A REVIEW OF MOSSÉ'S RECOGNIZABILITY THEOREM

HISATOSHI YUASA

Abstract

The goal of the present article is to supply B. Mossé's (unilateral) recognizability theorem with a proof easy to follow.

1. Introduction

Let A be a finite alphabet of at least two letters. Let σ be a primitive substitution over A which admits a fixed point u in $A^{\mathbb{Z}_{+}}$, where $\mathbb{Z}_{+}:=\{0,1,2, \ldots\}$. For each $p \in \mathbb{N}:=\{1,2,3, \ldots\}$, set

$$
E_{p}=\{0\} \cup\left\{\left|\sigma^{p}\left(u_{[0, n)}\right)\right|: n \in \mathbb{N}\right\}
$$

whose elements are called the natural p-cutting points. If $q \geq p$, then $E_{q} \subsetneq E_{p}$.
Definition 1 ([3, p. 530],[8, Definition V. 6.]). The substitution σ is said to be recognizable if there exists $L \in \mathbb{N}$ such that

$$
u_{[i, i+L)}=u_{[j, j+L)}, i \in E_{1} \Rightarrow j \in E_{1} .
$$

The so-called Morse substitution: $a \mapsto a b, b \mapsto b a$ has a fixed point

$$
u=a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b \ldots
$$

and then $E_{1}=\{0,2,4,6, \ldots\}$. As is shown in [8, p. 109], the Morse substitution is recognizable with $L=4$.

The recognizability is an important notion for primitive substitutions from viewpoints of associated subshifts. If the substitution σ is recognizable, then the unilateral subshift X_{σ} arising from σ has a Kakutani-Rohlin partition $[2,1]$ built on a clopen subset $\sigma\left(X_{\sigma}\right)$ of X_{σ} which pictures the substitution rule. It is also a significant consequence of the recognizability that $\sigma\left(X_{\sigma}\right)$ is open [8, Proposition VI. 3]. The property of $\sigma\left(X_{\sigma}\right)$ being open is actually equivalent to the recognizability [3]. In fact, [8, Proposition VI. 6] states that given a point $x \in X_{\sigma}$, the first return time of the point $\sigma(x)$ to the clopen subset $\sigma\left(X_{\sigma}\right)$ equals the length $\left|\sigma\left(x_{0}\right)\right|$ of the word $\sigma\left(x_{0}\right)$, and so the Kakutani-Rohlin partition is given by

$$
\left\{T^{k} \sigma([a]): 0 \leq k<|\sigma(a)|, a \in A\right\}
$$

where T is the shift on X_{σ}, and $[a]=\left\{x=\left(x_{i}\right)_{i} \in X_{\sigma} \mid x_{0}=a\right\}$. This leads to a fact that the first return map on $\sigma\left(X_{\sigma}\right)$ is a topological factor of X_{σ}, which shows a self-similarity of X_{σ} if σ is one-to-one on the alphabet A; see [8, Corollary VI. 8].

It is important to characterize a class of primitive substitutions with the recognizability. It is B. Mossé [6] that succeeded in the characterization:

Theorem 1 ([6, Théorème 3.1]). If u is aperiodic, i.e. $T^{n} u \neq u$ for all $n \in \mathbb{N}$, then the following are equivalent.

[^0](1) σ is not recognizable;
(2) for each $L \in \mathbb{N}$, there exist $i, j \in \mathbb{Z}_{+}$such that

- $\sigma\left(u_{j}\right)$ is a strict suffix of $\sigma\left(u_{i}\right)$;
- $\sigma\left(u_{i+k}\right)=\sigma\left(u_{j+k}\right)$ for each integer k with $1 \leq k \leq L$.

The author believes that B. Mossé's proof [6] for this theorem would be difficult to completely follow, in particular, Part (4) in p. 332. Moreover, no proofs can be found in recent textbooks [7, 4, 9], though a proof for the bilateral recognizability is written in [4, pp. 163-164]. This motivated the author to write the present article.

Everything which the reader will see in the present article is due to B. Mossé or other pioneers.

