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1 Basics of functional analysis

Definition 1.1. A semi-norm on a vector space X over C is a function p : X → [0,∞)
such that for ξ, η ∈ X and α ∈ C,

(1) p(ξ + η) ≤ p(ξ) + p(η)

(2) p(αξ) = |α|p(ξ).

A norm is a semi-norm ∥ · ∥ satisfying

∥ξ∥ = 0 ⇐⇒ ξ = 0.

Remark 1.2. If X has a norm, then d(ξ, η) = ∥ξ − η∥ defines a metric on X.

Definition 1.3. A Banach space is a complete normed space.

Definition 1.4. A semi-inner product on a vector space X over C is a function ⟨·, ·⟩ :
X ×X → C such that for ξ, η, ζ ∈ X and α ∈ C,

(1) ⟨ξ + η, ζ⟩ = ⟨ξ, ζ⟩+ ⟨η, ζ⟩,
(2) ⟨αξ, η⟩ = α⟨ξ, η⟩,
(3) ⟨ξ, η⟩ = ⟨η, ξ⟩,
(4) ⟨ξ, ξ⟩ ≥ 0.

A inner product is a semi-inner product satisfying

⟨ξ, ξ⟩ = 0 ⇐⇒ ξ = 0.

Remark 1.5. If X has an (semi-)inner product, then p(ξ) = ⟨ξ, ξ⟩1/2 defines a (semi-
)norm on X.

Theorem 1.6 (Cauchy-Bunyakowsky-Schwarz inequality). If ⟨·, ·⟩ is a semi-inner
product on X, then

|⟨ξ, η⟩| ≤ ∥ξ∥∥η∥.

Proof. 省略.

Definition 1.7. A Hilbert space H is a Banach space with respect to ∥ξ∥ := ⟨ξ, ξ⟩1/2.
A set {ξi} of vectors is orthonormal if ⟨ξi, ξj⟩ = δij. A maximal orthonormal set is an

orthonormal basis.

Proposition 1.8. If {ξi} is an ONS in H, then there is an ONB in H, which contains
{ξi}.

Proof. Use Zorn’s lemma.

Theorem 1.9. Let {ξi} be an ONS in H. Then the following are equivalent:

(1) {ξi} is an ONB in H,

(2) For any ξ ∈ H, ξ =
∑

i⟨ξ, ξi⟩ξi, (Fourier series expansion)

(3) For any ξ ∈ H, ∥ξ∥2 =
∑

i |⟨ξ, ξi⟩|2, (Riesz-Fischer identity)

(4) For any ξ, η ∈ H, ⟨ξ, η⟩ =
∑

i⟨ξ, ξi⟩⟨ξi, η⟩, (Paseval identity)
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Remark 1.10. If H is a separable Hilbert space, then there is a countable ONB {ξn} in
H.

Example 1.11. Let S be a countable set. Then

ℓ2S := {f : S → C |
∑
s∈S

|f(s)|2 <∞}

is a Hilbert space with an inner product

⟨f, g⟩ :=
∑
s∈S

f(s)g(s).

If δs(t) = δs,t (Kronecker delta), then a set {δs}s∈S is the canonical ONB for ℓ2S. If
|S| = n <∞, then ℓ2S = Cn.

Definition 1.12. Let X be a normed space. A linear functional f : X → C is bounded if

∥f∥ := sup
∥ξ∥≤1

|f(ξ)| <∞.

We denote by X∗ the dual space of X, i.e., the set of all bounded linear functionals on X,
which becomes a Banach space.

Theorem 1.13 (Hahn-Banach extension theorem). Let Y be a subspace of a normed
space X. Then

(1) For any g ∈ Y ∗, there is f ∈ X∗ such that f |Y = g and ∥g∥ = ∥f∥.
(2) For any 0 ̸= ξ ∈ X, there is f ∈ X∗ such that f(ξ) = ∥ξ∥ and ∥f∥ = 1.

Proof. Use Zorn’s lemma.

Definition 1.14. Let X be a normed space. Then X∗∗ := (X∗)∗ is a Banach space,
which is called the second dual space of X.

For x ∈ X, we define x̂ ∈ X∗∗ by x̂(f) := f(x) for f ∈ X∗. Note that ∥x∥ = ∥x̂∥.

Definition 1.15. Let X be a normed space. For any f ∈ X∗, we define a semi-norm
pf on X by pf (ξ) := |f(ξ)| for ξ ∈ X. The weak topology on X is defined by the family
{pf}f∈X∗ of semi-norms. Hence X becomes a locally convex topological vector space.

For any ξ ∈ X, we define a semi-norm pξ on X
∗ by pξ(f) := |f(ξ)| for f ∈ X∗. The

weak-∗ topology on X∗ is defined by the family {pξ}ξ∈X of semi-norms. Hence X∗ becomes
a locally convex topological vector space.

We remark that we can also define the weak topology in X∗, which is coming from
X∗∗.

Theorem 1.16. Let C be a convex subset of a normed space X. Then C is norm closed
if and only if it is weakly closed.

Proof. Use Hahn-Banach separation theorem.

Theorem 1.17 (Banach-Alaoglu). If X is a normed space, then (X∗)1 := {f ∈
X∗ : ∥f∥ ≤ 1} is compact in X∗ in the weak-∗ topology.
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Example 1.18. Let S be a countable set with |S| = ∞. For 1 ≤ p < ∞, we define a
Banach space

ℓpS := {f : Γ → C | ∥f∥p :=

(∑
s∈S

|f(s)|p
)1/p

<∞}.

For p = ∞, we define a Banach space

ℓ∞S := {f : Γ → C : ∥f∥∞ := sup
s∈S

|f(s)| <∞}.

We also define
ccS := {f ∈ ℓ∞S | |supp(f)| <∞}

and
c0S := {f ∈ ℓ∞S | lim

s→∞
f(s) = 0} = ccS

∥ · ∥∞
.

Then we have ccS ⊂ ℓpS ⊂ c0S ⊂ ℓ∞S. Moreover, if 1 ≤ q < p ≤ ∞, then for f ∈ ℓqS we
have ∥f∥p ≤ ∥f∥q, and thus ℓqS ⊂ ℓpS. Note that ccS is also dense in ℓpS with respect
to the norm ∥ · ∥p for 1 ≤ p <∞.

For 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1, we have

(1) ∥fg∥1 ≤ ∥f∥p∥g∥q (Hölder inequality)

(2) ∥f + g∥p ≤ ∥f∥p + ∥g∥p (Minkowski inequality)

If 1 ≤ p <∞, 1 < q ≤ ∞ with 1/p+1/q = 1, then (ℓpS)
∗ = ℓqS via the identification

ℓqS ∋ g 7→ ĝ ∈ (ℓpS)
∗,

where
ĝ(f) :=

∑
s∈S

f(s)g(s). (f ∈ ℓpS)

We remark that (ℓ∞S)
∗ ̸= ℓ1S and (c0S)

∗ = ℓ1S.

Example 1.19. Let X be a compact Hausdorff space. We denote by C(X) the set of
all C-valued continuous functions on X. Then C(X) is a Banach space with respect to a
norm

∥f∥∞ := sup
x∈X

|f(x)|.

We denote byM(X) the set of all regular C-valued Borel measures on X, andM(X)+
the set of all regular finite positive Borel measures onX. Note thatM(X) = spanM(X)+.

Theorem 1.20 (Riesz-Markov-Kakutani). For φ ∈ C(X)∗ with φ ≥ 0, there is unique
µ ∈M(X)+ such that

φ(f) =

∫
X

fdµ (f ∈ C(X)).

It follows that C(X)∗ =M(X).

