1}{r^{n/p}} \phi(r).$$

Then $I_\phi f \in L^\Phi(\mathbb{R}^n) \setminus L^{\Phi_1}(\mathbb{R}^n)$. Actually Theorem 1.3 yeilds that $I_\phi f \in L^\Phi(\mathbb{R}^n)$. If $|x| < r_1/2$ and $|y| < |x|/2$, then $|x|/2 \leq |x - y| \leq 3|x|/2$ and $f(x) \sim f(x - y)$. Hence,

$$I_\phi f(x) \geq \int_{|y| \leq |x|/2} f(x - y) \frac{\phi(|y|)}{|y|^n} dy \geq C f'(x) \int_0^{|x|/2} \frac{\phi(|y|)}{|y|^n} dy \geq C' f(x)(1/\log(2/|x|))^{\beta_1 - 1}$$

$$\geq C''(1/|x|)^{n/p}(1/\log(1/|x|))^{\beta_1} \sim \Phi_1^{-1}\left(\frac{1}{|x|^n}\right), \quad |x| < r_1/2.$$

Since $\Phi_1(r) \leq \Phi_1(2r) \leq C \Phi_1(r)$, for all $\lambda > 0$, there is a constant $\lambda' > 0$ such that

$$\Phi_1\left(\frac{I_\phi f(x)}{\lambda}\right) \geq \frac{1}{\lambda'} \frac{1}{|x|^n}, \quad |x| < \frac{r_1}{2}.$$

Therefore $I_\phi f \notin L^{\Phi_1}(\mathbb{R}^n)$.

REFERENCES

Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan
E-mail address: enakai@cc.osaka-kyoiku.ac.jp
Telephone and facsimile: 0729-78-3424