A REVIEW OF MOSSE’S RECOGNIZABILITY THEOREM
HISATOSHI YUASA

ABSTRACT. The goal of the present article is to supply B. Mossé’s (unilateral)
recognizability theorem with a proof easy to follow.

1. INTRODUCTION

Let A be a finite alphabet of at least two letters. Let o be a primitive substitution
over A which admits a fixed point u in A%+ where Z, := {0,1,2,...}. For each
peN:={1,2/3,...}, set

E, = {0} U{|o"(uppn)| : n € N},
whose elements are called the natural p-cutting points. If ¢ > p, then E, C E,.

Definition 1 ([3, p. 530],[8, Definition V. 6.]). The substitution o is said to be
recognizable if there exists L € N such that

Ui i+L) = u[j,j+L)7Z. € E1 :>] € El-
The so-called Morse substitution: a — ab, b — ba has a fixed point
u = abbabaabbaababbabaababbaabbabaab . . .

and then E; = {0,2,4,6,...}. Asis shown in [8, p. 109], the Morse substitution
is recognizable with L = 4.

The recognizability is an important notion for primitive substitutions from view-
points of associated subshifts. If the substitution ¢ is recognizable, then the uni-
lateral subshift X, arising from o has a Kakutani-Rohlin partition [2, 1] built on a
clopen subset o(X,) of X, which pictures the substitution rule. It is also a signif-
icant consequence of the recognizability that o(X,) is open [8, Proposition VI. 3].
The property of 0(X,) being open is actually equivalent to the recognizability [3].
In fact, [8, Proposition VI. 6] states that given a point x € X,, the first return
time of the point o(z) to the clopen subset o(X,) equals the length |o(x¢)| of the
word o(z), and so the Kakutani-Rohlin partition is given by

{T*([a]) : 0 < k < |o(a)|,a € A},

where T is the shift on X,, and [a] = {z = (2;); € X,|xo = a}. This leads to a
fact that the first return map on o(X,) is a topological factor of X,, which shows
a self-similarity of X, if o is one-to-one on the alphabet A; see [8, Corollary VI. 8].

It is important to characterize a class of primitive substitutions with the recog-
nizability. It is B. Mossé [6] that succeeded in the characterization:

Theorem 1 ([6, Théoreme 3.1]). If u is aperiodic, i.e. T"u # u for all n € N,
then the following are equivalent.
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(1) o is not recognizable;
(2) for each L € N, there exist i,j € Z, such that
o o(u;) is a strict suffiz of o(u;);
o 0(uiyr) = 0(ujyx) for each integer k with 1 < k < L.

The author believes that B. Mossé’s proof [6] for this theorem would be difficult
to completely follow, in particular, Part (4) in p. 332. Moreover, no proofs can be
found in recent textbooks [7, 4, 9], though a proof for the bilateral recognizability is
written in [4, pp. 163-164]. This motivated the author to write the present article.

Everything which the reader will see in the present article is due to B. Mossé or
other pioneers.

2. PRELIMINARIES

Let A be a finite alphabet, i.e. a finite set, of at least two elements. An element
of Ais called a letter. Let AT denote the set of nonempty words over A. The empty
word is denoted by A. Put A* = AT U {A}. We say that a word w € A* occurs in
a word v € A* if there exist p,s € A* such that v = pws. We then write w < v.
More specifically, w is said to occurs at the position |p| + 1 in v. The position is
called an occurrence of w in v. Let |v|, denote the number of occurrences of w
in v. The words p and s are called a prefix and suffix of v, respectively. We then
write p <, v and s < v, respectively. If [p| < |v| (resp. |s| < |v]), then p (resp. s)
is called a strict prefix (resp. suffix) of v, and then we write p <, v (resp. s < v).
A power of a word w € A* is a word of the form

w=vv...0
—

n times

with some v € A* and n € N, which is denoted by w".

A substitution over A is defined to be a map from A to A™. The domain of
o is naturally extended to each of AT and A%+ by means of concatenation or
juxtaposition of words. A recursive formula defines the powers o* for k € Z, on
each of AT and A%+. We always assume that the substitution ¢ is primitive, i.e.
there exists k € N such that a < o*(b) for any a,b € A.

To prove Lemma 5, we will use Lemma 1 and Corollary 2 below. They concern
Perron-Frobenius Theory for nonnegative, square matrices. Let M denote a matrix
whose entries are all real. The matrix M is said to be nonnegative if the entries
of M are nonnegative. A nonnegative, square matrix M is said to be primitive if
there exists n € N such that M" is positive, i.e. the entries of M™ are positive. If
a nonnegative, square matrix M is primitive, then it has such an eigenvalue A > 0
that the absolute value of any other eigenvalue is less than A. The eigenvalue A
is called the Perron eigenvalue of the matrix M. See for details [5, Sections 4.2
and 4.5]. The reader may refer to [5, Theorem 4.5.12] for a proof of the following
lemma.