Theorem 1.21 (Stone-Weierstrass). If a subalgebra A of C(X) satisfies

(1) for any x ̸= x′, there is f ∈ A such that f(x) ̸= f(x′),

(2) if f ∈ A, then f ∈ A,

(3) 1 ∈ A,

then A is dense in C(X).
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2 Basics of C∗-algebras

Definition 2.1. An algebra is a vector space A over C with a multiplication : A× A ∋
(a, b) 7→ ab ∈ A satisfying the following conditions: for any a, b, c ∈ A and α ∈ C,

(1) (ab)c = a(bc),

(2) (αa)b = a(αb) = α(ab),

(3) a(b+ c) = ab+ ac,

(4) (a+ b)c = ac+ bc.

If A is an algebra, then we say A is abelian if ab = ba for any a, b ∈ A. We also say A
is unital if there exists the unit 1 ∈ A such that 1a = a1 = a for any a ∈ A.

A Banach algebra is a complete normed algebra A with a norm satisfying the following
conditions:

∥ab∥ ≤ ∥a∥∥b∥ for any a, b ∈ A.

If A is a Banach algebra and A has a unit with ∥1∥ = 1, then A is called a unital Banach
algebra.

A ∗-algebra is an algebra A with a involution A ∋ a 7→ a∗ ∈ A satisfying the following
conditions: for any a, b ∈ A and α ∈ C,

(1) (a∗)∗ = a,

(2) (a+ b)∗ = a∗ + b∗,

(3) (αa)∗ = αa,

(4) (ab)∗ = b∗a∗.

A C∗-algebra A is a Banach algebra with a involution satisfying the so-called C∗-
condition:

∥a∗a∥ = ∥a∥2 for a ∈ A.

Remark 2.2. If A is a C∗-algebra, then ∥a∗∥ = ∥a∥ for any a ∈ A. Moreover, if A is
unital, then 1∗ = 1 and ∥1∥ = 1. [Problem 1]

Example 2.3. Let S be a countable set with |S| = ∞. Then ℓ∞S is a unital C∗-algebra.
[Problem 2]

Example 2.4. Let X be a compact Hausdorff space. Then C(X) is a unital C∗-algebra.
[Problem 3]

Example 2.5. LetH be a (separable) Hilbert space. Then B(H) is a unital C∗-algebra. If
dimH = ∞, thenK(H) is non-unital. More generaly, norm-closed ∗-subalgebra A ⊂ B(H)
is a (concrete) C∗-algebra.

If dimH = n < ∞, then H = Cn and B(H) = Mn (the set of all n× n matrices over
C).

Definition 2.6. Let A be unital Banach algebra and a ∈ A. We say a is invertible in A
if there exists b ∈ A such that ba = ab = 1. Notice that such b is unique, and so we may
write a−1 := b. The set

GL(A) := {a ∈ A | a is invertible in A}.

is a group under the multiplication.



2 BASICS OF C∗-ALGEBRAS 6

Definition 2.7. Let A be unital Banach algebra and a ∈ A. We define the spectrum of
a by

σ(a) = σA(a) := {α ∈ C | a− α1 ̸∈ GL(A)},

Example 2.8. If f ∈ C(X), then σ(f) = f(X). [Problem 4]

Example 2.9. If T ∈ Mn, then σ(T ) is the set of all eigenvalues of T .

Theorem 2.10. Let A be unital Banach algebra and a ∈ A. Then σ(a) is a non-empty
compact subset of C.

Proof. 省略. (複素解析を使う.)

Theorem 2.11 (Gelfand-Mazur). Let A be a unital Banach algebra. If any non-zero
a ∈ A is invertible, then A = C.

Proof. Let 0 ̸= a ∈ A. Then there is α ∈ σ(a). Hence a − α1 is not invertible and must
be zero, i.e., a = α1.

Definition 2.12. Let A be unital Banach algebra and a ∈ A. We define the spectral
radius of a by

r(a) := {|α| | α ∈ σ(a)}.

Example 2.13. If f ∈ C(X), then r(f) = ∥f∥∞.

Example 2.14. If

a =

[
0 1
0 0

]
∈ M2,

then ∥a∥ = 1, but r(a) = 0. [Problem 5]

Theorem 2.15 (Beurling). Let A be a unital Banach algebra and a ∈ A. Then

r(a) = lim
n→∞

∥an∥1/n = inf
n∈N

∥an∥1/n.

Proof. 省略.

Corollary 2.16. Let A be a unital C∗-algebra. If a ∈ A is norml, i.e., a∗a = aa∗, then
∥a∥ = r(a).

Proof. Since

∥a2n∥2 = ∥(a2n)∗a2n∥ = ∥(a∗a)2n∥ = ∥(a∗a)2n−1∥2 = · · · = ∥a∗a∥2n = ∥a∥2n+1

,

we have ∥a∥ = ∥a2n∥1/2n → r(a).

Remark 2.17. If A is a unital C∗-algebra, then ∥a∥ = ∥a∗a∥1/2 = r(a∗a)1/2. Hence the
C∗-norm is completely determined by its algebraic stracture and it is unique.

Definition 2.18. Let A be a unital (Banach) algebra. A subspace I of A is said to be
left (resp. right) ideal of A if

a ∈ A and b ∈ I =⇒ ab ∈ I (resp. ba ∈ I).

An ideal in A is a left and a right ideal in A.
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Example 2.19. Let Y be a closed subset of a compact Hausdorff space X. Then

IY := {f ∈ C(X) | f |Y = 0}

is an ideal of C(X). [Problem 6]

Example 2.20. The matrix algebra Mn has no proper ideal. [Problem 7]

Proposition 2.21. Let A be a unital Banach algebra, I ⊂ A a closed ideal. Then the
quotient space A/I becomes a unital Banach algebra as follows:

(1) [a] + [b] := [a+ b],

(2) α[a] := [αa],

(3) [a][b] := [ab],

(4) ∥[a]∥ := inf{∥a+ b∥ : b ∈ I},

where [a] := a+ I = {a+ b | b ∈ I} ∈ A/I.

Proof. 省略.

Remark 2.22. What is the quotient algebra C(X)/IY for a closed subset Y of X. [Prob-
lem 8]

Definition 2.23. A maxiaml ideal in a unital (Banach) algebra A is a proper ideal in A,
which is not contained in any other proper ideal in A.

Example 2.24. For any element x ∈ X, then I{x} is a maximal ideal in C(X). [Problem
9]

Remark 2.25. For any ideal I of unital (Banach) algebra A, by Zorn’s lemma, there
exists a maximal ideal J of A such that I ⊂ J .

Proposition 2.26. Let I be an ideal of unital Banach algebra A. Then

(1) The closure I is an ideal of A.

(2) If I is maximal, then I is closed.

Proof. 省略.

Theorem 2.27. Let I be an ideal of unital abelian Banach algebra A. Then I is maximal
if and only if A/I = C.

Proof. An ideal I is maximal if and only if A/I is a field. Use Gelfand-Mazur theorem.

Definition 2.28. Let A,B be (unital) algebras. A homomorphism from A to B is a linear
map π : A → B such that π(ab) = π(a)π(b) for any a, b ∈ A. If π(1A) = 1B, then we say
π is unital. When A,B are ∗-algebras, we say π is ∗-homomorphism if π(a∗) = π(a)∗.

A character on an abelian algebra A is a non-zero homomorphism χ : A → C. We
denote by Â the set of all characters on A.

Example 2.29. For x ∈ X, we define a character χx on C(X) by χx(f) := f(x) for
f ∈ C(X). Then kerχx = I{x}, i.e., it is a maximal ideal.

Theorem 2.30. Let A be a unital abelian Banach algebra.
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(1) If χ ∈ Â, then χ(1) = 1 and ∥χ(a)∥ ≤ ∥a∥.
(2) Â ̸= ∅ and the map χ 7→ kerχ is a bijection from Â onto the set of all maximal

ideals of A.