2. Preliminaries

Let A be a finite alphabet, i.e. a finite set, of at least two elements. An element of A is called a letter. Let A^{+}denote the set of nonempty words over A. The empty word is denoted by Λ. Put $A^{*}=A^{+} \cup\{\Lambda\}$. We say that a word $w \in A^{*}$ occurs in a word $v \in A^{*}$ if there exist $p, s \in A^{*}$ such that $v=p w s$. We then write $w \prec v$. More specifically, w is said to occurs at the position $|p|+1$ in v. The position is called an occurrence of w in v. Let $|v|_{w}$ denote the number of occurrences of w in v. The words p and s are called a prefix and suffix of v, respectively. We then write $p \prec_{\mathrm{p}} v$ and $s \prec_{\mathrm{s}} v$, respectively. If $|p|<|v|$ (resp. $\left.|s|<|v|\right)$, then p (resp. s) is called a strict prefix (resp. suffix) of v, and then we write $p \prec_{\text {sp }} v$ (resp. $s \prec_{\text {ss }} v$). A power of a word $w \in A^{*}$ is a word of the form

$$
w=\underbrace{v v \ldots v}_{n \text { times }}
$$

with some $v \in A^{*}$ and $n \in \mathbb{N}$, which is denoted by w^{n}.
A substitution over A is defined to be a map from A to A^{+}. The domain of σ is naturally extended to each of A^{+}and $A^{\mathbb{Z}_{+}}$by means of concatenation or juxtaposition of words. A recursive formula defines the powers σ^{k} for $k \in \mathbb{Z}_{+}$on each of A^{+}and $A^{\mathbb{Z}_{+}}$. We always assume that the substitution σ is primitive, i.e. there exists $k \in \mathbb{N}$ such that $a \prec \sigma^{k}(b)$ for any $a, b \in A$.

To prove Lemma 5, we will use Lemma 1 and Corollary 2 below. They concern Perron-Frobenius Theory for nonnegative, square matrices. Let M denote a matrix whose entries are all real. The matrix M is said to be nonnegative if the entries of M are nonnegative. A nonnegative, square matrix M is said to be primitive if there exists $n \in \mathbb{N}$ such that M^{n} is positive, i.e. the entries of M^{n} are positive. If a nonnegative, square matrix M is primitive, then it has such an eigenvalue $\lambda>0$ that the absolute value of any other eigenvalue is less than λ. The eigenvalue λ is called the Perron eigenvalue of the matrix M. See for details [5, Sections 4.2 and 4.5]. The reader may refer to [5, Theorem 4.5.12] for a proof of the following lemma.

Lemma 1. Let λ denote the Perron eigenvalue of a primitive matrix M. Let s denote the size of M. Then, there exist sets $\left\{c_{i, j}>0: 1 \leq i, j \leq s\right\}$ and $\left\{\rho_{i, j}(n) \in \mathbb{R}: 1 \leq i, j \leq s, n \in \mathbb{N}\right\}$ such that for all pair $(i, j) \in\{1,2, \ldots, s\}^{2}$ and $n \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} \rho_{i, j}(n)=0 \text { and }\left(M^{n}\right)_{i, j}=\left\{c_{i, j}+\rho_{i, j}(n)\right\} \lambda^{n} .
$$

The incidence matrix M_{σ} of the substitution σ is defined to be an $A \times A$ matrix whose (a, b)-entry equals $|\sigma(a)|_{b}$. Clearly, a substitution is primitive if and only if the incidence matrix associated with the substitution is primitive. Notice that every (a, b)-entry of $M_{\sigma}{ }^{n}$ equals $\left|\sigma^{n}(a)\right|_{b}$.

Corollary 2. Let λ denote the Perron eigenvalue of M_{σ}. Then, there exists an integer $C \geq 2$ such that for all $a \in A$ and $n \in \mathbb{N}$,

$$
C^{-1} \lambda^{n} \leq\left|\sigma^{n}(a)\right| \leq C \lambda^{n} .
$$

Proof. Lemma 1 allows us to obtain $c_{a, b}>0, \rho_{a, b}(n) \in \mathbb{R}$ such that for all $a, b \in A$,

$$
\lim _{n \rightarrow \infty} \rho_{a, b}(n)=0 \text { and }\left|\sigma^{n}(a)\right|_{b}=\left\{c_{a, b}+\rho_{a, b}(n)\right\} \lambda^{n} .
$$

Fix a letter $a \in A$. Since

$$
\lambda^{-n}\left|\sigma^{n}(a)\right|>0
$$

for all $n \in \mathbb{N}$ and we have that

$$
\lambda^{-n}\left|\sigma^{n}(a)\right| \rightarrow \sum_{b \in A} c_{a, b}(n \rightarrow \infty),
$$

there exists $C_{a} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$,

$$
C_{a}^{-1} \leq \lambda^{-n}\left|\sigma^{n}(a)\right| \leq C_{a} .
$$

Taking $C=\max _{a \in A} C_{a}+1$, we obtain the desired conclusion. Notice that we require that $C \geq 2$.