Lemma 1. Let X denote the Perron eigenvalue of a primitive matriz M. Let
s denote the size of M. Then, there exist sets {c;; > 0 : 1 < 4,5 < s} and
{pij(n) e R:1<1i,j<s,neN} such that for all pair (i,7) € {1,2,...,s}* and
n €N,

lim p; j(n) =0 and (M");; = {cij + pij(n)}A".

n—oo
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The incidence matrix M, of the substitution o is defined to be an A x A matrix
whose (a,b)-entry equals |o(a)|,. Clearly, a substitution is primitive if and only
if the incidence matrix associated with the substitution is primitive. Notice that
every (a,b)-entry of M," equals |6"(a)lp.

Corollary 2. Let A denote the Perron eigenvalue of M,. Then, there exists an
integer C' > 2 such that for alla € A and n € N,

O™ < |o™(a)| < OA™
Proof. Lemma 1 allows us to obtain ¢, > 0, pap(n) € R such that for all a,b € A,
Tim pos(n) = 0 and [0 (@)l = {eas -+ pun(m)}N"
Fix a letter a € A. Since
A" o™(a) >0
for all n € N and we have that

A7o™(a@)] = > cap (n— 00),

beA
there exists C, € N such that for all n € N,

Ct< A ™"o"(a)| < C,.

Taking C' = max,c4 C, + 1, we obtain the desired conclusion. Notice that we
require that C' > 2. O

Suppose that u 1= uguius ... € A%+ is a fixed point of o, where u; € A for each
1€ Zy. Put
L(u) = {wiwipr ... u50i,5 € Zy,i < j}U{A}.
It follows from the primitivity of o that u is uniformly recurrent, i.e. given a word
w € L(u), there exists N € N such that

veL(u),lv=N=w<w.
We say that a word w € A* occurs at a position ¢ € Z, in u if

Ul it|w|) = Wilig1 - v« Ui || -1 = W.

3. POWERS OF WORDS OCCURRING IN THE FIXED POINT
Definition 2. A word v € A" is said to be primitive if it holds that
v=w",w€ AT, n € N= (w=wv, or equivalently n = 1).

Lemma 3 ([6, Propriété 2.3]). If v € At is primitive and vwv < v™ for some
n € {2,3,...}, then w is a power of v.

Proof. Assume that w is not any power of v. Since vwv < v™, there exist s1,t; € AT
such that

(3.1) v = S1t1 = t151.

Since v is primitive, we have |s;| # [t;|. We may assume that |s;| < |t1]. Figure 1
shows the two ways (3.1) of decomposing v. Since v is primitive, it is necessary
that |s1] 1 |t1]. Find a word ss of length (|¢;| mod |s;|) such that

ty = s Vsl g,
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FIGURE 1. decompositions of v into s; and t;

We then find a word ¢, € A" such that s; = 389 = soty. We are again in the
situation similar to Figure 1; replace v, s1,t; with s1, 9, t9, respectively. Continuing
this procedure, we finally reach n € N for which s,, is a letter. This forces that v
is a power of the letter, which is a contradiction. U

Lemma 4 ([6, Lemme 2.5]). If there exist N,p € N and a primitive word v € A"
such that

(1) oP(ujuirq) < v for alli € Z,;
(2) 2Jv| < mingea 0" (a)l,
then u is periodic.

Proof. Tt follows from (1) that each oP(u;) < vV, so that for each i € Z,, there
exist s; <ss U, t; <gp v and n; € Z, such that

o (u;) = s;u"t;.

If n; = 0 for some ¢ € Z,, then |o?(u;)| < 2|v|, which contradicts (2). Hence,
n; > 1 for all ©+ € Z,. This guarantees that for all i € Z,

V81010 < 80" 0" L = o (unie) < oY,
It follows from Lemma 3 that each t;s;,1 is a power of v. We obtain finally that
u = oP(u) = spv™0tes10™ t1 590ty - - - = SV,
which is periodic, because sy < v. This completes the proof. U

In order to prove Theorem 1, we will use the following lemma, which itself is
actually interesting.

Lemma 5 ([6, Théoreme 2.4)). If u is aperiodic, then there exists N € N such that
sup{n € N: w" € L(u),w € AT} < N.
It is clearly necessary that N > 1.