(3) σ(a) = {χ(a) : χ ∈ Â} for a ∈ A.

Proof. (1) It is easy to see that χ(1) = 1. Hence ∥χ∥ ≥ 1. Suppose that ∥χ∥ > 1, i.e.,
there is 0 ̸= a ∈ A such that ∥a∥ < 1 = χ(a). If we put b =

∑
n∈N a

n ∈ A, then a+ab = b.
Therefore we have

χ(b) = χ(a) + χ(a)χ(b) = 1 + χ(b),

which is a contradiction.
(2) It is easy to show that kerχ is a maximal ideal for any χ ∈ Â. Conversely, if I ⊂ A is

a maximal ideal, then A/I = C. Hence we define a character χ : A ∋ a 7→ [a] ∈ A/I = C,
which satisfies kerχ = I.

(3) If α ∈ σ(a), then a−α1 is not invertible. Hence there is a maximal ideal I = kerχ
such that a− α1 ∈ I. So χ(a) = α. Conversely, if α = χ(a), then χ(a− α1) = 0. Hence
a− α1 is not invertible.

Theorem 2.31. Let A be a unital abelian Banach algebra. Then Â ⊂ A∗ is a weak-∗
compact Hausdorff space.

Proof. It is easy to see that Â is weak-∗ closed. By Banach-Alaoglu theorem, it is weak-∗
compact.

Definition 2.32. Let A be a unital abelian Banach algebra. For a ∈ A, we define
â ∈ C(Â) by â(χ) = χ(a). Then we define the Gelfand transform γ : A → C(Â) by
γ(a) = â.

Theorem 2.33 (Gelfand-Naimark). Let A be a unital abelian Banach algebra. The
the Gelfand transform γ is a norm-decreasing homomorphism and ∥â∥∞ = r(a) for a ∈ A.

If A is C∗-algebra, then γ is isometric ∗-isomorphism.

Proof. It is easy to see that γ is homomorphism. For any a ∈ A, we have

∥γ(a)∥ = ∥â∥∞ = sup
χ∈Â

|â(χ)| = r(a) ≤ ∥a∥.

Now assume that A is a C∗-algebra. Since A is abelian, any a ∈ A is normal. Hence
∥â∥∞ = r(a) = ∥a∥ and so γ is isometric.

It is easy to check that γ(A) ⊂ C(Â) is closed ∗-subalgebra. By Stone-Weierstrass
theorem, we have γ(A) = C(Â).

Definition 2.34. Let A be a unital C∗-algebra and a ∈ A. We say

(1) a is unitay if a∗a = aa∗ = 1,

(2) a is self-adjoint if a∗ = a.

We denote by U(A) the set of all unitaries in A, and by Asa the set of all self-adjoint
elements in A.

Theorem 2.35. Let A be a unital C∗-algebra and a ∈ A. Then

(1) If a is unitary, then σ(a) ⊂ T = {α ∈ C : |α| = 1}.
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(2) If a is self-adjoint, then σ(a) ⊂ [−∥a∥, ∥a∥].

Proof. 省略.

Theorem 2.36. Let B be a unital C∗-subalgebra of a unital C∗-algebra A with 1B = 1A.
Then σB(a) = σA(a) for a ∈ B.

Proof. It is trivial that σA(a) ⊂ σB(a). Conversely, let b = a − α1 ∈ B. Then it suffices
to show that if ∃b−1 ∈ A, then b−1 ∈ B. If b is self-adjoint, then σB(b) ⊂ R. Hence for
any ε > 0, we have (b− iε1)−1 ∈ B. Since ∥(b− iε1)−1 − b−1∥ → 0, we have b−1 ∈ B. If b
is not self-adjoint, then (b∗b)−1 ∈ A implies (b∗b)−1 ∈ B. Hence b−1 = (b∗b)−1b∗ ∈ B.

Definition 2.37. Let A be a unital C∗-algebra and a ∈ A normal. We denote by C∗(a)
a unital abelian C∗-subalgebra of A, which is generated by a.

Theorem 2.38. Let A be a unital C∗-algebra and a ∈ A normal. The map â : Ĉ∗(a) ∋
χ 7→ χ(a) ∈ σ(a) is homeomorphic. Hence it induces the isometric ∗-isomorphism γ−1 ◦
ât : C(σ(a)) → C∗(a) with z 7→ a, where z is the inclusion map of σ(a) in C.

Proof. 省略.

Definition 2.39. For a normal element a in a unital C∗-algebra A, we denote by γa the
unique unital ∗-homomorphism from C(σ(a)) to A, which is called the functional calculus
of a. If p is a polynomial, then γa(p) = p(a), so for f ∈ C(σ(a)) we write f(a) = γa(f).

Theorem 2.40 (Spectral Mapping). Let A be a unital C∗-algebra and a ∈ A normal.
Then σ(f(a)) = f(σ(a)) for f ∈ C(σ(a)).

Proof. 省略.

Definition 2.41. Let A be a unital C∗-algebra. We say a ∈ A is positive if a is self-adjoint
and σ(a) ⊂ [0,∞). In this case, we write a ≥ 0. We also denote A+ = {a ∈ A : a ≥ 0}.

Definition 2.42. For self-adjoint elements a, b in a unital C∗-algebra A, we write a ≤ b
if b− a ≥ 0.

Example 2.43. If A = C(X), then f ∈ C(X) is positive if and only if f(x) ≥ 0 for any
x ∈ X.

Theorem 2.44. Let A be a unital C∗-algebra and a ∈ A. Then a ≥ 0 if and only if
a = b∗b for some b ∈ A.

Proof. If a ≥ 0, then there is b ≥ 0 such that a = b2. Conversely, if a = b∗b, then a is
self-adjoint. Moreover there are a+, a− ≥ 0 such that a = a+ − a− and a+a− = 0. Hence
it suffices to show that a− = 0. If we set c = ba−, then c∗c = a−b

∗ba− = −a3− ≤ 0.
Since σ(c∗c) ∪ {0} = σ(cc∗) ∪ {0}, cc∗ ≤ 0. Since c∗c = 2Re (c)2 + 2Im (c)2 − cc∗ ≥ 0,
c∗c ∈ A+ ∩ (−A+) = {0}. Hence a− = 0.

Theorem 2.45. Let A be a unital C∗-algebra and a, b, c ∈ A.

(1) a ≥ b ≥ 0 =⇒ ∥a∥ ≥ ∥b∥,
(2) a ≥ b =⇒ c∗ac ≥ c∗bc,

(3) a, b are invertible and a ≥ b ≥ 0 =⇒ 0 ≤ b−1 ≤ a−1.



2 BASICS OF C∗-ALGEBRAS 10

Proof. (1) Use the Gelfand transform.
(2) Use the previous theorem.
(3) First prove that if c ≥ 1, then c−1 ≤ 1, by using the Gelfand transform. Next put

c = a−1/2ba−1/2 ≥ 1.

Theorem 2.46. Let A,B be unital C∗-algebras and π : A→ B a unital ∗-homomorphism.
Then

(1) π(a) ≥ 0 for a ∈ A+,

(2) ∥π(a)∥ ≤ ∥a∥ for a ∈ A,

(3) If π is injective, then π is isometric.

Proof. (1) Easy.
(2) Since σ(π(a)) ⊂ σ(a), we have

∥a∥2 = ∥a∗a∥ = r(a∗a) ≥ r(π(a∗a)) = r(π(a)∗π(a)) = ∥π(a)∗π(a)∥ = ∥π(a)∥2.

(3) It suffices to show that ∥π(a∗a)∥ = ∥a∗a∥. Hence we may assume that A,B are
abelian. We define π′ : B̂ ∋ χ 7→ χ ◦ π ∈ Â. Then we have π′(B̂) = Â. Hence for a ∈ A,

∥a∥ = ∥â∥∞ = sup
χ∈Â

|χ(a)| = sup
χ∈B̂

|χ(π(a))| = ∥π(a)∥.