Suppose that $u:=u_{0} u_{1} u_{2} \ldots \in A^{\mathbb{Z}_{+}}$is a fixed point of σ, where $u_{i} \in A$ for each $i \in \mathbb{Z}_{+}$. Put

$$
\mathcal{L}(u)=\left\{u_{i} u_{i+1} \ldots u_{j} \mid i, j \in \mathbb{Z}_{+}, i \leq j\right\} \cup\{\Lambda\} .
$$

It follows from the primitivity of σ that u is uniformly recurrent, i.e. given a word $w \in \mathcal{L}(u)$, there exists $N \in \mathbb{N}$ such that

$$
v \in \mathcal{L}(u),|v|=N \Rightarrow w \prec v .
$$

We say that a word $w \in A^{*}$ occurs at a position $i \in \mathbb{Z}_{+}$in u if

$$
u_{[i, i+|w|)}:=u_{i} u_{i+1} \ldots u_{i+|w|-1}=w
$$

3. Powers of words occurring in the fixed point

Definition 2. A word $v \in A^{+}$is said to be primitive if it holds that

$$
v=w^{n}, w \in A^{+}, n \in \mathbb{N} \Rightarrow(w=v, \text { or equivalently } n=1) .
$$

Lemma 3 ([6, Propriété 2.3]). If $v \in A^{+}$is primitive and $v w v \prec v^{n}$ for some $n \in\{2,3, \ldots\}$, then w is a power of v.

Proof. Assume that w is not any power of v. Since $v w v \prec v^{n}$, there exist $s_{1}, t_{1} \in A^{+}$ such that

$$
\begin{equation*}
v=s_{1} t_{1}=t_{1} s_{1} \tag{3.1}
\end{equation*}
$$

Since v is primitive, we have $\left|s_{1}\right| \neq\left|t_{1}\right|$. We may assume that $\left|s_{1}\right|<\left|t_{1}\right|$. Figure 1 shows the two ways (3.1) of decomposing v. Since v is primitive, it is necessary that $\left|s_{1}\right| \nmid\left|t_{1}\right|$. Find a word s_{2} of length $\left(\left|t_{1}\right| \bmod \left|s_{1}\right|\right)$ such that

$$
t_{2}=s_{1}{ }^{\left\lfloor\left\lfloor t_{1}\left|/\left|s_{1}\right|\right\rfloor\right.\right.} s_{2} .
$$

Figure 1. decompositions of v into s_{1} and t_{1}
We then find a word $t_{2} \in A^{+}$such that $s_{1}=t_{2} s_{2}=s_{2} t_{2}$. We are again in the situation similar to Figure 1 ; replace v, s_{1}, t_{1} with s_{1}, s_{2}, t_{2}, respectively. Continuing this procedure, we finally reach $n \in \mathbb{N}$ for which s_{n} is a letter. This forces that v is a power of the letter, which is a contradiction.

Lemma 4 ([6, Lemme 2.5]). If there exist $N, p \in \mathbb{N}$ and a primitive word $v \in A^{+}$ such that
(1) $\sigma^{p}\left(u_{i} u_{i+1}\right) \prec v^{N}$ for all $i \in \mathbb{Z}_{+}$;
(2) $2|v| \leq \min _{a \in A}\left|\sigma^{p}(a)\right|$,
then u is periodic.
Proof. It follows from (1) that each $\sigma^{p}\left(u_{i}\right) \prec v^{N}$, so that for each $i \in \mathbb{Z}_{+}$, there exist $s_{i} \prec_{\text {ss }} v, t_{i} \prec_{\text {sp }} v$ and $n_{i} \in \mathbb{Z}_{+}$such that

$$
\sigma^{p}\left(u_{i}\right)=s_{i} v^{n_{i}} t_{i} .
$$

If $n_{i}=0$ for some $i \in \mathbb{Z}_{+}$, then $\left|\sigma^{p}\left(u_{i}\right)\right|<2|v|$, which contradicts (2). Hence, $n_{i} \geq 1$ for all $i \in \mathbb{Z}_{+}$. This guarantees that for all $i \in \mathbb{Z}_{+}$,

$$
v t_{i} s_{i+1} v \prec s_{i} v^{n_{i}} t_{i} s_{i+1} v^{n_{i+1}} t_{i+1}=\sigma^{p}\left(u_{i} u_{i+1}\right) \prec v^{N} .
$$

It follows from Lemma 3 that each $t_{i} s_{i+1}$ is a power of v. We obtain finally that

$$
u=\sigma^{p}(u)=s_{0} v^{n_{0}} t_{0} s_{1} v^{n_{1}} t_{1} s_{2} v^{n_{2}} t_{2} \cdots=s_{0} v^{\infty},
$$

which is periodic, because $s_{0} \prec_{\text {ss }} v$. This completes the proof.
In order to prove Theorem 1, we will use the following lemma, which itself is actually interesting.
Lemma 5 ([6, Théorème 2.4]). If u is aperiodic, then there exists $N \in \mathbb{N}$ such that

$$
\sup \left\{n \in \mathbb{N}: w^{n} \in \mathcal{L}(u), w \in A^{+}\right\}<N
$$

