A REVIEW OF MOSSÉ'S RECOGNIZABILITY THEOREM

HISATOSHI YUASA

ABSTRACT. The goal of the present article is to supply B. Mossé's (unilateral) recognizability theorem with a proof easy to follow.

1. INTRODUCTION

Let A be a finite alphabet of at least two letters. Let σ be a primitive substitution over A which admits a fixed point u in $A^{\mathbb{Z}_+}$, where $\mathbb{Z}_+ := \{0, 1, 2, ...\}$. For each $p \in \mathbb{N} := \{1, 2, 3, ...\}$, set

$$E_p = \{0\} \cup \{ |\sigma^p(u_{[0,n)})| : n \in \mathbb{N} \},\$$

whose elements are called the *natural p-cutting points*. If $q \ge p$, then $E_q \subsetneq E_p$.

Definition 1 ([3, p. 530],[8, Definition V. 6.]). The substitution σ is said to be *recognizable* if there exists $L \in \mathbb{N}$ such that

$$u_{[i,i+L)} = u_{[j,j+L)}, i \in E_1 \Rightarrow j \in E_1.$$

The so-called Morse substitution: $a \mapsto ab, b \mapsto ba$ has a fixed point

and then $E_1 = \{0, 2, 4, 6, ...\}$. As is shown in [8, p. 109], the Morse substitution is recognizable with L = 4.

The recognizability is an important notion for primitive substitutions from viewpoints of associated subshifts. If the substitution σ is recognizable, then the unilateral subshift X_{σ} arising from σ has a Kakutani-Rohlin partition [2, 1] built on a *clopen* subset $\sigma(X_{\sigma})$ of X_{σ} which pictures the substitution rule. It is also a significant consequence of the recognizability that $\sigma(X_{\sigma})$ is open [8, Proposition VI. 3]. The property of $\sigma(X_{\sigma})$ being open is actually equivalent to the recognizability [3]. In fact, [8, Proposition VI. 6] states that given a point $x \in X_{\sigma}$, the first return time of the point $\sigma(x)$ to the clopen subset $\sigma(X_{\sigma})$ equals the length $|\sigma(x_0)|$ of the word $\sigma(x_0)$, and so the Kakutani-Rohlin partition is given by

$$\{T^k\sigma([a]): 0 \le k < |\sigma(a)|, a \in A\},\$$

where T is the shift on X_{σ} , and $[a] = \{x = (x_i)_i \in X_{\sigma} | x_0 = a\}$. This leads to a fact that the first return map on $\sigma(X_{\sigma})$ is a topological factor of X_{σ} , which shows a self-similarity of X_{σ} if σ is one-to-one on the alphabet A; see [8, Corollary VI. 8].

It is important to characterize a class of primitive substitutions with the recognizability. It is B. Mossé [6] that succeeded in the characterization:

Theorem 1 ([6, Théorème 3.1]). If u is aperiodic, i.e. $T^n u \neq u$ for all $n \in \mathbb{N}$, then the following are equivalent.

Date: September 8, 2014.

²⁰⁰⁰ Mathematics Subject Classification. Primary 68R15; Secondary 37B10.

Key words and phrases. recognizability, primitive substitution.

(1) σ is not recognizable;

- (2) for each $L \in \mathbb{N}$, there exist $i, j \in \mathbb{Z}_+$ such that
 - $\sigma(u_j)$ is a strict suffix of $\sigma(u_i)$;
 - $\sigma(u_{i+k}) = \sigma(u_{i+k})$ for each integer k with $1 \le k \le L$.

The author believes that B. Mossé's proof [6] for this theorem would be difficult to completely follow, in particular, Part (4) in p. 332. Moreover, no proofs can be found in recent textbooks [7, 4, 9], though a proof for the *bilateral* recognizability is written in [4, pp. 163-164]. This motivated the author to write the present article.

Everything which the reader will see in the present article is due to B. Mossé or other pioneers.