Definition 2.47. Let A be a unital C∗-algebra. A linear functional ω : A→ C is positive
if ω(a) ≥ 0 for a ∈ A+.

Example 2.48. Any positive linear functional ω on C(X) is given by µ ∈M(X)+ via

ω(f) =

∫
X

f(x)dµ(x).

(Riesz-Markov-Kakutani representation theorem.)

Example 2.49. Any positive linear functional ω on Mn is given by h ∈ Mn,+ such that

ω(a) = Tr(ah),

where Tr is the canonical trace on Mn.

Proposition 2.50 (Schwarz inequality). If ω is a positive linear functional on a unital
C∗-algebra A, then

|ω(b∗a)|2 ≤ ω(b∗b)ω(a∗a)

for any a, b ∈ A.

Proof. Notice that ⟨a, b⟩ = ω(b∗a) is a semi-inner product on A.

Theorem 2.51. Let A be a unital C∗-algebra. If ω is a positive linear functional on a
unital C∗-algebra, then ω is bounded with ∥ω∥ = ω(1).

Proof. If ∥a∥ ≤ 1, then 0 ≤ a∗a ≤ 1. Hence by Schwarz inequality,

|ω(a)|2 = |ω(1a)|2 ≤ ω(1)ω(a∗a) ≤ ω(1)2.
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Theorem 2.52. Let A be a unital C∗-algebra and ω ∈ A∗. Then ω is positive if and only
if ω(1) = ∥ω∥.
Proof. Suppose that ω(1) = ∥ω∥ = 1. First show that ω(a) ∈ R for a ∈ Asa. Next if
a ≥ 0 with ∥a∥ = 1, then 1− a ∈ Asa and ∥1− a∥ ≤ 1. So 1− ω(a) = ω(1− a) ≤ 1.

Definition 2.53. Let A be a unital C∗-algebra. We denote by A∗
+ the set of all positive

linear functionals on A. If ω ∈ A∗
+ with ∥ω∥ = ω(1) = 1, then we call it a state. We

denote by S(A) the set of all states on A.

Theorem 2.54. Let A be a unital C∗-algebra. Then S(A) is a weak-∗ compact convex
subset of A∗.

Proof. Since S(A) = {ω ∈ A∗
+ : ω(1) = 1}, it is weak-∗ closed convex. By Bnach-Alaoglu

theorem, S(A) is weak-∗ compact.

Theorem 2.55. Let A be a non-zero unital C∗-algebra and a ∈ A normal. Then there
is ω ∈ S(A) such that ω(a) = ∥a∥.
Proof. We may assume that a ̸= 0. Since B = C∗(a) is abelian, there is χ ∈ B̂ such that
∥a∥ = ∥â∥∞ = |χ(a)|. By Hahn-Banach extension theorem, there is an extension ω such
that ∥ω∥ = 1. Since ω(1) = χ(1) = 1, ω is positive with ∥ω∥ = 1.

Definition 2.56. Let A be a unital C∗-algebra and ω ∈ S(A). Then

Nω := {a ∈ A : ω(a∗a) = 0}

is a closed left ideal of A. (Use Schwarz inequality.) Next we define a inner product on
A/Nω by

⟨[a], [b]⟩ := ω(b∗a),

and denote by Hω the completion of A/Nω. Now we define a ∗-homomorphism πω : A→
B(Hω) by

πω(a)[b] := [ab].

If we set ξω = [1] ∈ Hω, then ξω is cyclic for πω, i.e., πω(A)ξω is dense in Hω. We say
(πω,Hω, ξω) is the GNS repersentation associated with ω.

Theorem 2.57 (Gelfand-Naimark). If A is a unital C∗-algebra, then it has a faithful
representation.

Proof. We define the universal representation πu :=
⊕

ω∈S(A) πω. If πu(a) = 0, then

πω(a
∗a) = 0 for any ω ∈ S(A). If we put b = (a∗a)1/4, then ∥πu(b)∥4 = ∥πu(b)4∥ =

∥πu(a∗a)∥ = 0 and so πu(b) = 0. Therefore there is ω ∈ S(A) such that ∥a∗a∥ = ω(a∗a) =
ω(b4) = ∥πω(b)[b]∥2=0. Hence a = 0.

3 “Classical” group C∗-algebras

Definition 3.1. Let Γ be a countable discrete group. Then ccΓ becomes a unital ∗-algebra
with the multiplication

f ∗ g(s) :=
∑
t∈Γ

f(t)g(t−1s)

and the involution
f ∗(s) := f(s−1)

with the unit δe. The above operations can be also defined on ℓ1Γ, which becomes a unital
∗-algebra.
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Definition 3.2. A unitay representation of Γ is a homomorphism of Γ into the unitary
group of B(ℓ2Γ). We denote by λ the left regular representation:

(λ(s)f)(t) := f(s−1t) (s, t ∈ Γ).

Remark 3.3. Let {δt}t∈Γ be the canonical ONB for ℓ2Γ. Then

λ(s)δt = δst (s, t ∈ Γ).

[Problem 10]

Lemma 3.4. There is a one-to-one correspondence between the set of all unitary repre-
sentation of Γ and the set of all representations of ccΓ (or ℓ1Γ):

π 7→ π̃(f) :=
∑
s∈Γ

f(s)π(s), (f ∈ ccΓ)

and
∥π̃(f)∥ ≤ ∥f∥1.

Proof. 省略.

Remark 3.5. For f ∈ ccΓ, we have

λ̃(f)g = f ∗ g (g ∈ ℓ2Γ).

[Problem 11]

We also simply write π for the extened representation π̃ of ccΓ.

Lemma 3.6. The extended representation λ of ccΓ (or ℓ1Γ) is injective.

Proof. 省略.

Definition 3.7. The reduced group C∗-algebra is defined to be C∗
λΓ := λ(ccΓ) = λ(ℓ1Γ) ⊂

B(ℓ2Γ).
The full group C∗-algebra it the completion of ccΓ with respect to the C∗-norm

∥f∥u := sup{∥π(f)∥ : π is a unitary representation of Γ}.

Example 3.8. Let Γ = Z = ⟨a⟩ be the integer group. The Fourier transform induces the
unitary u : ℓ2Z → L2(T), f 7→ F(f) = f̂ , which is defined by

f̂(z) :=
∑
n∈Z

f(n)zn.

Then for any f ∈ ccZ and g ∈ ℓ2Z, we have

uλ(f)u∗ĝ = uλ(f)g = F(f ∗ g) = f̂ ĝ =Mf̂ ĝ,

where Mf ∈ B(L2(T)) is defined by Mfg := fg for f ∈ C(T) and g ∈ L2(T), which gives
an isometric ∗-homomorphism C(T) → B(L2(T)). Hence the map λ(f) 7→ uλ(f)u∗ =Mf̂

gives a isometric ∗-isomorphism between C∗
λZ and C(T).

Since Z is abelian, C∗Z is a unital abelian C∗-algebra. By the Gelfand transform, we
have C∗Z = C(Ĉ∗Z). For each chracter χ on C∗Z, we have a scalar z = χ(δa) ∈ T and
this gives a homeomorphism. Therefore C∗Z = C∗

λZ = C(T).
More generally, for every abelian group Γ, the Pontryagin duality gives C∗Γ = C∗

λΓ =
C(Γ̂).
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Proposition 3.9. Let π : Γ → B(H) be a unitary representation. Then there is a unique
∗-homomorphism π : C∗(Γ) → B(H) such that π(f) = π(f) for f ∈ ccΓ.

Proof. It follows from ∥π(f)∥ ≤ ∥f∥u for f ∈ ccΓ.

