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Abstract. The goal of the present article is to supply B. Mossé’s (unilateral)
recognizability theorem with a proof easy to follow.

1. Introduction

Let A be a finite alphabet of at least two letters. Let σ be a primitive substitution
over A which admits a fixed point u in AZ+ , where Z+ := {0, 1, 2, . . . }. For each
p ∈ N := {1, 2, 3, . . . }, set

Ep = {0} ∪ {|σp(u[0,n))| : n ∈ N},
whose elements are called the natural p-cutting points. If q ≥ p, then Eq ⊊ Ep.

Definition 1 ([3, p. 530],[8, Definition V. 6.]). The substitution σ is said to be
recognizable if there exists L ∈ N such that

u[i,i+L) = u[j,j+L), i ∈ E1 ⇒ j ∈ E1.

The so-called Morse substitution: a 7→ ab, b 7→ ba has a fixed point

u = abbabaabbaababbabaababbaabbabaab . . .

and then E1 = {0, 2, 4, 6, . . . }. As is shown in [8, p. 109], the Morse substitution
is recognizable with L = 4.
The recognizability is an important notion for primitive substitutions from view-

points of associated subshifts. If the substitution σ is recognizable, then the uni-
lateral subshift Xσ arising from σ has a Kakutani-Rohlin partition [2, 1] built on a
clopen subset σ(Xσ) of Xσ which pictures the substitution rule. It is also a signif-
icant consequence of the recognizability that σ(Xσ) is open [8, Proposition VI. 3].
The property of σ(Xσ) being open is actually equivalent to the recognizability [3].
In fact, [8, Proposition VI. 6] states that given a point x ∈ Xσ, the first return
time of the point σ(x) to the clopen subset σ(Xσ) equals the length |σ(x0)| of the
word σ(x0), and so the Kakutani-Rohlin partition is given by

{T kσ([a]) : 0 ≤ k < |σ(a)|, a ∈ A},
where T is the shift on Xσ, and [a] = {x = (xi)i ∈ Xσ|x0 = a}. This leads to a
fact that the first return map on σ(Xσ) is a topological factor of Xσ, which shows
a self-similarity of Xσ if σ is one-to-one on the alphabet A; see [8, Corollary VI. 8].
It is important to characterize a class of primitive substitutions with the recog-

nizability. It is B. Mossé [6] that succeeded in the characterization:

Theorem 1 ([6, Théorème 3.1]). If u is aperiodic, i.e. T nu ̸= u for all n ∈ N,
then the following are equivalent.
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(1) σ is not recognizable;
(2) for each L ∈ N, there exist i, j ∈ Z+ such that

• σ(uj) is a strict suffix of σ(ui);
• σ(ui+k) = σ(uj+k) for each integer k with 1 ≤ k ≤ L.

The author believes that B. Mossé’s proof [6] for this theorem would be difficult
to completely follow, in particular, Part (4) in p. 332. Moreover, no proofs can be
found in recent textbooks [7, 4, 9], though a proof for the bilateral recognizability is
written in [4, pp. 163-164]. This motivated the author to write the present article.
Everything which the reader will see in the present article is due to B. Mossé or

other pioneers.

2. Preliminaries

Let A be a finite alphabet, i.e. a finite set, of at least two elements. An element
of A is called a letter. Let A+ denote the set of nonempty words over A. The empty
word is denoted by Λ. Put A∗ = A+ ∪ {Λ}. We say that a word w ∈ A∗ occurs in
a word v ∈ A∗ if there exist p, s ∈ A∗ such that v = pws. We then write w ≺ v.
More specifically, w is said to occurs at the position |p| + 1 in v. The position is
called an occurrence of w in v. Let |v|w denote the number of occurrences of w
in v. The words p and s are called a prefix and suffix of v, respectively. We then
write p ≺p v and s ≺s v, respectively. If |p| < |v| (resp. |s| < |v|), then p (resp. s)
is called a strict prefix (resp. suffix) of v, and then we write p ≺sp v (resp. s ≺ss v).
A power of a word w ∈ A∗ is a word of the form

w = vv . . . v︸ ︷︷ ︸
n times

with some v ∈ A∗ and n ∈ N, which is denoted by wn.
A substitution over A is defined to be a map from A to A+. The domain of

σ is naturally extended to each of A+ and AZ+ by means of concatenation or
juxtaposition of words. A recursive formula defines the powers σk for k ∈ Z+ on
each of A+ and AZ+ . We always assume that the substitution σ is primitive, i.e.
there exists k ∈ N such that a ≺ σk(b) for any a, b ∈ A.
To prove Lemma 5, we will use Lemma 1 and Corollary 2 below. They concern

Perron-Frobenius Theory for nonnegative, square matrices. Let M denote a matrix
whose entries are all real. The matrix M is said to be nonnegative if the entries
of M are nonnegative. A nonnegative, square matrix M is said to be primitive if
there exists n ∈ N such that Mn is positive, i.e. the entries of Mn are positive. If
a nonnegative, square matrix M is primitive, then it has such an eigenvalue λ > 0
that the absolute value of any other eigenvalue is less than λ. The eigenvalue λ
is called the Perron eigenvalue of the matrix M . See for details [5, Sections 4.2
and 4.5]. The reader may refer to [5, Theorem 4.5.12] for a proof of the following
lemma.

