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Abstract. The goal of this paper is to provide complete statement and proof
for B. Mossé’s unilateral recognizability theorem.

1. Introduction

Every map σ from a finite alphabet A, which consists of at least two letters,
to the set A+ of nonempty words over the alphabet A is called a substitution on
A. Suppose that a substitution σ on A is primitive, i.e. there exists k ∈ N :=
{1, 2, 3, . . . } such that any pair (a, b) ∈ A×A, a occurs in σk(b). Suppose that the
primitive substitution σ has a fixed point u ∈ AZ+ , where Z+ := {0, 1, 2, . . . }. For
each p ∈ N, set Ep = {0} ∪ {|σp(u[0,n))| : n ∈ N}, whose elements are called the
natural p-cutting points; see also [5, § 3], [1, § 3.4] and [6, § 7.2.1]. It is clear that
Eq ⊊ Ep whenever q > p.

Definition 1.1 ([2, p. 530]). The substitution σ is said to be (unilaterally) recog-
nizable if there exists L ∈ N such that u[i,i+L) = u[j,j+L), i ∈ E1 ⇒ j ∈ E1.

The recognizability does not depend on the choice of the fixed point u. If v ∈ AZ+

is another fixed point of σ, then the primitivity of σ guarantees that the language
of u coincides with that of v.
The so-called Morse substitution: a 7→ ab, b 7→ ba has a fixed point

u = abbabaabbaababbabaababbaabbabaab . . .

and then E1 = {0, 2, 4, 6, . . . }. As is shown in [7, p. 109], the Morse substitution
is recognizable with L = 4.
The recognizability is an important notion for primitive substitutions from view-

points of associated subshifts. If the substitution σ is recognizable, then the unilat-
eral subshift Xσ arising from σ has a Kakutani-Rohlin partition built on a clopen
subset σ(Xσ) of Xσ. It is trivial that Kakutani-Rohlin partitions have played cru-
cial roles in investigation of dynamical systems. Proposition VI. 6 of [7] states that
given a point x ∈ Xσ, the first return time of the point σ(x) to the clopen subset
σ(Xσ) equals the length |σ(x0)| of the word σ(x0). This leads to a fact that the first
return map on σ(Xσ) is a topological factor of Xσ, which shows a self-similarity
of Xσ if the substitution σ is injective on the alphabet A; see [7, Corollary VI. 8].
It is also a significant consequence of the recognizability that σ(Xσ) is open; see
[7, Proposition VI. 3] and [2, Lemme 2]. The recognizability is a premise of the
celebrated theorem of [2], which characterizes eigenvalues and eigenfunctions of the
subshift Xσ.
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In view of the above-mentioned facts among others, it is important to character-
ize a class of primitive substitutions with the recognizability. B. Mossé [5] gave a
characterization for the non-recognizability, whose statement is written in French:

Theorem 1.2 ([5, Théorème 3.1]). Soit σ une substitution primitive admettant
un point fixe non périodique u. Pour que σ ne soit pas reconnaissable, il faut et il
suffit que pour tout entier L, il existe un mot B de longueur L et deux éléments a
et b de A tels que:

— le mot σ(b) est un suffixe strict de σ(a),
— les mots σ(a)B et σ(b)B apparaissent dans u avec le même 1-découpage de

B.

The following sentences would be an English translation of this statement.

Let σ be a primitive substitution admitting an aperiodic fixed point
u. So that σ is not recognizable, it is necessary and sufficient that
for all L ∈ N there exists a word B of length L and two elements a
and b of A such that
— the word σ(b) is a strict suffix of σ(a),
— the words σ(a)B and σ(b)B appear in u with the same 1-cutting

of B.

See Definition 3.1 for the definition of “the same 1-cutting”.
The statement of Theorem 1.2 is incomplete to characterize the non-recognizability.

Try to show the sufficiency. The words σ(a)B and σ(b)B must occur at some po-
sitions i, j ∈ E1 in u, respectively, so that ui′ = a, uj′ = b, i = |σ(u[0,i′))| and
j = |σ(u[0,j′))| for some i′, j′ ∈ Z+.
The characterization should be formulated as follows.

Theorem 1.3. Let σ be a primitive substitution on a finite alphabet A admitting
an aperiodic fixed point u. Then the following are equivalent.

(1) σ is not recognizable;
(2) for each L ∈ N, there exist i, j ∈ Z+ such that

— σ(uj) is a strict suffix of σ(ui);
— σ(ui+k) = σ(uj+k) for each integer k with 1 ≤ k ≤ L.

B. Mossé’s proof [5] for this theorem would be difficult to completely follow, in
particular, Part (4) in p. 332, to which Step 3 in the present proof of Theorem 1.3
corresponds. Moreover, no proofs can be found in recent textbooks [6, 3, 8], though
a proof for the bilateral recognizability is written in [3, pp. 163-164]. This motivated
the author to write the present article.