It is clearly necessary that $N>1$.
Proof. Suppose that some power w^{n} of a primitive word $w \in A^{+}$occurs in u. For $p \in \mathbb{Z}_{+}$, put

$$
\ell_{p}=\frac{1}{2} \min _{a \in A}\left|\sigma^{p}(a)\right| .
$$

Since $\ell_{p} \uparrow \infty$, there uniquely exists $p \in \mathbb{N}$ such that

$$
\ell_{p-1} \leq|w|<\ell_{p}
$$

Since u is uniformly recurrent, there exists $g \in \mathbb{N}$ so that for all $i, j \in \mathbb{Z}$,

$$
u_{i} u_{i+1} \prec u_{[j, j+g)} .
$$

It follows that for all $i, j \in \mathbb{Z}$,

$$
\sigma^{p}\left(u_{i} u_{i+1}\right) \prec \sigma^{p}\left(u_{[j, j+g)}\right) .
$$

If the length of a word $w^{\prime} \in \mathcal{L}(u)$ equals

$$
(g+2) \max _{a \in A}\left|\sigma^{p}(a)\right|,
$$

then $\sigma^{p}\left(u_{[j, j+g)}\right) \prec w^{\prime}$ for some $j \in \mathbb{Z}_{+}$, so that $\sigma^{p}\left(u_{i} u_{i+1}\right) \prec w^{\prime}$ for all $i \in \mathbb{Z}_{+}$. Since $2|w|<\min _{a \in A}\left|\sigma^{p}(a)\right|$ and u is aperiodic, Lemma 4 forces that

$$
\left|w^{n}\right|=n|w|<(g+2) \max _{a \in A}\left|\sigma^{p}(a)\right| .
$$

Then

$$
n<\frac{(g+2) \max _{a \in A}\left|\sigma^{p}(a)\right|}{\ell_{p-1}}=2(g+2) \frac{\max _{a \in A}\left|\sigma^{p}(a)\right|}{\min _{a \in A}\left|\sigma^{p-1}(a)\right|} \leq 2(g+2) \lambda C^{2}
$$

where λ and C are as in Corollary 2. This completes the proof.

4. A proof of Theorem 1

Definition 3. (1) Let $i \in \mathbb{Z}_{+}$and $p, \ell \in \mathbb{N}$. A finite sequence

$$
\left\{\alpha, \sigma^{p}\left(u_{i^{\prime}}\right), \sigma^{p}\left(u_{i^{\prime}+1}\right), \ldots, \sigma^{p}\left(u_{i^{\prime}+k-1}\right), \beta\right\}
$$

where $i^{\prime} \in \mathbb{Z}_{+}$and $k \in \mathbb{N}$, is called a natural p-cutting of $u_{[i, i+\ell)}$ if
(a) $u_{[i, i+\ell)}=\alpha \sigma^{p}\left(u_{i^{\prime}}\right) \sigma^{p}\left(u_{i^{\prime}+1}\right) \ldots \sigma^{p}\left(u_{i^{\prime}+k-1}\right) \beta$;
(b) $\alpha \prec_{\mathrm{s}} \sigma^{p}\left(u_{i^{\prime}-1}\right)$;
(c) $\beta \prec_{\mathrm{p}} \sigma^{p}\left(u_{i^{\prime}+k}\right)$;
(d) $i+|\alpha|=\left|\sigma^{p}\left(u_{\left[0, i^{\prime}\right)}\right)\right|$.
(2) Suppose that a word w occurs at positions i and j in u. The word w is said to have the same p-cutting at the positions i and j if

$$
\left(E_{p} \cap[i, i+|w|-1]\right)+(j-i)=E_{p} \cap[j, j+|w|-1] .
$$

Remark 4. We do not exclude the possibility that $\alpha=\Lambda$ or $\beta=\Lambda$. Not every $u_{[i, i+\ell)}$ has a natural p-cutting, because we require $k \geq 1$ in Definition 3 (1). It is not necessary that a natural p-cutting is uniquely determined for given i and ℓ in Definition 3 (1).

We now proceed to our proof of Theorem 1.
Proof of Theorem 1. (1) \Rightarrow (2): Fix an integer k with

$$
k \geq C^{2}\left(C^{2} N+2\right)>4 C^{2}
$$

where C (resp. N) is as in Corollary 2 (resp. Lemma 5). Assume that σ is not recognizable.