Lemma 1. Let λ denote the Perron eigenvalue of a primitive matrix M . Let
s denote the size of M . Then, there exist sets {ci,j > 0 : 1 ≤ i, j ≤ s} and
{ρi,j(n) ∈ R : 1 ≤ i, j ≤ s, n ∈ N} such that for all pair (i, j) ∈ {1, 2, . . . , s}2 and
n ∈ N,

lim
n→∞

ρi,j(n) = 0 and (Mn)i,j = {ci,j + ρi,j(n)}λn.
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The incidence matrix Mσ of the substitution σ is defined to be an A×A matrix
whose (a, b)-entry equals |σ(a)|b. Clearly, a substitution is primitive if and only
if the incidence matrix associated with the substitution is primitive. Notice that
every (a, b)-entry of Mσ

n equals |σn(a)|b.

Corollary 2. Let λ denote the Perron eigenvalue of Mσ. Then, there exists an
integer C ≥ 2 such that for all a ∈ A and n ∈ N,

C−1λn ≤ |σn(a)| ≤ Cλn.

Proof. Lemma 1 allows us to obtain ca,b > 0, ρa,b(n) ∈ R such that for all a, b ∈ A,

lim
n→∞

ρa,b(n) = 0 and |σn(a)|b = {ca,b + ρa,b(n)}λn.

Fix a letter a ∈ A. Since

λ−n|σn(a)| > 0

for all n ∈ N and we have that

λ−n|σn(a)| →
∑
b∈A

ca,b (n → ∞),

there exists Ca ∈ N such that for all n ∈ N,
C−1

a ≤ λ−n|σn(a)| ≤ Ca.

Taking C = maxa∈ACa + 1, we obtain the desired conclusion. Notice that we
require that C ≥ 2. □
Suppose that u := u0u1u2 . . . ∈ AZ+ is a fixed point of σ, where ui ∈ A for each

i ∈ Z+. Put

L(u) = {uiui+1 . . . uj|i, j ∈ Z+, i ≤ j} ∪ {Λ}.
It follows from the primitivity of σ that u is uniformly recurrent, i.e. given a word
w ∈ L(u), there exists N ∈ N such that

v ∈ L(u), |v| = N ⇒ w ≺ v.

We say that a word w ∈ A∗ occurs at a position i ∈ Z+ in u if

u[i,i+|w|) := uiui+1 . . . ui+|w|−1 = w.

3. Powers of words occurring in the fixed point

Definition 2. A word v ∈ A+ is said to be primitive if it holds that

v = wn, w ∈ A+, n ∈ N ⇒ (w = v, or equivalently n = 1).

Lemma 3 ([6, Propriété 2.3]). If v ∈ A+ is primitive and vwv ≺ vn for some
n ∈ {2, 3, . . . }, then w is a power of v.

Proof. Assume that w is not any power of v. Since vwv ≺ vn, there exist s1, t1 ∈ A+

such that

(3.1) v = s1t1 = t1s1.

Since v is primitive, we have |s1| ̸= |t1|. We may assume that |s1| < |t1|. Figure 1
shows the two ways (3.1) of decomposing v. Since v is primitive, it is necessary
that |s1| ∤ |t1|. Find a word s2 of length (|t1| mod |s1|) such that

t2 = s1
⌊|t1|/|s1|⌋s2.
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s1 t1

s1t1

Figure 1. decompositions of v into s1 and t1

We then find a word t2 ∈ A+ such that s1 = t2s2 = s2t2. We are again in the
situation similar to Figure 1; replace v, s1, t1 with s1, s2, t2, respectively. Continuing
this procedure, we finally reach n ∈ N for which sn is a letter. This forces that v
is a power of the letter, which is a contradiction. □

Lemma 4 ([6, Lemme 2.5]). If there exist N, p ∈ N and a primitive word v ∈ A+

such that

(1) σp(uiui+1) ≺ vN for all i ∈ Z+;
(2) 2|v| ≤ mina∈A |σp(a)|,

then u is periodic.