Excepting Step 3 in the proof of Theorem 1.3, everything which the reader
will see in the present article is due to B. Mossé or other pioneers. Step 3 is an
improvement by the present paper.

2. Preliminaries

We shall make terminology excepting that in the preceding section. The empty
word is denoted by Λ. Put A∗ = A+ ∪ {Λ}. We say that a word w ∈ A∗ occurs in
a word v ∈ A∗ if there exist p, s ∈ A∗ such that v = pws. We then write w ≺ v.
More specifically, w is said to occurs at the position |p| + 1 in v. The position is
called an occurrence of w in v. Let |v|w denote the number of occurrences of w
in v. The words p and s are called a prefix and suffix of v, respectively. We then
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write p ≺p v and s ≺s v, respectively. If |p| < |v| (resp. |s| < |v|), then p (resp. s)
is called a strict prefix (resp. suffix) of v, and then we write p ≺sp v (resp. s ≺ss v).
A power of a word w ∈ A∗ is a word of the form ww . . . w︸ ︷︷ ︸

n times

with some n ∈ Z+. The

power is denoted by wn. In particular, w0 = Λ.
Let σ be a primitive substitution on A. The domain of σ is naturally extended

to each of A+ and AZ+ by means of concatenation or juxtaposition of words. A
recursive formula defines the powers σk for k ∈ Z+ on each of A+ and AZ+ .
A nonnegative, square matrix M is said to be primitive if there exists n ∈ N

such that Mn is positive, i.e. the entries of Mn are positive. The incidence matrix
Mσ of the substitution σ is defined to be an A×A matrix whose (a, b)-entry equals
|σ(a)|b. Clearly, a substitution is primitive if and only if the incidence matrix
associated with the substitution is primitive. Notice that every (a, b)-entry of Mσ

n

equals |σn(a)|b.

Lemma 2.1. There exist λ > 0 and C > 0 such that for all a ∈ A and n ∈ N,
C−1λn ≤ |σn(a)| ≤ Cλn.

Proof. Let λ denote the Perron eigenvalue of Mσ, i.e. such an eigenvalue λ > 0
that the absolute value of any other eigenvalue is less than λ. In virtue of [4,
Theorem 4.5.12], there exist sets {ca,b > 0 : a, b ∈ A} and {ρa,b(n) ∈ R : a, b ∈
A, n ∈ N} such that for all a, b ∈ A and n ∈ N,

|σn(a)|b = {ca,b + ρa,b(n)}λn and lim
n→∞

ρa,b(n) = 0.

Fix a letter a ∈ A. Since λ−n|σn(a)| > 0 for all n ∈ N and λ−n|σn(a)| →
∑

b∈A ca,b
(n → ∞), there exists Ca > 0 such that C−1

a ≤ λ−n|σn(a)| ≤ Ca for all n ∈ N.
Taking C = maxa∈A Ca, we obtain the desired conclusion. □
Suppose that u := u0u1u2 . . . ∈ AZ+ is a fixed point of σ, where ui ∈ A for each

i ∈ Z+. Let L(u) denote the language of the sequence u, i.e.

L(u) = {uiui+1 . . . uj|i, j ∈ Z+, i ≤ j} ∪ {Λ}.
Set Lk(u) = {w ∈ L(u) : |w| = k}. We say that a word w ∈ A∗ occurs at a
position i ∈ Z+ in u if u[i,i+|w|) := uiui+1 . . . ui+|w|−1 = w. The integer i is called
an occurrence of the word w. In virtue of [1, Proposition 25], the fixed point u
is linearly recurrent with a constant K ∈ N, i.e. any word occurring in u occurs
infinitely often in u and there exists K ∈ N such that the difference between two
successive occurrences of any word w ∈ L(u) is less than K|w|. Theorem 24 (ii) of
[1] guarantees that if an aperiodic sequence u′ ∈ AZ+ is linearly recurrent with a
constant K, then the sequence u′ is (K+1)-power free, i.e. w ∈ A+, wN ∈ L(u′) ⇒
N ≤ K. The following lemma was obtained earlier by [5, Théorème 2.4].

Lemma 2.2. There exists K ∈ N such that the fixed point u is (K+1)-power free.

3. A proof of Theorem 1.3

Definition 3.1. (1) A finite sequence {α, σp(ui′), σ
p(ui′+1), . . . , σ

p(ui′+k−1), β}
is called a natural p-cutting of u[i,i+ℓ) if α ≺s σ

p(ui′−1), β ≺p σp(ui′+k),

u[i,i+ℓ) = ασp(ui′)σ
p(ui′+1) . . . σ

p(ui′+k−1)β

and i+ |α| = |σp(u[0,i′))|.
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(2) Suppose that a word w occurs at positions i and j in u. The word w is said
to have the same p-cutting at the positions i and j if

(Ep ∩ [i, i+ |w| − 1]) + (j − i) = Ep ∩ [j, j + |w| − 1].