Step 1. For each $p \in \mathbb{N}$, there exist $i_{p} \in E_{1}, j_{p} \in \mathbb{Z}_{+} \backslash E_{1}, i_{p}^{\prime}, j_{p}^{\prime} \in \mathbb{Z}_{+}, h_{p}, \ell_{p} \in \mathbb{N}$ and $\alpha_{p}, \gamma_{p}^{\prime} \in A^{*}, \gamma_{p} \in A^{+}$such that

- $u_{\left[i_{p}, i_{p}+\ell_{p}\right)}=u_{\left[j_{p}, j_{p}+\ell_{p}\right)} ;$

$$
\bullet
$$

$$
\left\{\alpha_{p}, \sigma^{p}\left(u_{i_{p}^{\prime}}\right), \sigma^{p}\left(u_{i_{p}^{\prime}+1}\right), \ldots, \sigma^{p}\left(u_{i_{p}^{\prime}+k-1}\right)\right\}
$$

is a natural p-cutting of $u_{\left[i_{p}, i_{p}+\ell_{p}\right)}$;

$$
\left\{\gamma_{p}, \sigma^{p}\left(u_{j_{p}^{\prime}}\right), \sigma^{p}\left(u_{j_{p}^{\prime}+1}\right), \ldots, \sigma^{p}\left(u_{j_{p}^{\prime}+h_{p}-1}\right), \gamma_{p}^{\prime}\right\}
$$

is a natural p-cutting of $u_{\left[j_{p}+\left|\alpha_{p}\right|, j_{p}+\ell_{p}\right)}$.

This fact is not difficult to verify; see Lemma 6 below the present proof. The above properties allows us to define

$$
m_{p}=\min \left\{m \in \mathbb{N}: \alpha_{p} \gamma_{p} \prec_{\mathrm{s}} \sigma^{p}\left(u_{j_{p}^{\prime}-m}\right) \sigma^{p}\left(u_{j_{p}^{\prime}-m+1}\right) \ldots \sigma^{p}\left(u_{j_{p}^{\prime}-1}\right)\right\}
$$

Since $\alpha_{p} \prec_{\mathrm{s}} \sigma^{p}\left(u_{i_{p}^{\prime}-1}\right)$ and $\gamma_{p} \prec_{\mathrm{s}} \sigma^{p}\left(u_{j_{p}^{\prime}-1}\right)$, it follows that for all $p \in \mathbb{N}$,

$$
m_{p} \leq \frac{\left|\alpha_{p} \gamma_{p}\right|}{\min _{a \in A}\left|\sigma^{p}(a)\right|} \leq \frac{2 \max _{a \in A}\left|\sigma^{p}(a)\right|}{\min _{a \in A}\left|\sigma^{p}(a)\right|} \leq 2 C^{2}
$$

so that $m:=\max _{p \in \mathbb{N}} m_{p}$ exists and is independent of the choice of k. We know that for all $p \in \mathbb{N}$,

$$
\alpha_{p} \gamma_{p} \prec_{\mathrm{s}} \sigma^{p}\left(u_{j_{p}^{\prime}-m}\right) \sigma^{p}\left(u_{j_{p}^{\prime}-m+1}\right) \ldots \sigma^{p}\left(u_{j_{p}^{\prime}-1}\right)
$$

Step 2. Since

$$
\begin{equation*}
\gamma_{p} \sigma^{p}\left(u_{j_{p}^{\prime}}\right) \sigma^{p}\left(u_{j_{p}^{\prime}+1}\right) \ldots \sigma^{p}\left(u_{j_{p}^{\prime}+h_{p}-1}\right) \gamma_{p}^{\prime}=\sigma^{p}\left(u_{i_{p}^{\prime}}\right) \sigma^{p}\left(u_{i_{p}^{\prime}+1}\right) \ldots \sigma^{p}\left(u_{i_{p}^{\prime}+k-1}\right), \tag{4.1}
\end{equation*}
$$

it follows that

$$
h_{p} \min _{a \in A}\left|\sigma^{p}(a)\right| \leq k \max _{a \in A}\left|\sigma^{p}(a)\right|,
$$

so that $h_{p} \leq k C^{2}$. Hence, $\left\{h_{p}\right\}_{p}$ is bounded. Recall that k is now fixed. Hence, the set

$$
\left\{\left(h_{p}, u_{\left[i_{p}^{\prime}-1, i_{p}^{\prime}+k-1\right]}, u_{\left[j_{p}^{\prime}-m, j_{p}^{\prime}+h_{p}\right]}\right) \in \mathbb{N} \times A^{+} \times A^{+}: p \in \mathbb{N}\right\}
$$

is finite. We can find an infinite set $I \subset \mathbb{N}, h \in \mathbb{N}$ and words

$$
a_{-1} a_{0} \ldots a_{k-1}, b_{-m} b_{-m+1} \ldots b_{h} \in \mathcal{L}(u)\left(a_{i}, b_{j} \in A\right)
$$

so that for all $p \in I$,

$$
\begin{align*}
h_{p} & =h ; \tag{4.2}\\
u_{\left[i_{p}^{\prime}-1, i_{p}^{\prime}+k-1\right]} & =a_{-1} a_{0} \ldots a_{k-1} \tag{4.3}\\
u_{\left[j_{p}^{\prime}-m, j_{p}^{\prime}+h_{p}\right]} & =b_{-m} b_{-m+1} \ldots b_{h} . \tag{4.4}
\end{align*}
$$