Proof. It follows from (1) that each σp(ui) ≺ vN , so that for each i ∈ Z+, there
exist si ≺ss v, ti ≺sp v and ni ∈ Z+ such that

σp(ui) = siv
niti.

If ni = 0 for some i ∈ Z+, then |σp(ui)| < 2|v|, which contradicts (2). Hence,
ni ≥ 1 for all i ∈ Z+. This guarantees that for all i ∈ Z+,

vtisi+1v ≺ siv
nitisi+1v

ni+1ti+1 = σp(uiui+1) ≺ vN .

It follows from Lemma 3 that each tisi+1 is a power of v. We obtain finally that

u = σp(u) = s0v
n0t0s1v

n1t1s2v
n2t2 · · · = s0v

∞,

which is periodic, because s0 ≺ss v. This completes the proof. □
In order to prove Theorem 1, we will use the following lemma, which itself is

actually interesting.

Lemma 5 ([6, Théorème 2.4]). If u is aperiodic, then there exists N ∈ N such that

sup{n ∈ N : wn ∈ L(u), w ∈ A+} < N.

It is clearly necessary that N > 1.

Proof. Suppose that some power wn of a primitive word w ∈ A+ occurs in u. For
p ∈ Z+, put

ℓp =
1

2
min
a∈A

|σp(a)|.

Since ℓp ↑ ∞, there uniquely exists p ∈ N such that

ℓp−1 ≤ |w| < ℓp.

Since u is uniformly recurrent, there exists g ∈ N so that for all i, j ∈ Z,
uiui+1 ≺ u[j,j+g).

It follows that for all i, j ∈ Z,
σp(uiui+1) ≺ σp(u[j,j+g)).
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If the length of a word w′ ∈ L(u) equals

(g + 2)max
a∈A

|σp(a)|,

then σp(u[j,j+g)) ≺ w′ for some j ∈ Z+, so that σp(uiui+1) ≺ w′ for all i ∈ Z+.
Since 2|w| < mina∈A |σp(a)| and u is aperiodic, Lemma 4 forces that

|wn| = n|w| < (g + 2)max
a∈A

|σp(a)|.

Then

n <
(g + 2)maxa∈A |σp(a)|

ℓp−1

= 2(g + 2)
maxa∈A |σp(a)|
mina∈A |σp−1(a)|

≤ 2(g + 2)λC2,

where λ and C are as in Corollary 2. This completes the proof. □

4. A proof of Theorem 1

Definition 3. (1) Let i ∈ Z+ and p, ℓ ∈ N. A finite sequence

{α, σp(ui′), σ
p(ui′+1), . . . , σ

p(ui′+k−1), β},

where i′ ∈ Z+ and k ∈ N, is called a natural p-cutting of u[i,i+ℓ) if
(a) u[i,i+ℓ) = ασp(ui′)σ

p(ui′+1) . . . σ
p(ui′+k−1)β;

(b) α ≺s σ
p(ui′−1);

(c) β ≺p σp(ui′+k);
(d) i+ |α| = |σp(u[0,i′))|.

(2) Suppose that a word w occurs at positions i and j in u. The word w is said
to have the same p-cutting at the positions i and j if

(Ep ∩ [i, i+ |w| − 1]) + (j − i) = Ep ∩ [j, j + |w| − 1].

Remark 4. We do not exclude the possibility that α = Λ or β = Λ. Not every
u[i,i+ℓ) has a natural p-cutting, because we require k ≥ 1 in Definition 3 (1). It is
not necessary that a natural p-cutting is uniquely determined for given i and ℓ in
Definition 3 (1).

We now proceed to our proof of Theorem 1.

Proof of Theorem 1. (1) ⇒ (2): Fix an integer k with

k ≥ C2(C2N + 2) > 4C2,

where C (resp. N) is as in Corollary 2 (resp. Lemma 5). Assume that σ is not
recognizable.
Step 1. For each p ∈ N, there exist ip ∈ E1, jp ∈ Z+ \E1, i

′
p, j

′
p ∈ Z+, hp, ℓp ∈ N

and αp, γ
′
p ∈ A∗, γp ∈ A+ such that

• u[ip,ip+ℓp) = u[jp,jp+ℓp);
•

{αp, σ
p(ui′p), σ

p(ui′p+1), . . . , σ
p(ui′p+k−1)}

is a natural p-cutting of u[ip,ip+ℓp);
•

{γp, σp(uj′p), σ
p(uj′p+1), . . . , σ

p(uj′p+hp−1), γ
′
p}

is a natural p-cutting of u[jp+|αp|,jp+ℓp).
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This fact is not difficult to verify; see Lemma 6 below the present proof. The
above properties allows us to define

mp = min{m ∈ N : αpγp ≺s σ
p(uj′p−m)σ

p(uj′p−m+1) . . . σ
p(uj′p−1)}.