Definition 3.10. A function φ : Γ → C is said to be positive definite if the matrix

[φ(s−1t)]s,t∈F ∈ MF

is positive for any finite subset F ⊂ Γ, i.e.,

n∑
i,j=1

αiφ(s
−1
i sj)αj ≥ 0

for any n ∈ N, s1, . . . , sn ∈ Γ and α1, . . . , αn ∈ C.
We denote by P (Γ) the set of all positive definite functions on Γ.

Example 3.11. For f ∈ ccΓ, the function f ∗ ∗ f is positive definite. [Problem 12]

Remark 3.12. Let π : Γ → B(H) be a unitary representation and ξ ∈ H. If we define

φ(s) := ⟨π(s)ξ, ξ⟩,

then φ is positive definite. [Problem 13]

Proposition 3.13. Let f ∈ ccΓ. Then the following are equivalent:

(1) f is positive definite,

(2) λ(f) is positive.

Proof. For a finite subset F ⊂ Γ, set ξ =
∑

s∈F αsδs ∈ ℓ2Γ. Then

⟨λ(f)ξ, ξ⟩ =
∑

r∈supp(f)

∑
s,t∈F

f(r)αsαt⟨λ(r)δs, δt⟩ =
∑
s,t∈F

αtf(ts
−1)αs.

Definition 3.14. For a function φ : Γ → C, we define a correspoinding functional
ωφ : ccΓ → C by

ωφ(f) =
∑
s∈Γ

f(s)φ(s).

Theorem 3.15. Let φ be function with φ(e) = 1. The following are equivalent:

(1) φ is positive definite.

(2) there exists a unitary representation λφ of Γ on a Hilbert space Hφ and a cyclic
vector ξφ such that

φ(s) = ⟨λφ(s)ξφ, ξφ⟩.

(3) ωφ extends to a state on C∗Γ.
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Proof. (1)=⇒(2): Let φ be a positive definite function. Define a semi-inner product on
ccΓ by

⟨f, g⟩φ =
∑
s,t∈Γ

φ(s−1t)f(t)g(s).

By the separation and the completion, we get a Hilbert space ℓφ2Γ. Then we define
λφ(s)[f ] = [sf ] for f ∈ ccΓ and ξφ = [δe], which satisfy desired properties, where (sf)(t) =
f(s−1t).

(2)=⇒(3): Trivial.
(3)=⇒(1): If we write

f =
n∑
i=1

αiδsi ∈ ccΓ,

then
n∑

i,j=1

αiφ(s
−1
i sj)αj = ωφ(f

∗ ∗ f) ≥ 0.

Corollary 3.16. The map P (Γ) ∋ φ 7→ ωφ ∈ (C∗Γ)∗+ gives a bijection.

Proposition 3.17. Let φ1, φ2 be positive definite functions on Γ. Then the product φ1φ2

is also positive definite.

Proof. Let ak = [a
(k)
ij ], a

(k)
ij = φk(s

−1
i sj) for k = 1, 2. Then a1, a2 are positive matrices.

Then a = a1 ◦ a2 = [a
(1)
ij a

(2)
ij ] (Schur product) is also positive. Hence if ξ = [α1, . . . , αn] ∈

Cn, then
n∑

i,j=1

αiφ1(s
−1
i sj)φ2(s

−1
i sj)αj = ⟨aξ, ξ⟩ ≥ 0.

Definition 3.18. A group Γ is amenable if there exists a state µ ∈ ℓ∞Γ which is invariant
under left translation: for any s ∈ Γ and f ∈ ℓ∞Γ, µ(sf) = µ(f).

Definition 3.19. Let Prob(Γ) be the space of all probability measures on Γ:

Prob(Γ) = {µ ∈ ℓ1Γ: µ ≥ 0,
∑
s∈Γ

µ(s) = 1}.

Definition 3.20. We say Γ has an approximate invariant mean if for any finite subset
F ⊂ Γ and ε > 0, there exists µ ∈ Prob(Γ) such that

max
s∈E

∥sµ− µ∥1 < ε,

where sµ(F ) = µ(s−1F ) for F ⊂ Γ.

Definition 3.21. We say Γ satisfies the Følner condition if for any finite subset E ⊂ Γ
and ε > 0, there exists a finite subset F ⊂ Γ such that

max
s∈E

|sF△F |
|F |

< ε,

where sF = {st : t ∈ F}.
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Example 3.22. All abelian groups are amenable by theMarkov-Kakutani fixed point
theorem.

Example 3.23. The free group Fd is not amenable for d ≥ 2. Let d = 2 and a, b be the
free generators. Set

A+ = {all reduced words starting with a} ⊂ Fd,

similarly let A−, B+, B−. Then for C = {e, b, b2, . . . , } ⊂ Fd, we have

Fd = A+ ⊔ A− ⊔ (B+ \ C) ⊔ (B− ⊔ C)
= A+ ⊔ aA−

= b−1(B+ \ C) ⊔ (B− ⊔ C).

Suppose that there is an invariant state µ on ℓ∞Fd. Then

1 = µ(1) = µ(χA+) + µ(χA−) + µ(χB+\C) + µ(χB−⊔C)

= µ(χA+) + µ(aχA−) + µ(b−1χB+\C) + µ(χB−⊔C)

= 2µ(1) = 2,

which is a contradiction.
More generally, if Γ contains Fd, then Γ is non-amenable.

Theorem 3.24. Let Γ be a contable discrete group. Then the following are equivalent:

(1) Γ is amenable,

(2) Γ has an approximate invariant mean,

(3) Γ satisfies the Følner condition,

(4) there is unit vectors ξi ∈ ℓ2Γ such that ∥λ(s)ξi − ξi∥2 → 0 for s ∈ Γ,

(5) there is a sequence (φi) of finitly supported positive definite functions on Γ such
that φi(s) → 1 for s ∈ Γ,

(6) C∗Γ = C∗
λΓ,

(7) C∗
λΓ has a character, i.e., one-dimenssional representation.

Proof. (1)=⇒(2): Let µ be an invariant mean on ℓ∞Γ. Since ℓ1Γ is weak-∗ dence in
(ℓ∞Γ)∗, there is a sequence µi ∈ Prob(Γ) such that µi → µ in (ℓ∞Γ)∗ in the weak-∗
topology. Since (ℓ1Γ)

∗ = ℓ∞Γ, we have sµi − µi → 0 in ℓ1Γ in the weak topology. Hence
for any s1, . . . , sn ∈ Γ, since the weak and norm closed doincide on a convex subset, we
have

0 ∈ conv
n⊕
i=1

{siµ− µ : µ ∈ Prob(Γ)} ⊂ (ℓ1Γ)
n.

(2)=⇒(3): Let E ⊂ Γ be a finite subset and ε > 0. Choose µ ∈ Prob(Γ) such that∑
s∈E

∥sµ− µ∥1 < ε.

For f ∈ ℓ1Γ with f ≥ 0 and r ≥ 0, we define

F (f, r) = {t ∈ Γ: f(t) > r}.
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Observe that if f(t) > g(t), then

|χF (f,r)(t)− χF (g,r)(t)| = 1 ⇐⇒ f(t) > r ≥ t.

Hence

∥sµ− µ∥1 =
∑
t∈Γ

|sµ(t)− µ(t)|

=
∑
t∈Γ

∫ 1

0

|χF (sµ,r)(t)− χF (µ,r)(t)|dr

=

∫ 1

0

∑
t∈Γ

|χF (sµ,r)(t)− χF (µ,r)(t)|dr

=

∫ 1

0

|sF (µ, r)△F (µ, r)|dr.

Therefore

ε

∫ 1

0

|F (µ, r)|dr = ε >
∑
s∈E

∥sµ− µ∥1 =
∫ 1

0

∑
s∈E

|sF (µ, r)△F (µ, r)|dr.