Step 3. It follows from (4.1)-(4.4) that for any $p, q \in I$ with $p<q$,

$$
\begin{equation*}
\gamma_{q} \sigma^{q}\left(b_{0} b_{1} \ldots b_{h-1}\right) \gamma_{q}^{\prime}=\sigma^{q-p}\left(\gamma_{p}\right) \sigma^{q}\left(b_{0} b_{1} \ldots b_{h-1}\right) \sigma^{q-p}\left(\gamma_{p}^{\prime}\right) \tag{4.5}
\end{equation*}
$$

Assume that $\sigma^{q-p}\left(\gamma_{p}\right) \neq \gamma_{q}$ for some $p, q \in I$ with $p<q$. Consider the case $\left|\gamma_{q}\right|>\left|\sigma^{q-p}\left(\gamma_{p}\right)\right|$. Equation (4.5) allows us to find a word $v \in A^{+}$such that

- $\gamma_{q}=\sigma^{q-p}\left(\gamma_{p}\right) v \prec_{\mathrm{s}} \sigma^{q}\left(b_{-1}\right)$;
- $v^{N^{\prime}} \prec_{\mathrm{p}} \sigma^{q}\left(b_{0} b_{1} \ldots b_{h-1}\right)$ and $v^{N^{\prime}+1} \not \varliminf_{\mathrm{p}} \sigma^{q}\left(b_{0} b_{1} \ldots b_{h-1}\right)$ for some $N^{\prime} \in \mathbb{N}$.

Deducing from (4.1)-(4.4) that

$$
(h+2) \max _{a \in A}\left|\sigma^{q}(a)\right| \geq k \min _{a \in A}\left|\sigma^{q}(a)\right| .
$$

This together with the fact that $v \prec_{\mathrm{s}} \sigma^{q}\left(b_{-1}\right)$ implies that

$$
N^{\prime} \geq \frac{h \min _{a \in A}\left|\sigma^{q}(a)\right|}{\max _{a \in A}\left|\sigma^{q}(a)\right|} \geq\left(k C^{-2}-2\right) C^{-2} \geq N
$$

which contradicts Lemma 5. Also, in the other case, we reach the same contradiction. It follows therefore that $p, q \in I, q>p \Rightarrow \gamma_{q}=\sigma^{q-p}\left(\gamma_{p}\right)$.

Step 4. Since I is infinite, σ is primitive and $\gamma_{p} \neq \Lambda$, we can fix $p, q \in I$ with $q>p$ so that $\left|\sigma^{q-p-1}\left(\gamma_{p}\right)\right|>L$.

Figure 2
Observe how powers of σ map $u_{\left[i_{q}^{\prime}, i_{q}^{\prime}+k-1\right]}$ to $\sigma^{q}\left(u_{\left[i_{q}^{\prime}, i_{q}^{\prime}+k-1\right]}\right)$ via $\sigma^{q-p}\left(u_{\left[i_{q}^{\prime}, i_{q}^{\prime}+k-1\right]}\right)$; see Figure 2. Since

$$
\begin{aligned}
& \quad \gamma_{p} \prec_{\mathrm{p}} \sigma^{p}\left(u_{\left[i_{p}^{\prime}, i_{p}^{\prime}+k-1\right]}\right)=\sigma^{p}\left(u_{\left[i_{q}^{\prime}, i_{q}^{\prime}+k-1\right]}\right) ; \\
& \gamma_{q} \prec_{\mathrm{p}} \sigma^{q}\left(u_{\left[i_{q}^{\prime}, i_{q}+k-1\right]}\right) ; \\
& \sigma^{q-p}\left(\gamma_{p}\right)
\end{aligned}=\gamma_{q}, \quad \text {, }
$$

it follows that
(i) $i_{q}+\left|\alpha_{q}\right| \in E_{q} \subset E_{1}$;
(ii) $i_{q}+\left|\alpha_{q} \gamma_{q}\right| \in E_{q-p} \subset E_{1}$;
(iii) $\sigma^{q-p-1}\left(\gamma_{p}\right)$ occurs at the position $i^{\prime \prime}:=\left|\sigma^{q-p-1}\left(u_{\left[0,\left|\sigma^{p}\left(u_{\left[0, i_{q}\right.}\right)\right| \mid\right.}\right)\right|$ in u;
(iv)