Proof. Suppose that some power w" of a primitive word w € A" occurs in u. For
p € Zy, put

£, = 5 min|o"(a)].
Since £, T 0o, there uniquely exists p € N such that
loq < w| < 4,
Since u is uniformly recurrent, there exists g € N so that for all i, j € Z,
Uitlit1 = U[jj+g)-
It follows that for all i, 5 € 7Z,

o (ujuip) < Up(“[jﬁg))'
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If the length of a word w' € L(u) equals
9 p
(9 +2) max|o®(a)],

then oP(ujj jt4)) < w' for some j € Z,, so that o”(uu;4q1) < w' for all i € Z,.
Since 2|w| < minge |0?(a)| and u is aperiodic, Lemma 4 forces that

[w"| = njw| < (g + 2) max|o®(a)|.

Then
2 a P “ D
w2 masea @]y w0 @ oo
lyq minge |0P1(a)
where A\ and C' are as in Corollary 2. This completes the proof. Il

4. A PROOF OF THEOREM 1

Definition 3. (1) Let i € Z; and p,¢ € N. A finite sequence

{Oé, Up(uz")7 Up(uiurl); e >Up(ui’+k71)7 5},

where 7' € Z, and k € N, is called a natural p-cutting of uj; ;40 if
(8) ufiire) = ao?(up)o?(Ups1) ... 0P (Uyyr—1)05;
(b) o <y Up(ui/,l);
(€) 8 < ¥z 1)
(d) 1+ |Oé| = |O'p(U[07i/))|.
(2) Suppose that a word w occurs at positions i and j in u. The word w is said
to have the same p-cutting at the positions ¢ and j if

(EpO[ii+|wl =1) + (G —1) = B, N[5, + [w] = 1].

Remark 4. We do not exclude the possibility that « = A or § = A. Not every
uii+e) has a natural p-cutting, because we require £ > 1 in Definition 3 (1). It is
not necessary that a natural p-cutting is uniquely determined for given ¢ and ¢ in
Definition 3 (1).

We now proceed to our proof of Theorem 1.
Proof of Theorem 1. (1) = (2): Fix an integer k with
k> C*(C*N +2) > 4C?,
where C' (resp. N) is as in Corollary 2 (resp. Lemma 5). Assume that o is not
recognizable.

Step 1. For each p € N, there exist i, € Ey, j, € Zy \ By, 4y, j;, € Zy, hy, £, €N
and ay, 7, € A%, 7, € AT such that

@ Ulip,ip+tp) = Ulp,jp+ep)>
[ )

{op, 0P (uiy), 0" (wig41), - .. 0P (Wi sr—1) }

is a natural p-cutting of up, ;,+¢,);
[ ]

{7p7 Up(”j,@)a O_p(ujl’frl)a SR Up(“j;ﬂrhpfl)a 7;/0}

is a natural p-cutting of u, yja,|.j,+¢,)-
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This fact is not difficult to verify; see Lemma 6 below the present proof. The
above properties allows us to define

my = min{m € N : a,y, <s 0" (ujr-m )0 (Wj —mi1) - .. 0P (ujr 1)}
Since oy, s ap(ui/p,l) and v, s ap(uj;,l), it follows that for all p € N,

|2l 2maxaeq [07(a)|

<207,

m, < — S
P~ mingeq |o?(a)] = mingeq |o?(a)

so that m := max,eym, exists and is independent of the choice of k. We know
that for all p € N,

apYp <s 07 (Ujy—m )0 (Ujp—mi1) - 0" (g, 1)
Step 2. Since
(4.1) 70" (ujy)o"(ujps1) - 0P (Wjpan,—1)7, = 0 (i )0 (i 41) - .. 0 (Ui 41-1),
it follows that
S < p
hy min o*(a)| < kmax |o”(a)l,

so that h, < kC?. Hence, {h,}, is bounded. Recall that k is now fixed. Hence,
the set

{(hp, wpiy—1 =13, Wi —mejg4n,) € N X AT x AT p € N}
is finite. We can find an infinite set I C N, h € N and words
a_10g ... ag—1,b_pb_pmi1 ... by € L(u) (a;,b; € A)
so that for all p € I,

(4.2) h, = h;
(4.3) Ulis 1t +k—1] = A—1Q0 - - - A1
(44) u[j;,*m,jll)+hp} = b—mb—m—‘rl .. bh-

Step 3. It follows from (4.1)-(4.4) that for any p,q € I with p < g,
(4.5) g0 (bob1 - . . bh—l)')/; = 077P(v,)0(boby . .. bh_l)aq_p(%’,).

Assume that 0%7P(y,) # 7, for some p,q € I with p < ¢. Consider the case
174 > [677P(7,)|. Equation (4.5) allows us to find a word v € A" such that

® Yg = 0T P(p)v < 09(b-1);

o vV < 09(boby ... by, _1) and vV £ 0U(boby ... by,_y) for some N’ € N.
Deducing from (4.1)-(4.4) that

q > inlo?(a)l.
(h +2) max|o?(a)| = kmin|o?(a)l
This together with the fact that v <; ¢%(b_;) implies that

: q
;o hmingeao?(a)] (kC~% —2)C~2 > N,

T maXgeq |09(a)] T

which contradicts Lemma 5. Also, in the other case, we reach the same contradic-
tion. It follows therefore that p,q € I,q > p = v, = 077P(7,).