Since αp ≺s σ
p(ui′p−1) and γp ≺s σ

p(uj′p−1), it follows that for all p ∈ N,

mp ≤
|αpγp|

mina∈A |σp(a)|
≤ 2maxa∈A |σp(a)|

mina∈A |σp(a)|
≤ 2C2,

so that m := maxp∈Nmp exists and is independent of the choice of k. We know
that for all p ∈ N,

αpγp ≺s σ
p(uj′p−m)σ

p(uj′p−m+1) . . . σ
p(uj′p−1).

Step 2. Since

(4.1) γpσ
p(uj′p)σ

p(uj′p+1) . . . σ
p(uj′p+hp−1)γ

′
p = σp(ui′p)σ

p(ui′p+1) . . . σ
p(ui′p+k−1),

it follows that

hpmin
a∈A

|σp(a)| ≤ kmax
a∈A

|σp(a)|,

so that hp ≤ kC2. Hence, {hp}p is bounded. Recall that k is now fixed. Hence,
the set

{(hp, u[i′p−1,i′p+k−1], u[j′p−m,j′p+hp]) ∈ N× A+ × A+ : p ∈ N}
is finite. We can find an infinite set I ⊂ N, h ∈ N and words

a−1a0 . . . ak−1, b−mb−m+1 . . . bh ∈ L(u) (ai, bj ∈ A)

so that for all p ∈ I,

hp = h;(4.2)

u[i′p−1,i′p+k−1] = a−1a0 . . . ak−1;(4.3)

u[j′p−m,j′p+hp] = b−mb−m+1 . . . bh.(4.4)

Step 3. It follows from (4.1)-(4.4) that for any p, q ∈ I with p < q,

(4.5) γqσ
q(b0b1 . . . bh−1)γ

′
q = σq−p(γp)σ

q(b0b1 . . . bh−1)σ
q−p(γ′

p).

Assume that σq−p(γp) ̸= γq for some p, q ∈ I with p < q. Consider the case
|γq| > |σq−p(γp)|. Equation (4.5) allows us to find a word v ∈ A+ such that

• γq = σq−p(γp)v ≺s σ
q(b−1);

• vN
′ ≺p σq(b0b1 . . . bh−1) and vN

′+1 ̸≺p σq(b0b1 . . . bh−1) for some N ′ ∈ N.
Deducing from (4.1)-(4.4) that

(h+ 2)max
a∈A

|σq(a)| ≥ kmin
a∈A

|σq(a)|.

This together with the fact that v ≺s σ
q(b−1) implies that

N ′ ≥ hmina∈A |σq(a)|
maxa∈A |σq(a)|

≥ (kC−2 − 2)C−2 ≥ N,

which contradicts Lemma 5. Also, in the other case, we reach the same contradic-
tion. It follows therefore that p, q ∈ I, q > p ⇒ γq = σq−p(γp).
Step 4. Since I is infinite, σ is primitive and γp ̸= Λ, we can fix p, q ∈ I with

q > p so that |σq−p−1(γp)| > L.
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σq(ui′
q
−1)

αq

iq iq + |αq| iq + |αqγq|

γq

σq(u[i′
q
,i′
q
+k−1])

σp(ui′
q
−1)

γp

σp(u[i′
q
,i′
q
+k−1])

u[i′
q
−1,i′

q
+k−1]

u

u

u

σp

σq−p

Figure 2

Observe how powers of σ map u[i′q ,i
′
q+k−1] to σq(u[i′q ,i

′
q+k−1]) via σq−p(u[i′q ,i

′
q+k−1]);

see Figure 2. Since

γp ≺p σp(u[i′p,i
′
p+k−1]) = σp(u[i′q ,i

′
q+k−1]);

γq ≺p σq(u[i′q ,i
′
q+k−1]);

σq−p(γp) = γq,

it follows that

(i) iq + |αq| ∈ Eq ⊂ E1;
(ii) iq + |αqγq| ∈ Eq−p ⊂ E1;
(iii) σq−p−1(γp) occurs at the position i′′ := |σq−p−1(u[0,|σp(u[0,i′q)

)|))| in u;

(iv)

{σ(ui′′), σ(ui′′+1), . . . , σ(ui′′+|σq−p−1(γp)|−1)}
is a natural 1-cutting of u[iq+|αq |,iq+|αqγq |) = γq;