Compare these definitions with the original ones in [5, § 3]. We do not exclude
the possibility that α = σp(ui′−1), α = Λ, β = σp(ui′+k) or β = Λ. Not every
u[i,i+ℓ) has a natural p-cutting, because we require k ≥ 1 in Definition 3.1 (1). It
is not necessary that a natural p-cutting is uniquely determined for given i and ℓ
in Definition 3.1 (1).
We now proceed to our proof of Theorem 1.3.

Proof of Theorem 1.3. It is enough to prove the implication (1) ⇒ (2), because the
converse implication is obvious. Fix an integer k > C2{C2(K + 1) + 2}, where C
(resp.K) is as in Lemma 2.1 (resp. Lemma 2.2). Assume that σ is not recognizable.
Step 1. It follows from Lemma 3.2 below that for each p ∈ N, there exist

integers ip ∈ E1, jp /∈ E1, i
′
p, j

′
p ≥ 0, hp, ℓp ≥ 1 and words αp, γ

′
p ∈ A∗, γp ∈ A+

such that

— u[ip,ip+ℓp) = u[jp,jp+ℓp);
— u[ip,ip+ℓp) has a natural p-cutting:

{αp, σ
p(ui′p), σ

p(ui′p+1), . . . , σ
p(ui′p+k−1)};

— u[jp+|αp|,jp+ℓp) has a natural p-cutting:

{γp, σp(uj′p), σ
p(uj′p+1), . . . , σ

p(uj′p+hp−1), γ
′
p}.

Define mp = min{m ∈ N : αpγp ≺s σ
p(u[j′p−m,j′p))}. It follows from facts:

|σp(u[j′p−mp+1,j′p))| < |αpγp|, |γpσp(u[j′p,j
′
p+hp))γ

′
p| = |σp(u[i′p,i

′
p+k)|;

αp ≺s σ
p(ui′p−1), γp ≺s σ

p(uj′p−1), γ′
p ≺p σp(uj′p+hp)

that mp < 2C2 + 1 and kC−2 − 2 ≤ hp ≤ kC2 for all p ∈ N. Hence,

{(mp, hp, u[i′p−1,i′p+k), u[j′p−m,j′p+hp]) : p ∈ N}

is a finite set, and so there exists an infinite set I ⊂ N such that the elements of

{(mp, hp, u[i′p−1,i′p+k), u[j′p−m,j′p+hp]) : p ∈ I}

are constant. It allows us to put m = mp and h = hp for any p ∈ I.
Step 2. Let p, q ∈ I (p < q) be arbitrary. We have two natural q-cuttings:

(3.1) {γq, σq(uj′q), σ
q(uj′q+1), . . . , σ

q(uj′q+h−1), γ
′
q}

of a word occurring at the position jq + |αq| and

(3.2) {σq−p(γp), σ
q(uj′q), σ

q(uj′q+1), . . . , σ
q(uj′q+h−1), σ

q−p(γ′
p)}

of a word occurring at the position jq + |αqγq| − |σq−p(γp)|. Assume that the
natural q-cuttings are not the same. Then one of the inequalities |γq| ≠ |σq−p(γp)|
and |γ′

q| ̸= |σq−p(γ′
p)| follows.
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Figure 1

Consider the case |γq| > |σq−p(γp)|. This together with the fact that

γqσ
q(u[j′q ,j

′
q+h))γ

′
q = σq(u[i′q ,i

′
q+k))

= σq−p(σp(u[i′p,i
′
p+k)))

= σq−p(γpσ
p(u[j′p,j

′
p+h))γ

′
p)

= σq−p(γp)σ
q(u[j′p,j

′
p+h))σ

q−p(γ′
p)

implies that a power vN of a nonempty word v ≺ss γq occurs in σq(u[j′q ,j
′
q+h)) as a

prefix. By using the fact that v ≺s σ
q(uj′q−1), we can see that

maxN ≥ hmina∈A |σq(a)|
maxa∈A |σq(a)|

− 1 ≥ (kC−2 − 2)C−2 − 1 > K,

which contradicts Lemma 2.2. Since the same contradiction emerges in the other
cases, we conclude that γq = σq−p(γp) for any p, q ∈ I with p < q.
Step 3. Choose p, q ∈ I with p < q so that |σq−1−p(γp)| ≥ L.
Observe how u[i′q−1,i′q+k) goes to σq(u[i′q−1,i′q+k)) via σp(u[i′q−1,i′q+k)); see Figure 1.