2. Preliminaries

Let A be a finite alphabet, i.e. a finite set, of at least two elements. An element of A is called a letter. Let A^+ denote the set of nonempty words over A. The empty word is denoted by Λ . Put $A^* = A^+ \cup \{\Lambda\}$. We say that a word $w \in A^*$ occurs in a word $v \in A^*$ if there exist $p, s \in A^*$ such that v = pws. We then write $w \prec v$. More specifically, w is said to occurs at the position |p| + 1 in v. The position is called an occurrence of w in v. Let $|v|_w$ denote the number of occurrences of w in v. The words p and s are called a prefix and suffix of v, respectively. We then write $p \prec_p v$ and $s \prec_s v$, respectively. If |p| < |v| (resp. |s| < |v|), then p (resp. s) is called a strict prefix (resp. suffix) of v, and then we write $p \prec_{sp} v$ (resp. $s \prec_{ss} v$). A power of a word $w \in A^*$ is a word of the form

$$w = \underbrace{vv \dots v}_{n \text{ times}}$$

with some $v \in A^*$ and $n \in \mathbb{N}$, which is denoted by w^n .

A substitution over A is defined to be a map from A to A^+ . The domain of σ is naturally extended to each of A^+ and $A^{\mathbb{Z}_+}$ by means of concatenation or juxtaposition of words. A recursive formula defines the powers σ^k for $k \in \mathbb{Z}_+$ on each of A^+ and $A^{\mathbb{Z}_+}$. We always assume that the substitution σ is primitive, i.e. there exists $k \in \mathbb{N}$ such that $a \prec \sigma^k(b)$ for any $a, b \in A$.

To prove Lemma 5, we will use Lemma 1 and Corollary 2 below. They concern Perron-Frobenius Theory for nonnegative, square matrices. Let M denote a matrix whose entries are all real. The matrix M is said to be nonnegative if the entries of M are nonnegative. A nonnegative, square matrix M is said to be primitive if there exists $n \in \mathbb{N}$ such that M^n is positive, i.e. the entries of M^n are positive. If a nonnegative, square matrix M is primitive, then it has such an eigenvalue $\lambda > 0$ that the absolute value of any other eigenvalue is less than λ . The eigenvalue λ is called the Perron eigenvalue of the matrix M. See for details [5, Sections 4.2 and 4.5]. The reader may refer to [5, Theorem 4.5.12] for a proof of the following lemma.

Lemma 1. Let λ denote the Perron eigenvalue of a primitive matrix M. Let s denote the size of M. Then, there exist sets $\{c_{i,j} > 0 : 1 \leq i, j \leq s\}$ and $\{\rho_{i,j}(n) \in \mathbb{R} : 1 \leq i, j \leq s, n \in \mathbb{N}\}$ such that for all pair $(i, j) \in \{1, 2, \ldots, s\}^2$ and $n \in \mathbb{N}$,

$$\lim_{n \to \infty} \rho_{i,j}(n) = 0 \text{ and } (M^n)_{i,j} = \{c_{i,j} + \rho_{i,j}(n)\}\lambda^n.$$

 $\mathbf{2}$

The incidence matrix M_{σ} of the substitution σ is defined to be an $A \times A$ matrix whose (a, b)-entry equals $|\sigma(a)|_{b}$. Clearly, a substitution is primitive if and only if the incidence matrix associated with the substitution is primitive. Notice that every (a, b)-entry of M_{σ}^{n} equals $|\sigma^{n}(a)|_{b}$.

Corollary 2. Let λ denote the Perron eigenvalue of M_{σ} . Then, there exists an integer $C \geq 2$ such that for all $a \in A$ and $n \in \mathbb{N}$,

$$C^{-1}\lambda^n \le |\sigma^n(a)| \le C\lambda^n.$$

Proof. Lemma 1 allows us to obtain $c_{a,b} > 0$, $\rho_{a,b}(n) \in \mathbb{R}$ such that for all $a, b \in A$,

$$\lim_{n \to \infty} \rho_{a,b}(n) = 0 \text{ and } |\sigma^n(a)|_b = \{c_{a,b} + \rho_{a,b}(n)\}\lambda^n$$

Fix a letter $a \in A$. Since

$$\lambda^{-n}|\sigma^n(a)| > 0$$

for all $n \in \mathbb{N}$ and we have that

$$\lambda^{-n}|\sigma^n(a)| \to \sum_{b \in A} c_{a,b} \ (n \to \infty),$$

there exists $C_a \in \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$C_a^{-1} \le \lambda^{-n} |\sigma^n(a)| \le C_a.$$

Taking $C = \max_{a \in A} C_a + 1$, we obtain the desired conclusion. Notice that we require that $C \ge 2$.

