[Japanese | English]
Affiliation
Rui OKAYASU
Associate Professor
Course for School Teacher Mathematics Education
Osaka Kyoiku University
Kashiwara, Osaka 582-8582
JAPAN
Tel.: (+81) 72-978-3428 (my office)
E-mail:
Research Interest
Operator Algebras
Curriculum Vitae
2006.4--
2003.4--2006.3
2003.3
2000.3
1998.3
Associate Professor, Osaka Kyoiku University
Research Associate, Osaka Kyoiku University
Ph.D., Mathematics, Kyoto University (Adviser: Prof. M. Izumi)
M.Sc., Mathematics, University of Tokyo (Adviser: Prof. M. Izumi, Prof. Y. Kawahigashi)
B.Sc., Mathematics, Tokyo University of Science
Publications
(List of publications from MathSciNet)

[13] (With R. Tomatsu) Haagerup approximation property and positive cones associated with a von Neumann algebra.
Preprint. arXiv:1403.3971

[12] (With M. Caspers, A. Skalski, R. Tomatsu) Generalisations of the Haagerup approximation property to arbitrary von Neumann algebras.
C. R. Acad. Sci. Paris Ser. I. 352 (2014) 507--510. arXiv:1404.2716

[11] (With R. Tomatsu) Haagerup approximation property for arbitrary von Neumann algebras.
Preprint. arXiv:1312.1033

[10] Free group $C^*$-algebras associated with $\ell_p$.
to appear in Internat J. Math. arXiv:1203.0800

[9] Relative entropy for abelian subalgebras.
Internat J. Math. 21 (2010), no.4, 537--550.

[8] Entropy for $C^*$-algebras with tracial rank zero.
Proc. Amer. Math. Soc. 138 (2010), no.10, 3609--3621.

[7] (With M. Izumi and S. Neshveyev) The ratio set of the harmonic measure of a random walk on a hyperbolic group.
Israel J. Math. 163 (2008), 285--316.

[6] Perturbation theoretic entropy of the boundary actions of free groups.
Proc. Amer. Math. Soc. 134 (2006), no.6, 1771--1776.

[5] Gromov hyperbolic groups and the Macaev norm.
Pac. J. Math. 223 (2006), no.1, 141--158.

[4] $C^*$-algebras associated with the fundamental groups of graphs of groups.
Math. Scand. 97 (2005), no.1, 49--72.

[3] Entropy of subshifts and the Macaev norm.
J. Math. Soc. Japan. 56 (2004), no.1, 177--191.

[2] Type III factors arising from Cuntz-Krieger algebras.
Proc. Amer. Math. Soc. 131 (2003), no.7, 2145--2153.

[1] Cuntz-Krieger-Pimsner algebras associated with amalgamated free product groups.
Publ. RIMS, Kyoto Univ. 38 (2002), no.1, 147--190.