Then, observe how powers of σ map u[j′q−m,j′q+h] to σ
q(u[j′q−m,j′q+h]) via σ

q−p(u[j′q−m,j′q+h]);
see Figure 3. Then,

(v) jq + |αq| ∈ Eq−p ⊂ E1;
(vi) jq + |αqγq| ∈ Eq−p ⊂ E1;
(vii) σq−p−1(γp) occurs at the position j′′ := |σq−p−1(u[0,|σp(u[0,j′q)

)|−|γp|))| in u;

(viii)

{σ(uj′′), σ(uj′′+1), . . . , σ(uj′′+|σq−p−1(γp)|−1)}
is a natural 1-cutting of u[jq+|αq |,jq+|αqγq |) = γq.

It follows from (iii), (iv), (vii) and (viii) that γq has the same 1-cutting at the
positions iq + |αq| and jq + |αq| in such a way that (i), (ii), (vi) and (v) hold. In
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σq(u[j′
q
−m,j′

q
−1])

αq

jq jq + |αq| jq + |αqγq|

γq

σq(u[j′
q
,j′
q
+h])

σp(u[j′
q
−m,j′

q
−1])

γp

σp(u[j′
q
,j′
q
+h])

u[j′
q
−m,j′

q
+h]

u

u

u

σp

σq−p

Figure 3

view of this together with the fact that iq ∈ E1 and jq /∈ E1, we can find sequences:

iq ≤ s−n < s−n+1 < · · · < s−1 < s0 = iq + |αq|;
t−n < t−n+1 < · · · < t−1 < t0 = jq + |αq|

of consecutive, natural 1-cutting points, i.e. si−1 < s < si ⇒ s /∈ E1, such that

• si − si−1 = ti − ti−1 for all integers i with −n+ 1 < i ≤ 0;
• s−n+1 − s−n ̸= t−n+1 − t−n.

It may happen that t−n < jq. This completes the proof, because the converse
implication (2) ⇒ (1) is obvious. □

Lemma 6. Let k be an arbitrary integer with k > 4C2, where C is a constant as
in Corollary 2. Assume that the substitution σ is not recognizable. Then, for every
p ∈ N, there exist

ip ∈ E1, jp ∈ Z+ \ E1, i
′
p, j

′
p ∈ Z+, hp, ℓp ∈ N, αp, γ

′
p ∈ A∗ and γp ∈ A+

such that

• u[ip,ip+ℓp) = u[jp,jp+ℓp);
•

{αp, σ
p(ui′p), σ

p(ui′p+1), . . . , σ
p(ui′p+k−1)}

is a natural p-cutting of u[ip,ip+ℓp);
•

{γp, σp(uj′p), σ
p(uj′p+1), . . . , σ

p(uj′p+hp−1), γ
′
p}

is a natural p-cutting of u[jp+|αp|,jp+ℓp).
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Proof. Fix an arbitrary integer ℓ′p with

(4.6) ℓ′p > (k + 2)max
a∈A

|σp(a)|.

In view of the assumption that σ is not recognizable, there exist ip ∈ E1 and
jp ∈ Z+ \ E1 such that

u[ip,ip+ℓ′p) = u[jp,jp+ℓ′p).

Condition 4.6 guarantees the existence of a natural p-cutting

(4.7) {αp, σ
p(ui′p), σ

p(ui′p+1), . . . , σ
p(ui′p+kp−1), α

′
p}

of u[ip,ip+ℓ′p). Since

kp ≥
ℓ′p

maxa∈A |σp(a)|
− 2 > k,

from (4.7), we can choose a natural p-cutting

{αp, σ
p(ui′p), σ

p(ui′p+1), . . . , σ
p(ui′p+k−1)}

of u[ip,ip+ℓp), where

ℓp = |αpσ
p(u[i′p,i

′
p+k−1])|.

Since

ℓp − |αp| ≥
(
k
mina∈A |σp(a)|
maxa∈A |σp(a)|

− 1

)
max
a∈A

|σp(a)|

≥ (kC−2 − 1)max
a∈A

|σp(a)|

> 3max
a∈A

|σp(a)|,

we can choose a natural p-cutting

{γp, σp(uj′p), σ
p(uj′p+1), . . . , σ

p(uj′p+hp−1), γ
′
p}.

of u[jp+|αp|,jp+ℓp) so that γp ̸= Λ. □
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Mathématique de France, Paris, 2003.

5. D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Uni-
versity Press, Cambridge, 1999.

6. B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret.
Comput. Sci. 99 (1992), 327–334.

7. N. Pytheas-Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes
in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002, edited by V. Berthé, S. Ferenczi, C.
Mauduit and A. Siegel.
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