Suppose that $u := u_0 u_1 u_2 \ldots \in A^{\mathbb{Z}_+}$ is a fixed point of σ , where $u_i \in A$ for each $i \in \mathbb{Z}_+$. Put

$$\mathcal{L}(u) = \{u_i u_{i+1} \dots u_j | i, j \in \mathbb{Z}_+, i \le j\} \cup \{\Lambda\}$$

It follows from the primitivity of σ that u is uniformly recurrent, i.e. given a word $w \in \mathcal{L}(u)$, there exists $N \in \mathbb{N}$ such that

$$v \in \mathcal{L}(u), |v| = N \Rightarrow w \prec v.$$

We say that a word $w \in A^*$ occurs at a position $i \in \mathbb{Z}_+$ in u if

$$u_{[i,i+|w|)} := u_i u_{i+1} \dots u_{i+|w|-1} = w$$

3. Powers of words occurring in the fixed point

Definition 2. A word $v \in A^+$ is said to be *primitive* if it holds that

$$v = w^n, w \in A^+, n \in \mathbb{N} \Rightarrow (w = v, \text{ or equivalently } n = 1).$$

Lemma 3 ([6, Propriété 2.3]). If $v \in A^+$ is primitive and $vwv \prec v^n$ for some $n \in \{2, 3, ...\}$, then w is a power of v.

Proof. Assume that w is not any power of v. Since $vwv \prec v^n$, there exist $s_1, t_1 \in A^+$ such that

(3.1)
$$v = s_1 t_1 = t_1 s_1.$$

Since v is primitive, we have $|s_1| \neq |t_1|$. We may assume that $|s_1| < |t_1|$. Figure 1 shows the two ways (3.1) of decomposing v. Since v is primitive, it is necessary that $|s_1| \nmid |t_1|$. Find a word s_2 of length $(|t_1| \mod |s_1|)$ such that

$$t_2 = s_1^{\lfloor |t_1|/|s_1| \rfloor} s_2.$$

FIGURE 1. decompositions of v into s_1 and t_1

We then find a word $t_2 \in A^+$ such that $s_1 = t_2 s_2 = s_2 t_2$. We are again in the situation similar to Figure 1; replace v, s_1, t_1 with s_1, s_2, t_2 , respectively. Continuing this procedure, we finally reach $n \in \mathbb{N}$ for which s_n is a letter. This forces that v is a power of the letter, which is a contradiction.

Lemma 4 ([6, Lemme 2.5]). If there exist $N, p \in \mathbb{N}$ and a primitive word $v \in A^+$ such that

(1)
$$\sigma^p(u_i u_{i+1}) \prec v^N$$
 for all $i \in \mathbb{Z}_+$;

 $(2) \ 2|v| \le \min_{a \in A} |\sigma^p(a)|,$

then u is periodic.

Proof. It follows from (1) that each $\sigma^p(u_i) \prec v^N$, so that for each $i \in \mathbb{Z}_+$, there exist $s_i \prec_{ss} v$, $t_i \prec_{sp} v$ and $n_i \in \mathbb{Z}_+$ such that

$$\sigma^p(u_i) = s_i v^{n_i} t_i.$$

If $n_i = 0$ for some $i \in \mathbb{Z}_+$, then $|\sigma^p(u_i)| < 2|v|$, which contradicts (2). Hence, $n_i \ge 1$ for all $i \in \mathbb{Z}_+$. This guarantees that for all $i \in \mathbb{Z}_+$,

$$vt_i s_{i+1} v \prec s_i v^{n_i} t_i s_{i+1} v^{n_{i+1}} t_{i+1} = \sigma^p(u_i u_{i+1}) \prec v^N$$

It follows from Lemma 3 that each $t_i s_{i+1}$ is a power of v. We obtain finally that

$$u = \sigma^{p}(u) = s_0 v^{n_0} t_0 s_1 v^{n_1} t_1 s_2 v^{n_2} t_2 \dots = s_0 v^{\infty},$$

which is periodic, because $s_0 \prec_{ss} v$. This completes the proof.

In order to prove Theorem 1, we will use the following lemma, which itself is actually interesting.

Lemma 5 ([6, Théorème 2.4]). If u is aperiodic, then there exists $N \in \mathbb{N}$ such that $\sup\{n \in \mathbb{N} : w^n \in \mathcal{L}(u) \ w \in A^+\} < N$

$$\sup\{n \in \mathbb{N} : w^n \in \mathcal{L}(u), w \in A^+\} < N$$

It is clearly necessary that N > 1.