Since γp ≺p σp(u[i′q ,i
′
q+k)), γq ≺p σq(u[i′q ,i

′
q+k)) and σq−p(γp) = γq, we can see that

u[iq+|αq |,iq+|αqγq |) = γq has a natural 1-cutting:

{σ(ui′′), σ(ui′′+1), . . . , σ(ui′′+|σq−1−p(γp)|−1)},

where i′′ = |σq−1(u[0,i′q))|. Remark that u[i′′,i′′+|σq−1−p(γp)|) = σq−1−p(γp).

Then, observe how u[j′q−m,j′q+h] goes to σq(u[j′q−m,j′q+h]) via σp(u[j′q−m,j′q+h]); see

Figure 2. Recalling that the natural q-cuttings (3.1) and (3.2) are the same, we
can see that u[jq+|αq |,jq+|αqγq |) = γq has a natural 1-cutting:

{σ(uj′′), σ(uj′′+1), . . . , σ(uj′′+|σq−p−1(γp)|−1)},

where j′′ = |σq−1−p(u[0,|σp(u[0,j′q)
)|−|γp|))|. Remark that u[j′′,j′′+|σq−1−p(γp)|) = σq−1−p(γp).

We are finally in a situation that
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— αqγq occurs at the positions iq ∈ E1 and jq /∈ E1 in u;
— γq has the same 1-cutting at the positions iq + |αq| and jq + |αq|;
— all of the positions iq + |αq|, iq + |αqγq|, jq + |αq| and jq + |αqγq| are natural

1-cutting points;
— the same 1-cutting of γq consists of at least L words.

We reach the desired positions i, j ∈ Z+ by means of the following procedure.

(P. 1) Set ℓ = iq + |αq| and m = jq + |αq|.
(P. 2) Let ℓ′ < ℓ and m′ < m be natural 1-cutting points which are nearest to ℓ

and m respectively.
(P. 3) If ℓ− ℓ′ = m−m′, then set ℓ = ℓ′ and m = m′. Go back to (P. 2).
(P. 4) In this step, we have that ℓ − ℓ′ ̸= m − m′. The desired positions i and j

are determined by the facts that
(a) ℓ− ℓ′ < m−m′ ⇒ |σ(u[0,j))| = ℓ′ and |σ(u[0,i))| = m′;
(b) m−m′ < ℓ− ℓ′ ⇒ |σ(u[0,j))| = m′ and |σ(u[0,i))| = ℓ′.

The loop (P. 2) to (P. 3) continues up to

⌈
|αqγq|

mina∈A |σ(a)|

⌉
times. This completes

the proof. □

Lemma 3.2. Let C be a constant as in Lemma 2.1. Let k ≥ 3C2 be an integer.
If the substitution σ is not recognizable, then for each p ∈ N there exist integers
ip ∈ E1, jp /∈ E1, i

′
p, j

′
p ≥ 0, hp, ℓp ≥ 1 and words αp, γ

′
p ∈ A∗, γp ∈ A+ such that

— u[ip,ip+ℓp) = u[jp,jp+ℓp);
— u[ip,ip+ℓp) has a natural p-cutting:

{αp, σ
p(ui′p), σ

p(ui′p+1), . . . , σ
p(ui′p+k−1)};

— u[jp+|αp|,jp+ℓp) has a natural p-cutting:

{γp, σp(uj′p), σ
p(uj′p+1), . . . , σ

p(uj′p+hp−1), γ
′
p}.
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Proof. Fix an integer mp > (k + 2)maxa∈A |σp(a)|. Since σ is not recognizable,
there exist integers ip ∈ E1 and jp /∈ E1 such that u[ip,ip+mp) = u[jp,jp+mp). The
choice of mp guarantees that u[ip,ip+mp) has a natural p-cutting, say

{αp, σ
p(ui′p), σ

p(ui′p+1), . . . , σ
p(ui′p+kp−1), βp}.

Since kp ≥
mp

maxa∈A |σp(a)|
−2 > k, putting ℓp = |αpσ

p(u[i′p,i
′
p+k))|, we have a natural

p-cutting {αp, σ
p(ui′p), σ

p(ui′p+1), . . . , σ
p(ui′p+k−1)} of u[ip,ip+ℓp). Since

ℓp − |αp| ≥ kmin
a∈A

|σp(a)| ≥ kC−1λp ≥ kC−2 max
a∈A

|σp(a)| ≥ 3max
a∈A

|σp(a)|,

u[jp+|αp|,jp+ℓp) has a natural p-cutting {γp, σp(uj′p), σ
p(uj′p+1), . . . , σ

p(uj′p+hp−1), γ
′
p}

with γp ̸= Λ. □
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