解析学概論 I, II 期末試験 2017/7/28

注:解答用紙は裏も使ってよいが、解答の順番を右上に明記すること.

答えだけではなく、理由や使った定理などを明記すること.

Log は $\mathbb{C} \setminus (-\infty, 0]$ で定義された対数関数の主値とする. つまり, r > 0, $-\pi < \theta < \pi$ に対して, $Log re^{i\theta} = log r + i\theta.$

- 1. (1) $\sin z = \cos z$ となる複素数 z をすべて求めよ.
- (2) 多価関数として, i^i がとりうる値をすべて求めよ.
- (3) 任意の $z \in \mathbb{C}$ に対して, $f(z) = \sin z \cos z$ と定める. このとき, f は \mathbb{C} 上有界であるかどうか判定せよ.
- (4) 任意の $x + iy \in \mathbb{C}(x, y)$ は実数) に対して, $f(x + iy) = e^{x^2y} + ie^{xy}$ と定める. このとき, f は \mathbb{C} 上正則であ るかどうか判定せよ.
- 2. $\alpha \in \mathbb{C}$ と $z \in \mathbb{C} \setminus (-\infty, 0]$ に対して, $z^{\alpha} := e^{\alpha \text{Log } z}$ と定める.
- (1) $\alpha=i$ のとき, $(zw)^{\alpha}\neq z^{\alpha}w^{\alpha}$ となる $z,w\in\mathbb{C}\setminus(-\infty,0]$ の組を一組挙げよ. (注: $zw\in\mathbb{C}\setminus(-\infty,0]$ も満た すこと.)
- (2) $\alpha = i$ のとき, $f(z) = z^{\alpha}$ を z = 1 で Taylor 展開し、求めたべき級数の収束半径を求めよ.
- (3) $zw \in \mathbb{C} \setminus (-\infty, 0]$ となる任意の $z, w \in \mathbb{C} \setminus (-\infty, 0]$ に対して, $(zw)^{\alpha} = z^{\alpha}w^{\alpha}$ が成り立つような α の必要十 分条件を述べよ.(証明はしなくてもよいが、証明もちゃんとできていたらボーナスとして点数を加える.)
- 3. (1) $z \in \mathbb{C} \setminus \{0,1\}$ に対して, $f(z) = \frac{1}{z^3(z-1)^2}$ と定める. f を z = 0 のまわりで Laurent 展開せよ. ただし, どのような z で Laurent 展開できるか明記すること.
- (2) $z \in \mathbb{C} \setminus \{0, \frac{3}{2}\}$ に対して, $f(z) = \frac{1}{(z-1)^4(3-2z)}$ と定める. f を z=1 のまわりで Laurent 展開せよ. た だし、どのようなzで Laurent 展開できるか明記すること.
- 4. 次の積分の値を求めよ.

$$\oint_{|z|=1} z^2 e^{\frac{1}{z}} dz$$

5. r > 0 かつ $r \ne 1, 2$ とする. このとき,

$$\oint_{|z|=r} \frac{e^z}{(z-1)(z-2)^3} \, dz$$

を求めよ.

6. 留数を用いて,

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} \, dx$$

を求めよ.

7. $\{f_n\}_{n=1}^\infty$ を閉区間 [0,1] 上の連続関数列とする. 任意の $n\in\mathbb{N}$ に対して, ある $M_n>0$ が存在して

$$\sup_{t \in [0,1]} |f_n(t)| \le M_n \qquad \text{in} \qquad \sum_{n=1}^{\infty} M_n < \infty$$

- を満たすならば、次が成立することを証明せよ. (1) 任意の $t\in[0,1]$ に対して, $\sum_{n=1}^{\infty}f_n(t)$ は収束する.
- (2) 閉区間 [0,1] 上の連続関数列 $\left\{\sum_{n=1}^{N} f_n\right\}_{n=1}^{\infty}$ は一様収束する.