Proof. Suppose that some power w^n of a primitive word $w \in A^+$ occurs in u. For $p \in \mathbb{Z}_+$, put

$$\ell_p = \frac{1}{2} \min_{a \in A} |\sigma^p(a)|.$$

Since $\ell_p \uparrow \infty$, there uniquely exists $p \in \mathbb{N}$ such that

$$\ell_{p-1} \le |w| < \ell_p.$$

Since u is uniformly recurrent, there exists $g \in \mathbb{N}$ so that for all $i, j \in \mathbb{Z}$,

$$u_i u_{i+1} \prec u_{[j,j+g)}.$$

It follows that for all $i, j \in \mathbb{Z}$,

$$\sigma^p(u_i u_{i+1}) \prec \sigma^p(u_{[j,j+g)}).$$

If the length of a word $w' \in \mathcal{L}(u)$ equals

$$(g+2)\max_{a\in A}|\sigma^p(a)|,$$

then $\sigma^p(u_{[j,j+g)}) \prec w'$ for some $j \in \mathbb{Z}_+$, so that $\sigma^p(u_i u_{i+1}) \prec w'$ for all $i \in \mathbb{Z}_+$. Since $2|w| < \min_{a \in A} |\sigma^p(a)|$ and u is aperiodic, Lemma 4 forces that

$$|w^n| = n|w| < (g+2) \max_{a \in A} |\sigma^p(a)|.$$

Then

$$n < \frac{(g+2)\max_{a \in A} |\sigma^p(a)|}{\ell_{p-1}} = 2(g+2)\frac{\max_{a \in A} |\sigma^p(a)|}{\min_{a \in A} |\sigma^{p-1}(a)|} \le 2(g+2)\lambda C^2,$$

where λ and C are as in Corollary 2. This completes the proof.

4. A proof of Theorem 1

Definition 3. (1) Let $i \in \mathbb{Z}_+$ and $p, \ell \in \mathbb{N}$. A finite sequence

$$\{\alpha, \sigma^p(u_{i'}), \sigma^p(u_{i'+1}), \ldots, \sigma^p(u_{i'+k-1}), \beta\},\$$

- where $i' \in \mathbb{Z}_+$ and $k \in \mathbb{N}$, is called a *natural p-cutting* of $u_{[i,i+\ell)}$ if (a) $u_{[i,i+\ell)} = \alpha \sigma^p(u_{i'}) \sigma^p(u_{i'+1}) \dots \sigma^p(u_{i'+k-1}) \beta$; (b) $\alpha \prec_s \sigma^p(u_{i'-1})$;
- (c) $\beta \prec_p \sigma^p(u_{i'+k});$
- (d) $i + |\alpha| = |\sigma^p(u_{[0,i')})|.$
- (2) Suppose that a word w occurs at positions i and j in u. The word w is said to have the *same p-cutting* at the positions i and j if

 $(E_p \cap [i, i + |w| - 1]) + (j - i) = E_p \cap [j, j + |w| - 1].$

Remark 4. We do not exclude the possibility that $\alpha = \Lambda$ or $\beta = \Lambda$. Not every $u_{[i,i+\ell)}$ has a natural *p*-cutting, because we require $k \ge 1$ in Definition 3 (1). It is not necessary that a natural *p*-cutting is uniquely determined for given *i* and ℓ in Definition 3 (1).

We now proceed to our proof of Theorem 1.

Proof of Theorem 1. (1) \Rightarrow (2): Fix an integer k with

$$k \ge C^2(C^2N + 2) > 4C^2,$$

where C (resp. N) is as in Corollary 2 (resp. Lemma 5). Assume that σ is not recognizable.

Step 1. For each $p \in \mathbb{N}$, there exist $i_p \in E_1$, $j_p \in \mathbb{Z}_+ \setminus E_1$, $i'_p, j'_p \in \mathbb{Z}_+$, $h_p, \ell_p \in \mathbb{N}$ and $\alpha_p, \gamma'_p \in A^*$, $\gamma_p \in A^+$ such that

• $u_{[i_p, i_p + \ell_p)} = u_{[j_p, j_p + \ell_p)};$

$$\{\alpha_p, \sigma^p(u_{i'_p}), \sigma^p(u_{i'_p+1}), \dots, \sigma^p(u_{i'_p+k-1})\}$$

is a natural *p*-cutting of $u_{[i_p,i_p+\ell_p)}$;

 $\int \alpha = \sigma^p(\alpha)$

 $\{\gamma_p, \sigma^p(u_{j'_p}), \sigma^p(u_{j'_p+1}), \dots, \sigma^p(u_{j'_p+h_p-1}), \gamma'_p\}$

is a natural *p*-cutting of $u_{[j_p+|\alpha_p|, j_p+\ell_p)}$.