$$
\left\{\sigma\left(u_{i^{\prime \prime}}\right), \sigma\left(u_{i^{\prime \prime}+1}\right), \ldots, \sigma\left(u_{i^{\prime \prime}+\left|\sigma^{q-p-1}\left(\gamma_{p}\right)\right|-1}\right)\right\}
$$

is a natural 1-cutting of $u_{\left[i_{q}+\left|\alpha_{q}\right|, i_{q}+\left|\alpha_{q} \gamma_{q}\right|\right)}=\gamma_{q}$;
Then, observe how powers of σ map $u_{\left[j_{q}^{\prime}-m, j_{q}^{\prime}+h\right]}$ to $\sigma^{q}\left(u_{\left[j_{q}^{\prime}-m, j_{q}^{\prime}+h\right]}\right)$ via $\sigma^{q-p}\left(u_{\left[j_{q}^{\prime}-m, j_{q}^{\prime}+h\right]}\right)$; see Figure 3. Then,
(v) $j_{q}+\left|\alpha_{q}\right| \in E_{q-p} \subset E_{1}$;
(vi) $j_{q}+\left|\alpha_{q} \gamma_{q}\right| \in E_{q-p} \subset E_{1}$;
(vii) $\sigma^{q-p-1}\left(\gamma_{p}\right)$ occurs at the position $j^{\prime \prime}:=\left|\sigma^{q-p-1}\left(u_{\left[0,\left|\sigma^{p}\left(u_{\left[0, j_{q}^{\prime}\right.}\right)\right|-\left|\gamma_{p}\right|\right)}\right)\right|$ in u;
(viii)

$$
\left\{\sigma\left(u_{j^{\prime \prime}}\right), \sigma\left(u_{j^{\prime \prime}+1}\right), \ldots, \sigma\left(u_{j^{\prime \prime}+\left|\sigma^{q-p-1}\left(\gamma_{p}\right)\right|-1}\right)\right\}
$$

is a natural 1-cutting of $u_{\left[j_{q}+\left|\alpha_{q}\right|, j_{q}+\left|\alpha_{q} \gamma_{q}\right|\right)}=\gamma_{q}$.
It follows from (iii), (iv), (vii) and (viii) that γ_{q} has the same 1-cutting at the positions $i_{q}+\left|\alpha_{q}\right|$ and $j_{q}+\left|\alpha_{q}\right|$ in such a way that (i), (ii), (vi) and (v) hold. In

Figure 3
view of this together with the fact that $i_{q} \in E_{1}$ and $j_{q} \notin E_{1}$, we can find sequences:

$$
\begin{aligned}
& i_{q} \leq s_{-n}<s_{-n+1}<\cdots<s_{-1}<s_{0}=i_{q}+\left|\alpha_{q}\right| \\
& t_{-n}<t_{-n+1}<\cdots<t_{-1}<t_{0}=j_{q}+\left|\alpha_{q}\right|
\end{aligned}
$$

of consecutive, natural 1-cutting points, i.e. $s_{i-1}<s<s_{i} \Rightarrow s \notin E_{1}$, such that

- $s_{i}-s_{i-1}=t_{i}-t_{i-1}$ for all integers i with $-n+1<i \leq 0$;
- $s_{-n+1}-s_{-n} \neq t_{-n+1}-t_{-n}$.

It may happen that $t_{-n}<j_{q}$. This completes the proof, because the converse implication (2) \Rightarrow (1) is obvious.

Lemma 6. Let k be an arbitrary integer with $k>4 C^{2}$, where C is a constant as in Corollary 2. Assume that the substitution σ is not recognizable. Then, for every $p \in \mathbb{N}$, there exist

$$
i_{p} \in E_{1}, j_{p} \in \mathbb{Z}_{+} \backslash E_{1}, i_{p}^{\prime}, j_{p}^{\prime} \in \mathbb{Z}_{+}, h_{p}, \ell_{p} \in \mathbb{N}, \alpha_{p}, \gamma_{p}^{\prime} \in A^{*} \text { and } \gamma_{p} \in A^{+}
$$

such that

- $u_{\left[i_{p}, i_{p}+\ell_{p}\right)}=u_{\left[j_{p}, j_{p}+\ell_{p}\right)} ;$

$$
\left\{\alpha_{p}, \sigma^{p}\left(u_{i_{p}^{\prime}}\right), \sigma^{p}\left(u_{i_{p}^{\prime}+1}\right), \ldots, \sigma^{p}\left(u_{i_{p}^{\prime}+k-1}\right)\right\}
$$

is a natural p-cutting of $u_{\left[i_{p}, i_{p}+\ell_{p}\right)}$;

$$
\left\{\gamma_{p}, \sigma^{p}\left(u_{j_{p}^{\prime}}\right), \sigma^{p}\left(u_{j_{p}^{\prime}+1}\right), \ldots, \sigma^{p}\left(u_{j_{p}^{\prime}+h_{p}-1}\right), \gamma_{p}^{\prime}\right\}
$$

is a natural p-cutting of $u_{\left[j_{p}+\left|\alpha_{p}\right|, j_{p}+\ell_{p}\right)}$.