Thus for some r, we must have∑
s∈E

|sF (µ, r)△F (µ, r)| < ε|F (µ, r)|.

(3)=⇒(4): Take a Følner sequence (Fi), i.e., (Fi) is a sequence of finite subsets of Γ
such that

|sFi△Fi|
|Fi|

→ 0

for any s ∈ Γ. Set ξi = |Fi|−1/2χFi
∈ ℓ2Γ. Observe that for finite subsets E,F ⊂ Γ,

∥χE − χF∥22 = |E△F |.

Hence

∥λ(s)ξi − ξi∥22 =
1

|Fi|
∥χsFi

− χFi
∥22 =

|sFi△Fi|
|Fi|

→ 0.

(4)=⇒(5): Take unit vectors ξi ∈ ℓ2Γ with condition (4). We may assume that each ξi
is finitely suppoted. Then φi(s) = ⟨λ(s)ξi, ξi⟩ is positive definite and φi(s) → ∥ξi∥22 = 1.

(5)=⇒(6): We will prove it in the next section.
(6)=⇒(7): The trivial representation τ0 : Γ ∋ s 7→ 1 ∈ C extends to C∗Γ = C∗

λΓ.
(7)=⇒(1): Let τ : C∗

λΓ → C be any unital ∗-homomorphism, which regard it as a state.
By Hahn-Banach theorem, we can extend it to B(ℓ2Γ). Since ℓ∞Γ ∋ f 7→ Mf ∈ B(ℓ2Γ),
τ is also defined on ℓ∞Γ. Since Msf = λ(s)Mfλ(s

−1) ∈ ℓ∞Γ, we have

τ(Msf ) = τ(λ(s)Mfλ(s)
∗) = τ(λ(s))τ(Mf )τ(λ(s)) = τ(Mf )

for any s ∈ Γ and f ∈ ℓ∞Γ, (because λ(s) belongs to the multiplicative domain of τ).

Remark 3.25. Let p ≥ 1 be fixed. The condition (5) in the above can be replaced by
the following:
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(5)p there is a sequence (φi) of positive definite functions in ℓpΓ such that φi(s) → 1 for
s ∈ Γ,

Indeed, it is easy that (5) =⇒ (5)p. Conversely, take k ∈ N with k ≥ p. Then φki are
positive definite such that φki (s) → 1 and φki ∈ ℓ1Γ ⊂ C∗

λΓ. Fix i ≥ 1. Let ∥λ(φki )1/2∥ =
ci ≥ 0. By taking fi ∈ ccΓ such that

∥λ(φki )1/2 − λ(fi)∥ <
1

2i(ci + 1)
.

Then we have

∥λ(φki )− λ(f ∗
i ∗ fi)∥ <

1

i
.

Hence for any s ∈ Γ,

|φki (s)− f ∗
i ∗ fi(s)| = |⟨[λ(φki )− λ(f ∗

i ∗ fi)]δe, δs⟩| ≤ ∥λ(φki )− λ(f ∗
i ∗ fi)∥ → 0.

It follows that f ∗
i ∗ fi(s) → 1.

4 “New” group C∗-algebras

Definition 4.1. Let π be a unitary representation of a contable discrete group Γ on a
Hilbert space H. For ξ, η ∈ H, we denote the matrix coefficient of π by

πξ,η(s) := ⟨π(s)ξ, η⟩.

Note that πξ,η ∈ ℓ∞Γ.

Definition 4.2. Let D be a non-zero ideal of ℓ∞Γ. If there exists a dense subspace H0 of
H such that πξ,η ∈ D for all ξ, η ∈ H0, then π is called D-representation. If D is invariant
under the left and right translation of Γ on ℓ∞Γ, then it is said to be translation invariant.
In this case, D contains ccΓ

Example 4.3. ccΓ, ℓpΓ, c0Γ are translation invariant ideals of ℓ∞Γ.

Lemma 4.4. If π has a cyclic vector ζ such that πζ,ζ ∈ D, then π is a D-representation
with respect to a dense subspace

H0 = span{π(s)ξ : s ∈ Γ}.

Proof. Let ξ = π(s)ζ, η = π(t)ζ. Then

πξ,η(r) = ⟨π(r)ξ, η⟩ = ⟨π(t−1rs)ζ, ζ⟩ = πζ,ζ(t
−1rs).

Hence πξ,η ∈ D.

Remark 4.5. It is easy to see that λ is a cc-representation, or a D-representation for any
D.

Definition 4.6. The C∗-algebra C∗
DΓ is the C∗-completion of the group ring CΓ by ∥·∥D,

where
∥f∥D = sup{∥π(f)∥ : π is a D-representation} for f ∈ ccΓ.
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Remark 4.7. Note that if D1 and D2 are ideals of ℓ∞Γ with D1 ⊃ D2, then there exists
the canonical quotient map from C∗

D1
Γ onto C∗

D2
Γ.

Remark 4.8. Let (πi,Hi) be a family of all D-representations of Γ with a dense sub-
space Hi,0. Then πu =

⊕
i πi is a D-representation of Γ with a dense subspace Hu,0 =⊕

finite Hi,0, which gives a faithful D-representation of C∗
DΓ. Indeed, suppose that there

is 0 ̸= x ∈ C∗
DΓ such that πu(x) = 0. Take fn ∈ ccΓ such that ∥fn − x∥D → 0. Then

πu(fn) → πu(x) = 0. However ∥πu(fn)∥ = ∥fn∥D → ∥x∥D ̸= 0, which is a contradiction.

Remark 4.9. It easily follows from the definition that C∗
ℓ∞
Γ = C∗Γ.

Lemma 4.10 (Cowling-Haagerup-Howe theorem). Let π : Γ → B(H) be a unitary
representation with a cyclic vector ζ ∈ H such that πζ,ζ ∈ ℓ2Γ. Then ∥π(f)∥ ≤ ∥λ(f)∥
for f ∈ ccΓ.

Proof. 省略.

Theorem 4.11. C∗
ℓp
Γ = C∗

λΓ for 1 ≤ p ≤ 2.

Proof. There is a canonical quotient Φ: C∗
ℓp
Γ → C∗

λΓ. Suppose that 0 ̸= x ∈ kerΦ. Take
a ℓp-representation π : Γ → B(H) such that ∥π(x)∥ ̸= 0. Hence there is ζ ∈ H0 such that
π(x)ζ ̸= 0. Set

H′
0 = span {π(s)ζ : s ∈ Γ} ⊂ H′ = H′

0 ⊂ H,
and π′(s) = π(s)|H′ for s ∈ Γ. Then

π′
ζ,ζ(s) = ⟨π(s)ζ, ζ⟩ ∈ ℓpΓ,

and ζ is cyclic for π′. Therefore π′ is ℓp-representation with π′(x) ̸= 0. Since π′
ζ,ζ ∈ ℓ2Γ,

by CHH theorem, we have ∥π′(f)∥ ≤ ∥λ(f)∥ for f ∈ ccΓ. Take fn ∈ ccΓ such that
∥fn − x∥ℓp → 0. Then π′(fn) → π′(x) and Φ(fn) = λ(fn) → Φ(x) = 0, which is a
contradiction.

Lemma 4.12. Let φ ∈ P (Γ). If φ ∈ D, then GNS-representation of ωφ isD-representation.

Proof. Let ξφ be a corresponding cyclic vector. Then φ = πξφ,ξφ ∈ D.

Lemma 4.13 (Glimm’s lemma). Let A ⊂ B(H) be a separable C∗-algebra such that
A ∩ K(H) = {0}. If ω ∈ S(A), then there exist orthonormal vectors (ξn) such that
⟨aξn, ξn⟩ → φ(a) for all a ∈ A.

Proof. 省略.

Theorem 4.14. C∗Γ = C∗
DΓ ⇐⇒ there is positive definite φn ∈ D such that φn → 1

pointwise.