This fact is not difficult to verify; see Lemma 6 below the present proof. The above properties allows us to define

$$m_p = \min\{m \in \mathbb{N} : \alpha_p \gamma_p \prec_{\mathrm{s}} \sigma^p(u_{j'_p - m}) \sigma^p(u_{j'_p - m + 1}) \dots \sigma^p(u_{j'_p - 1})\}.$$

Since $\alpha_p \prec_{s} \sigma^p(u_{i'_p-1})$ and $\gamma_p \prec_{s} \sigma^p(u_{j'_p-1})$, it follows that for all $p \in \mathbb{N}$,

$$m_p \le \frac{|\alpha_p \gamma_p|}{\min_{a \in A} |\sigma^p(a)|} \le \frac{2 \max_{a \in A} |\sigma^p(a)|}{\min_{a \in A} |\sigma^p(a)|} \le 2C^2,$$

so that $m := \max_{p \in \mathbb{N}} m_p$ exists and is independent of the choice of k. We know that for all $p \in \mathbb{N}$,

$$\alpha_p \gamma_p \prec_{\mathrm{s}} \sigma^p(u_{j'_p-m}) \sigma^p(u_{j'_p-m+1}) \dots \sigma^p(u_{j'_p-1})$$

Step 2. Since

(4.1)
$$\gamma_p \sigma^p(u_{j'_p}) \sigma^p(u_{j'_p+1}) \dots \sigma^p(u_{j'_p+h_p-1}) \gamma'_p = \sigma^p(u_{i'_p}) \sigma^p(u_{i'_p+1}) \dots \sigma^p(u_{i'_p+k-1}),$$

it follows that

$$h_p \min_{a \in A} |\sigma^p(a)| \le k \max_{a \in A} |\sigma^p(a)|,$$

so that $h_p \leq kC^2$. Hence, $\{h_p\}_p$ is bounded. Recall that k is now fixed. Hence, the set

$$[(h_p, u_{[i'_p - 1, i'_p + k - 1]}, u_{[j'_p - m, j'_p + h_p]}) \in \mathbb{N} \times A^+ \times A^+ : p \in \mathbb{N}\}$$

is finite. We can find an infinite set $I \subset \mathbb{N}$, $h \in \mathbb{N}$ and words

$$a_{-1}a_0\ldots a_{k-1}, b_{-m}b_{-m+1}\ldots b_h \in \mathcal{L}(u) \ (a_i, b_j \in A)$$

so that for all $p \in I$,

$$(4.2) h_p = h;$$

(4.3)
$$u_{[i'_n-1,i'_n+k-1]} = a_{-1}a_0\dots a_{k-1};$$

(4.4)
$$u_{[j'_p - m, j'_p + h_p]} = b_{-m} b_{-m+1} \dots b_h$$

Step 3. It follows from (4.1)-(4.4) that for any $p, q \in I$ with p < q,

(4.5)
$$\gamma_q \sigma^q (b_0 b_1 \dots b_{h-1}) \gamma'_q = \sigma^{q-p} (\gamma_p) \sigma^q (b_0 b_1 \dots b_{h-1}) \sigma^{q-p} (\gamma'_p)$$

Assume that $\sigma^{q-p}(\gamma_p) \neq \gamma_q$ for some $p, q \in I$ with p < q. Consider the case $|\gamma_q| > |\sigma^{q-p}(\gamma_p)|$. Equation (4.5) allows us to find a word $v \in A^+$ such that

•
$$\gamma_q = \sigma^{q-p}(\gamma_p) v \prec_{\mathrm{s}} \sigma^q(b_{-1});$$

•
$$v^{N'} \prec_{\mathbf{p}} \sigma^q(b_0 b_1 \dots b_{h-1})$$
 and $v^{N'+1} \not\prec_{\mathbf{p}} \sigma^q(b_0 b_1 \dots b_{h-1})$ for some $N' \in \mathbb{N}$.