Step 4. Since [ is infinite, o is primitive and v, # A, we can fix p,q € I with
q > p so that |07 P71 ()| > L.
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FIGURE 2

Observe how powers of o map uj ir 41y to aq(u[ig,iﬁk,”) via Jq*p(u[ig%Jrk,l]);
see Figure 2. Since
Tp =p Up(“[i;,i;,—&-k—l}) = Up(u[i;,i;+k—1]);
Vg =p 0 (Ufir it 1h-1]);
o) = Vg
it follows that
(i) i + |og| € By C Ex;

(ii) dq + [ogyq| € Eq - C By
(iii) o7 P1(5,) occurs at the position 7 := |0q_p_1(u[0,|¢,p(u[0’ig))|))| in u;
(iv)

{O'(Ui//), 0(ui//+1), ceey O_(Ui//_'_‘o.qufl(,yp”_l)}
is a natural 1-cutting of w1 |aylis+lagve) = Va5

Then, observe how powers of & map u(j, —m,js yn) to & (ub —mag /4p]) Via g9” p(u[] _ ,jﬁh});
see Figure 3. Then,

()jq+|aq|€Eq » C En;

(Vi) Jq + lagyg| € Eq—p C Ex;
(vii) 097P71(~y,) occurs at the position j” := [a97P~ (u, 0 (g 37l - )| I s
(viii)

{O'(Uj//>, U<uj”+1)7 ey O-<Uj//+|o-q—p—1(,yp)|71)}
is a natural 1-cutting of Uy, +|ay|j,+lagval) = Va-

It follows from (iii), (iv), (vil) and (viii) that v, has the same 1-cutting at the
positions i, + |a,| and j, + |oy| in such a way that (i), (ii), (vi) and (v) hold. In
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Ulg—m.gg+h]
u f f
o? P P
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4 B CrAA) | o (Uizy gy-+h1)
| |
| | | |
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‘ | |

Ja Jq T+ |O‘q’ Jq Tt |aq7q|

FIGURE 3

view of this together with the fact that i, € E; and j, ¢ E;, we can find sequences:

Qg < Sp < Sopi1 < o0 < S_p < So =g+ |ygl;

ton <topgr <o <ty <to=jg+ |ay]

of consecutive, natural 1-cutting points, i.e. 5,01 < s < 's; = s ¢ Fy, such that

® 5, —s; 1 =t; —t;_q for all integers ¢ with —n 4+ 1 <1 <0;

® S i1 — S pFt oy —1t .
It may happen that t_,, < j,. This completes the proof, because the converse
implication (2) = (1) is obvious. O

Lemma 6. Let k be an arbitrary integer with k > 4C?, where C is a constant as
in Corollary 2. Assume that the substitution o is not recognizable. Then, for every
p € N, there exist

ip € By, jp € Ly \ By i, §;) € Ly hyp by € Ny, 7y, € A* and o, € AT

such that
i u[ip:ip+£p) = uUpvjp*’zp)’.
[ ]
p p p
{ap, o (Ui;), o (U%H), cees O (ui;ﬁkfl)}
is a natural p-cutting of uj, i, ve,);
[ ]

{9, 0 (g ), 0P (wjp 1), - - 0P (Wjpm,—1), 7}

is a natural p-cutting of Ujj,+|ay|jp+£,)-
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Proof. Fix an arbitrary integer £, with

(4.6) e, > (k+2) max |oP(a)].

In view of the assumption that o is not recognizable, there exist i, € E; and
jp € Z+ \ E1 such that

Wiy ip+€,,) = Uljp,jp+£y,)-

Condition 4.6 guarantees the existence of a natural p-cutting

(4'7) {O‘pa Up(ui;)a O-p(ui;Jrl)v SRR Up(ui;)+kp71)7 O‘;)}
of Wiy ipt0)- Since
gl

P 2>k
maxyea |oP(a)| ’

k, >

from (4.7), we can choose a natural p-cutting

{oy, Up(ui;)), Up(uig,ﬂ), e 7Up(ui;+k71)}
of ui, i,+e,), Where

by = |04p0p(u[i;,i;,+k—1})|-

Since
1 P
0~ oyl > (K 2Reea DL 1Y o op(a)
max,ea |oP(a)| acA
> (kC™2 -1 P
> (kC ) max|o?(a)|
p

> 3%16aj<|a (a)l,

we can choose a natural p-cutting
{1 Up(uj;,)a Up(uj;,ﬂ), e ,Up(ujﬁhpq), ’Y;}-

of U, +jay,j,+¢,) SO that v, # A. O
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