Proof. (⇐=) It suffices to show that the set of vector states with respect toD-representations
is weak-∗ dense in S(C∗Γ). For φ ∈ P (Γ), we define ψn = φnφ ∈ P (Γ). Note that ψn → φ
pointwise. Since ψn ∈ D, the GNS-representation of ψn is D-representation.

(=⇒) Assume that C∗Γ = C∗
DΓ. Then there is a faithful D-representation of C∗Γ with

a dense subspace H0 ⊂ H such that π(C∗Γ) ∩ K(H) = {0}. Set A = π(C∗Γ) ⊂ B(H).
Define τ ∈ S(A) by τ(π(f)) =

∑
s f(s) for f ∈ ccΓ. By Glimm’s lemma, we have

⟨π(δs)ξn, ξn⟩ → 1. Take H0 ∋ ξ′n such that ∥ξ′n − ξn∥ < 1/n. Then πξ′n,ξ′n ∈ D is positive
definite and πξ′n,ξ′n → 1 pointwise.
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Corollary 4.15. (1) Γ is amenable if and only if C∗Γ = C∗
ccΓ = C∗

λΓ,

(2) Γ has the Haagerup property, i.e., there exists a sequence (φn) of positive definite
functions in c0Γ such that φn → 1 pointwise, if and only if C∗Γ = C∗

c0
Γ.

Remark 4.16. For 2 < p <∞, the following holds:

C∗(Fd)
(1)
= C∗

c0
(Fd)

(2)

̸= C∗
ℓp(Fd)

???

̸= C∗
ℓ2
(Fd)

(3)
= C∗

λ(Fd),

where

(1) by the Haagerup property,

(2) by non-amenablity,

(3) by CHH theorem.

5 Positive definite functions on Fd
Definition 5.1. Let Fd be the free group on finitely many generators a1, . . . , ad with d ≥ 2.
We denote by |s| the word length of s ∈ Fd with respect to the canonical generating set
{a1, a−1

1 , . . . , ad, a
−1
d }. For k ≥ 0, we put

Wk = {s ∈ Fd | |s| = k}.

We denote by χk the characteristic function for Wk.

Lemma 5.2. Let q ∈ [1, 2]. Let k, ℓ and m be non negative integers. Let f and g be
functions on Fd such that supp(f) ⊂ Wk and supp(g) ⊂ Wℓ, respectively. If |k − ℓ| ≤
m ≤ k + ℓ and k + ℓ−m is even, then

∥(f ∗ g)χm∥q ≤ ∥f∥q∥g∥q,

and if m is any other value, then

∥(f ∗ g)χm∥q = 0.

Proof. Note that

(f ∗ g)(r) =
∑
s,t∈Fd
r=st

f(s)g(t) =
∑
|s|=k
|t|=ℓ
r=st

f(s)g(t).

Since the possible values of |st| are |k − ℓ|, |k − ℓ|+ 2, . . . , k + ℓ, we have

∥(f ∗ g)χm∥q = 0

for any other values of m.
The case where q = 1 is trivial. So let q ̸= 1.
First we assume that m = k + ℓ. If |r| = m, then r can be uniquely written as a

product st with |s| = k and |t| = ℓ. Hence

(f ∗ g)(r) = f(s)g(t).
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Therefore

∥(f ∗ g)χm∥qq =
∑

|st|=k+ℓ
|s|=k
|t|=ℓ

|f(s)|q|g(t)|q ≤
∑
|s|=k
|t|=ℓ

|f(s)|q|g(t)|q = ∥f∥qq∥g∥qq.

Next we assume that m = |k−ℓ|, |k−ℓ|+2, . . . , k+ℓ−2. Then, we havem = k+ℓ−2j
for 1 ≤ j ≤ min{k, ℓ}. Let r = st with |r| = m, |s| = k and |t| = ℓ. Then r can be
uniquely written as a product s′t′ such that s = s′u, t = u−1t′ with |s′| = k−j, |t′| = ℓ−j
and |u| = |u−1| = j. We define

f ′(s) =

∑
|u|=j

|f(su)|q
 1

q

if |s| = k − j, and f ′(s) = 0 otherwise.

We also define

g′(t) =

∑
|u|=j

|g(u−1t)|q
 1

q

if |t| = ℓ− j, and g′(t) = 0 otherwise.

Note that supp(f ′) ⊂ Wk−j and supp(g′) ⊂ Wℓ−j. Moreover

∥f ′∥qq =
∑

|t|=k−j

∑
|v|=j

|f(tv)|q
 = ∥f∥qq,

and similarly ∥g′∥q = ∥g∥q. Take 2 ≤ p <∞ with 1/p+ 1/q = 1. By Hölder’s inequality,

|(f ∗ g)(r)| =

∣∣∣∣∣∣∣∣∣∣
∑
|s|=k
|t|=ℓ
r=st

f(s)g(t)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|u|=j

f(s′u)g(u−1t′)

∣∣∣∣∣∣
≤

∑
|u|=j

|f(s′u)|q
 1

q
∑

|u|=j

|g(u−1t′)|p
 1

p

≤

∑
|u|=j

|f(s′u)|q
 1

q
∑

|u|=j

|g(u−1t′)|q
 1

q

= f ′(s′)g′(t′) = (f ′ ∗ g′)(r).

Hence |(f ∗ g)χm| ≤ (f ′ ∗ g′)χm. Since (k− j) + (ℓ− j) = m, it follows from the first part
of the proof that

∥(f ∗ g)χm∥q ≤ ∥(f ′ ∗ g′)χm∥q ≤ ∥f ′∥q∥g′∥q = ∥f∥q∥g∥q.
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Lemma 5.3. Let 1 ≤ q ≤ p ≤ ∞ with 1/p + 1/q = 1. Let π : Γ → B(H) be a unitary
representation with a cyclic vector ζ such that πζ,ζ ∈ ℓpΓ. Then

∥π(f)∥ ≤ lim inf
n→∞

∥∥(f ∗ ∗ f)(∗2n)
∥∥ 1

4n

q

for f ∈ ccΓ.

Proof. For f ∈ ccΓ, we set g = f ∗ ∗ f . Then π(g) is self-adjoint. By the spectral
decomposition, for ξ ∈ H there is a regular Borel complex measure µ on R such that

⟨π(g)ξ, ξ⟩ =
∫
tdµ(t).

Then

∥π(g)ξ∥2 = ⟨π(g)2ξ, ξ⟩ =
∫
t2dµ(t)

≤
(∫

t2ndµ(t)

)1/n(∫
1dµ(t)

)1−1/n

= ⟨π(g)2nξ, ξ⟩1/n∥ξ∥1−1/n

Hence
∥π(g)ξ∥ ≤ lim inf

n→∞
⟨π(g)2nξ, ξ⟩1/2n∥ξ∥.

If we put ξ = π(h)ζ, φ(r) = πζ,ζ(r) with h ∈ ccΓ and ψ(r) = πξ,ξ(r), then

ψ(r) = ⟨π(r)π(h)ζ, π(h)ζ⟩ =
∑
s,t

h(s)h(t)φ(t−1rs).

Hence, ψ ∈ ℓpΓ. By Hölder’s inequality,

|⟨π(g)2nξ, ξ⟩| =

∣∣∣∣∣∑
r∈Γ

g(∗2n)(r)ψ(r)

∣∣∣∣∣ ≤ ∥∥g(∗2n)∥∥q ∥ψ∥p.
Since H0 = {π(h)ζ : h ∈ ccΓ} is dense in H, we have

∥π(g)∥ ≤ lim inf
n→∞

∥∥g(∗2n)∥∥ 1
2n

q
.