Proof. Fix an arbitrary integer ℓ_{p}^{\prime} with

$$
\begin{equation*}
\ell_{p}^{\prime}>(k+2) \max _{a \in A}\left|\sigma^{p}(a)\right| . \tag{4.6}
\end{equation*}
$$

In view of the assumption that σ is not recognizable, there exist $i_{p} \in E_{1}$ and $j_{p} \in \mathbb{Z}_{+} \backslash E_{1}$ such that

$$
u_{\left[i_{p}, i_{p}+\ell_{p}^{\prime}\right)}=u_{\left[j_{p}, j_{p}+\ell_{p}^{\prime}\right)} .
$$

Condition 4.6 guarantees the existence of a natural p-cutting

$$
\begin{equation*}
\left\{\alpha_{p}, \sigma^{p}\left(u_{i_{p}^{\prime}}\right), \sigma^{p}\left(u_{i_{p}^{\prime}+1}\right), \ldots, \sigma^{p}\left(u_{i_{p}^{\prime}+k_{p}-1}\right), \alpha_{p}^{\prime}\right\} \tag{4.7}
\end{equation*}
$$

of $u_{\left[i_{p}, i_{p}+\ell_{p}^{\prime}\right)}$. Since

$$
k_{p} \geq \frac{\ell_{p}^{\prime}}{\max _{a \in A}\left|\sigma^{p}(a)\right|}-2>k
$$

from (4.7), we can choose a natural p-cutting

$$
\left\{\alpha_{p}, \sigma^{p}\left(u_{i_{p}^{\prime}}\right), \sigma^{p}\left(u_{i_{p}^{\prime}+1}\right), \ldots, \sigma^{p}\left(u_{i_{p}^{\prime}+k-1}\right)\right\}
$$

of $u_{\left[i_{p}, i_{p}+\ell_{p}\right]}$, where

$$
\ell_{p}=\left|\alpha_{p} \sigma^{p}\left(u_{\left[i_{p}^{\prime}, i_{p}^{\prime}+k-1\right]}\right)\right| .
$$

Since

$$
\begin{aligned}
\ell_{p}-\left|\alpha_{p}\right| & \geq\left(k \frac{\min _{a \in A}\left|\sigma^{p}(a)\right|}{\max _{a \in A}\left|\sigma^{p}(a)\right|}-1\right) \max _{a \in A}\left|\sigma^{p}(a)\right| \\
& \geq\left(k C^{-2}-1\right) \max _{a \in A}\left|\sigma^{p}(a)\right| \\
& >3 \max _{a \in A}\left|\sigma^{p}(a)\right|,
\end{aligned}
$$

we can choose a natural p-cutting

$$
\left\{\gamma_{p}, \sigma^{p}\left(u_{j_{p}^{\prime}}\right), \sigma^{p}\left(u_{j_{p}^{\prime}+1}\right), \ldots, \sigma^{p}\left(u_{j_{p}^{\prime}+h_{p}-1}\right), \gamma_{p}^{\prime}\right\} .
$$

of $u_{\left[j_{p}+\left|\alpha_{p}\right|, j_{p}+\ell_{p}\right)}$ so that $\gamma_{p} \neq \Lambda$.

References

1. F. Durand, B. Host, and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953-993.
2. R. Herman, I. Putnam, and C. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827-864.
3. B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems 6 (1986), 529-540.
4. P. Kůrka, Topological and Symbolic Dynamics, Cours Spécialisés, vol. 11, Société Mathématique de France, Paris, 2003.
5. D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1999.
6. B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoret. Comput. Sci. 99 (1992), 327-334.
7. N. Pytheas-Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002, edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
8. M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math., vol. 1294, Springer-Verlag, Berlin-New York, 1987.
9. \qquad , Substitution Dynamical Systems-Spectral Analysis, Second ed., Lecture Notes in Math., vol. 1294, Springer-Verlag, Berlin, 2010.

Division of Mathematical Sciences, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, JAPAN.

Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées, CNRSUMR 6140, Université de Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France.

E-mail address: hyuasa@cc.osaka-kyoiku.ac.jp

[^0]: Date: September 8, 2014.
 2000 Mathematics Subject Classification. Primary 68R15; Secondary 37B10.
 Key words and phrases. recognizability, primitive substitution.