Deducing from (4.1)-(4.4) that

$$(h+2)\max_{a\in A}|\sigma^q(a)| \ge k\min_{a\in A}|\sigma^q(a)|.$$

This together with the fact that $v \prec_{s} \sigma^{q}(b_{-1})$ implies that

$$N' \ge \frac{h \min_{a \in A} |\sigma^q(a)|}{\max_{a \in A} |\sigma^q(a)|} \ge (kC^{-2} - 2)C^{-2} \ge N_{2}$$

which contradicts Lemma 5. Also, in the other case, we reach the same contradiction. It follows therefore that $p, q \in I, q > p \Rightarrow \gamma_q = \sigma^{q-p}(\gamma_p)$.

Step 4. Since I is infinite, σ is primitive and $\gamma_p \neq \Lambda$, we can fix $p, q \in I$ with q > p so that $|\sigma^{q-p-1}(\gamma_p)| > L$.

FIGURE 2

Observe how powers of σ map $u_{[i'_q,i'_q+k-1]}$ to $\sigma^q(u_{[i'_q,i'_q+k-1]})$ via $\sigma^{q-p}(u_{[i'_q,i'_q+k-1]})$; see Figure 2. Since

> $\gamma_p \prec_p \sigma^p(u_{[i'_p,i'_p+k-1]}) = \sigma^p(u_{[i'_q,i'_q+k-1]});$ $\gamma_q \prec_p \sigma^q(u_{[i'_q,i'_q+k-1]});$ $\sigma^{q-p}(\gamma_p) = \gamma_q,$

it follows that

(i) $i_q + |\alpha_q| \in E_q \subset E_1;$ (ii) $i_q + |\alpha_q \gamma_q| \in E_{q-p} \subset E_1;$ (iii) $\sigma^{q-p-1}(\gamma_p)$ occurs at the position $i'' := |\sigma^{q-p-1}(u_{[0,|\sigma^p(u_{[0,i'_q)})|)})|$ in u;(iv) $\{\sigma(u_{i''}), \sigma(u_{i''+1}), \dots, \sigma(u_{i''+|\sigma^{q-p-1}(\gamma_p)|-1})\}$

is a natural 1-cutting of $u_{[i_q+|\alpha_q|,i_q+|\alpha_q\gamma_q|)} = \gamma_q;$

Then, observe how powers of σ map $u_{[j'_q-m,j'_q+h]}$ to $\sigma^q(u_{[j'_q-m,j'_q+h]})$ via $\sigma^{q-p}(u_{[j'_q-m,j'_q+h]})$; see Figure 3. Then,

(v) $j_q + |\alpha_q| \in E_{q-p} \subset E_1$; (vi) $j_q + |\alpha_q \gamma_q| \in E_{q-p} \subset E_1$; (vii) $\sigma^{q-p-1}(\gamma_p)$ occurs at the position $j'' := |\sigma^{q-p-1}(u_{[0,|\sigma^p(u_{[0,j'_q)})|-|\gamma_p|)})|$ in u; (viii)

 $\{\sigma(u_{j''}), \sigma(u_{j''+1}), \ldots, \sigma(u_{j''+|\sigma^{q-p-1}(\gamma_p)|-1})\}$

is a natural 1-cutting of $u_{[j_q+|\alpha_q|,j_q+|\alpha_q\gamma_q|)} = \gamma_q.$

It follows from (iii), (iv), (vii) and (viii) that γ_q has the same 1-cutting at the positions $i_q + |\alpha_q|$ and $j_q + |\alpha_q|$ in such a way that (i), (ii), (vi) and (v) hold. In

FIGURE 3

view of this together with the fact that $i_q \in E_1$ and $j_q \notin E_1$, we can find sequences:

 $i_q \le s_{-n} < s_{-n+1} < \dots < s_{-1} < s_0 = i_q + |\alpha_q|;$ $t_{-n} < t_{-n+1} < \dots < t_{-1} < t_0 = j_q + |\alpha_q|$

of consecutive, natural 1-cutting points, i.e. $s_{i-1} < s < s_i \Rightarrow s \notin E_1$, such that

- $s_i s_{i-1} = t_i t_{i-1}$ for all integers *i* with $-n + 1 < i \le 0$;
- $s_{-n+1} s_{-n} \neq t_{-n+1} t_{-n}$.

It may happen that $t_{-n} < j_q$. This completes the proof, because the converse implication (2) \Rightarrow (1) is obvious.