Lemma 5.4. Let k be a non negative integer. Let 1 ≤ q ≤ p ≤ ∞ with 1/p + 1/q = 1.
If a unitary representation π of Fd on a Hilbert space H has a cyclic vector ζ such that
πζ,ζ ∈ ℓpFd, then

∥π(f)∥ ≤ (k + 1)∥f∥q.

for f ∈ ccFd with supp(f) ⊂ Wk.

Proof. The case where q = 1 and p = ∞ is trivial. So we may assume that 1 < q ≤ 2 and
2 ≤ p <∞ with 1/p+ 1/q = 1.

Consider
∥∥(f ∗ ∗ f)(∗2n)

∥∥
q
. Write f2j−1 = f ∗ and f2j = f for j = 1, 2, . . . , 2n. Then

(f ∗ ∗ f)(∗2n) = f1 ∗ f2 ∗ · · · ∗ f4n.
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We also denote g = f2 ∗ · · · ∗ f4n. So we have

(f ∗ ∗ f)(∗2n) = f1 ∗ g.
Note that supp(fj) ⊂ Wk for j = 1, 2, . . . , 4n and g ∈ ccFd. Put gℓ = gχℓ. Then
supp(gℓ) ⊂Wℓ and

∥g∥qq =
∞∑
ℓ=0

∥gℓ∥qq.

Here, remark that ∥gℓ∥q = 0 for all but finitely many ℓ. Moreover set

h = f1 ∗ g =
∞∑
ℓ=0

f1 ∗ gℓ

and hm = hχm. Then h ∈ ccFd and

∥h∥qq =
∞∑
m=0

∥hm∥qq.

Here, notice that ∥hm∥q = 0 for all but finitely many m. By Lemma 5.2,

∥(f1 ∗ gℓ)χm∥q ≤ ∥f1∥q∥gℓ∥q
in the case where |k − ℓ| ≤ m ≤ k + ℓ and k + ℓ−m is even. Hence

∥hm∥q =

∥∥∥∥∥
∞∑
ℓ=0

(f1 ∗ gℓ)χm

∥∥∥∥∥
q

≤
∞∑
ℓ=0

∥(f1 ∗ gℓ)χm∥q ≤ ∥f1∥q
m+k∑

ℓ=|m−k|
m+k−ℓ even

∥gℓ∥q.

By writing ℓ = m+ k − 2j,

∥hm∥q ≤ ∥f1∥q
min{m,k}∑

j=0

∥gm+k−2j∥q

≤ ∥f1∥q

min{m,k}∑
j=0

∥gm+k−2j∥qq

 1
q
min{m,k}∑

j=0

1p

 1
p

≤ (k + 1)
1
p∥f1∥q

min{m,k}∑
j=0

∥gm+k−2j∥qq

 1
q

.

Then

∥h∥qq =
∞∑
m=0

∥hm∥qq ≤ (k + 1)
q
p∥f1∥qq

∞∑
m=0

min{m,k}∑
j=0

∥gm+k−2j∥qq

= (k + 1)
q
p∥f1∥qq

k∑
j=0

∞∑
m=j

∥gm+k−2j∥qq

= (k + 1)
q
p∥f1∥qq

k∑
j=0

∞∑
ℓ=k−j

∥gℓ∥qq

≤ (k + 1)
q
p∥f1∥qq

k∑
j=0

∥g∥qq

= (k + 1)
q
p
+1∥f1∥qq∥g∥qq.
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Hence ∥f1 ∗ g∥q ≤ (k + 1)∥f1∥q∥g∥q. Therefore we inductively get,

∥f1 ∗ (f2 ∗ · · · ∗ f4n)∥q ≤ (k + 1)∥f1∥q∥f2 ∗ · · · ∗ f4n∥q ≤ · · · ≤ (k + 1)4n−1∥f∥4nq .

Thus it follows from Lemma 5.3 that

∥π(f)∥ ≤ lim inf
n→∞

∥∥(f ∗ ∗ f)(∗2n)
∥∥ 1

4n

q
≤ (k + 1)∥f∥q.

Remark 5.5. For 0 < α < 1, we set φα(s) = α|s|, and it is positive definite on Fd by [Ha,
Lemma 1.2].

Theorem 5.6. Let 2 ≤ p < ∞. Let φ be a positive definite function on Fd. Then the
following conditions are equivalent:

(1) φ can be extended to the positive linear functional on C∗
ℓp
Fd.

(2) supk |φχk|p(k + 1)−1 <∞.

(3) The function s 7→ φ(s)(1 + |s|)−1− 2
p belongs to ℓpFd.

(4) For any α ∈ (0, 1), the function s 7→ φ(s)α|s| belongs to ℓpFd.

Proof. We may assume that φ(e) = 1.
(1)=⇒(2): It follows from (1) that ωφ extends to the state on C∗

ℓp
Fd. Hence for

f ∈ ccFd, we have
|ωφ(f)| ≤ ∥f∥ℓp .

If we put f = |φ|p−2φχk, then
|ωφ(f)| = |φχk|pp.

Let π be an ℓp-representation of Fd on a Hilbert space H with a dense subspace H0. Then

∥π(f)∥2 = sup
ξ∈H0

∥ξ∥=1

⟨π(f ∗ ∗ f)ξ, ξ⟩H.

Fix ζ ∈ H0 with ∥ζ∥ = 1. We denote by σ the restriction of π onto the subspace

Hσ = span{π(s)ζ : s ∈ Fd} ⊂ H.

Then
⟨π(f ∗ ∗ f)ξ, ξ⟩H = ⟨σ(f ∗ ∗ f)ξ, ξ⟩Hσ .

Since ζ is cyclic for σ such that σξ,ξ ∈ ℓp(Fd), by Lemma 5.4,

∥σ(f)∥ ≤ (k + 1)∥f∥q.

Hence
∥σ(f ∗ ∗ f)∥ = ∥σ(f)∥2 ≤ (k + 1)2∥f∥2q.

Therefore we obtain

∥f∥2ℓp = sup{∥π(f)∥2 : π is an ℓp-representation} ≤ (k + 1)2∥f∥2q = (k + 1)2∥φχk∥2(p−1)
p ,

namely,
∥f∥ℓp ≤ (k + 1)∥φχk∥p−1

p .
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Consequently,
∥φχn∥p ≤ k + 1.

(2)=⇒(3)=⇒(4): Easy.
(4)=⇒(1): Note that ψα = φφα is also positive definite. By the GNS construction, we

obtain the unitary representation πα of Fd with the cyclic vector ξα such that for f ∈ ccFd,

ωψα(f) = ⟨πα(f)ξα, ξα⟩.

Since πα is an ℓp-representation, ωψα can be seen as a state on C∗
ℓp
Fd. By taking the

weak-∗ limit of ωψα as α ↗ 1, we conclude that ωφ can be extended to the state on
C∗
ℓp
Fd.

Corollary 5.7. Let p ∈ [2,∞) and α ∈ (0, 1). The positive definite function φα can be
extended to the state on C∗

ℓp
Fd if and only if

α ≤ (2d− 1)−
1
p .

Proof. It follows from the fact φα ∈ ℓpFd ⇐⇒ α < (2d− 1)−
1
p . [Problem 14]

Corollary 5.8. For 2 ≤ q < p ≤ ∞, the canonical quotient map from C∗
ℓp
Fd onto C∗

ℓq
Fd

is not injective.

Proof. It suffices to consider the case where p ̸= ∞, because Fd is not amenable.
Suppose that the canonical quotient map from C∗

ℓp
Fd onto C∗

ℓq
Fd is injective for some

q < p. Take a real number α with

(2d− 1)−
1
q < α ≤ (2d− 1)−

1
p .

By using Corollary 5.7,

|ωφα(f)| ≤ ∥f∥ℓp = ∥f∥ℓq for f ∈ ccFd.

Therefore it follows that ωφα can be also extended to the state on C∗
ℓq
Fd, but it contradicts

to the choice of α.
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