Lemma 6. Let k be an arbitrary integer with $k > 4C^2$, where C is a constant as in Corollary 2. Assume that the substitution σ is not recognizable. Then, for every $p \in \mathbb{N}$, there exist

$$i_p \in E_1, j_p \in \mathbb{Z}_+ \setminus E_1, i'_p, j'_p \in \mathbb{Z}_+, h_p, \ell_p \in \mathbb{N}, \alpha_p, \gamma'_p \in A^* \text{ and } \gamma_p \in A^+$$

such that

•
$$u_{[i_p,i_p+\ell_p)} = u_{[j_p,j_p+\ell_p)};$$

•

$$\{\alpha_p, \sigma^p(u_{i'_p}), \sigma^p(u_{i'_p+1}), \dots, \sigma^p(u_{i'_p+k-1})\}$$

is a natural p-cutting of $u_{[i_p,i_p+\ell_p)}$;

$$\{\gamma_p, \sigma^p(u_{j'_p}), \sigma^p(u_{j'_p+1}), \dots, \sigma^p(u_{j'_p+h_p-1}), \gamma'_p\}$$

is a natural p-cutting of $u_{[j_p+|\alpha_p|,j_p+\ell_p)}$.

Proof. Fix an arbitrary integer ℓ'_p with

(4.6)
$$\ell'_p > (k+2) \max_{a \in A} |\sigma^p(a)|.$$

In view of the assumption that σ is not recognizable, there exist $i_p \in E_1$ and $j_p \in \mathbb{Z}_+ \setminus E_1$ such that

$$u_{[i_p, i_p + \ell'_p)} = u_{[j_p, j_p + \ell'_p)}$$

Condition 4.6 guarantees the existence of a natural p-cutting

(4.7)
$$\{\alpha_p, \sigma^p(u_{i'_p}), \sigma^p(u_{i'_p+1}), \dots, \sigma^p(u_{i'_p+k_p-1}), \alpha'_p\}$$

of $u_{[i_p,i_p+\ell'_p)}$. Since

$$k_p \ge \frac{\ell'_p}{\max_{a \in A} |\sigma^p(a)|} - 2 > k,$$

from (4.7), we can choose a natural *p*-cutting

$$\{\alpha_p, \sigma^p(u_{i'_p}), \sigma^p(u_{i'_p+1}), \dots, \sigma^p(u_{i'_p+k-1})\}$$

of $u_{[i_p,i_p+\ell_p)}$, where

$$\ell_p = |\alpha_p \sigma^p(u_{[i'_p, i'_p + k - 1]})|.$$

Since

$$\ell_p - |\alpha_p| \ge \left(k \frac{\min_{a \in A} |\sigma^p(a)|}{\max_{a \in A} |\sigma^p(a)|} - 1\right) \max_{a \in A} |\sigma^p(a)|$$
$$\ge (kC^{-2} - 1) \max_{a \in A} |\sigma^p(a)|$$
$$> 3 \max_{a \in A} |\sigma^p(a)|,$$

we can choose a natural p-cutting

$$\{\gamma_p, \sigma^p(u_{j'_p}), \sigma^p(u_{j'_p+1}), \ldots, \sigma^p(u_{j'_p+h_p-1}), \gamma'_p\}.$$

of $u_{[j_p+|\alpha_p|,j_p+\ell_p)}$ so that $\gamma_p \neq \Lambda$.

References

- F. Durand, B. Host, and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953–993.
- R. Herman, I. Putnam, and C. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827–864.
- B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems 6 (1986), 529–540.
- P. Kůrka, *Topological and Symbolic Dynamics*, Cours Spécialisés, vol. 11, Société Mathématique de France, Paris, 2003.
- D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1999.
- B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoret. Comput. Sci. 99 (1992), 327–334.
- N. Pytheas-Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002, edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
- M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, Lecture Notes in Math., vol. 1294, Springer-Verlag, Berlin-New York, 1987.
- Substitution Dynamical Systems—Spectral Analysis, Second ed., Lecture Notes in Math., vol. 1294, Springer-Verlag, Berlin, 2010.

DIVISION OF MATHEMATICAL SCIENCES, OSAKA KYOIKU UNIVERSITY, 4-698-1 ASAHI-GAOKA, KASHIWARA, OSAKA 582-8582, JAPAN.

Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées, CNRS-UMR 6140, Université de Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France.

 $E\text{-}mail \ address: \texttt{hyuasa@cc.osaka-kyoiku.ac.jp}$