Intensive course at Nagoya University
 Oct. 28 - Nov.1.2013

Rui Okayasu
November 11, 2013

Contents

1 Basics of functional analysis 2
2 Basics of C*-algebras 5
3 "Classical" group C^{*}-algebras 11
4 "New" group C^{*}-algebras 17
5 Positive definite functions on $\mathbb{F}_{d} \quad 19$

1 Basics of functional analysis

Definition 1.1. A semi-norm on a vector space X over \mathbb{C} is a function $p: X \rightarrow[0, \infty)$ such that for $\xi, \eta \in X$ and $\alpha \in \mathbb{C}$,
(1) $p(\xi+\eta) \leq p(\xi)+p(\eta)$
(2) $p(\alpha \xi)=|\alpha| p(\xi)$.

A norm is a semi-norm $\|\cdot\|$ satisfying

$$
\|\xi\|=0 \Longleftrightarrow \xi=0
$$

Remark 1.2. If X has a norm, then $d(\xi, \eta)=\|\xi-\eta\|$ defines a metric on X.
Definition 1.3. A Banach space is a complete normed space.
Definition 1.4. A semi-inner product on a vector space X over \mathbb{C} is a function $\langle\cdot, \cdot\rangle$: $X \times X \rightarrow \mathbb{C}$ such that for $\xi, \eta, \zeta \in X$ and $\alpha \in \mathbb{C}$,
(1) $\langle\xi+\eta, \zeta\rangle=\langle\xi, \zeta\rangle+\langle\eta, \zeta\rangle$,
(2) $\langle\alpha \xi, \eta\rangle=\alpha\langle\xi, \eta\rangle$,
(3) $\langle\xi, \eta\rangle=\overline{\langle\eta, \xi\rangle}$,
(4) $\langle\xi, \xi\rangle \geq 0$.

A inner product is a semi-inner product satisfying

$$
\langle\xi, \xi\rangle=0 \Longleftrightarrow \xi=0 .
$$

Remark 1.5. If X has an (semi-)inner product, then $p(\xi)=\langle\xi, \xi\rangle^{1 / 2}$ defines a (semi)norm on X.

Theorem 1.6 (Cauchy-Bunyakowsky-Schwarz inequality). If $\langle\cdot, \cdot\rangle$ is a semi-inner product on X, then

$$
|\langle\xi, \eta\rangle| \leq\|\xi\|\|\eta\| .
$$

Proof. 省略.

Definition 1.7. A Hilbert space \mathcal{H} is a Banach space with respect to $\|\xi\|:=\langle\xi, \xi\rangle^{1 / 2}$.
A set $\left\{\xi_{i}\right\}$ of vectors is orthonormal if $\left\langle\xi_{i}, \xi_{j}\right\rangle=\delta_{i j}$. A maximal orthonormal set is an orthonormal basis.

Proposition 1.8. If $\left\{\xi_{i}\right\}$ is an ONS in \mathcal{H}, then there is an ONB in \mathcal{H}, which contains $\left\{\xi_{i}\right\}$.

Proof. Use Zorn's lemma.
Theorem 1.9. Let $\left\{\xi_{i}\right\}$ be an ONS in \mathcal{H}. Then the following are equivalent:
(1) $\left\{\xi_{i}\right\}$ is an ONB in \mathcal{H},
(2) For any $\xi \in \mathcal{H}, \xi=\sum_{i}\left\langle\xi, \xi_{i}\right\rangle \xi_{i}$, (Fourier series expansion)
(3) For any $\xi \in \mathcal{H},\|\xi\|^{2}=\sum_{i}\left|\left\langle\xi, \xi_{i}\right\rangle\right|^{2}$, (Riesz-Fischer identity)
(4) For any $\xi, \eta \in \mathcal{H},\langle\xi, \eta\rangle=\sum_{i}\left\langle\xi, \xi_{i}\right\rangle\left\langle\xi_{i}, \eta\right\rangle$, (Paseval identity)

Remark 1.10. If \mathcal{H} is a separable Hilbert space, then there is a countable ONB $\left\{\xi_{n}\right\}$ in \mathcal{H}.

Example 1.11. Let S be a countable set. Then

$$
\ell_{2} S:=\left\{f:\left.S \rightarrow \mathbb{C}\left|\sum_{s \in S}\right| f(s)\right|^{2}<\infty\right\}
$$

is a Hilbert space with an inner product

$$
\langle f, g\rangle:=\sum_{s \in S} f(s) \overline{g(s)}
$$

If $\delta_{s}(t)=\delta_{s, t}$ (Kronecker delta), then a set $\left\{\delta_{s}\right\}_{s \in S}$ is the canonical ONB for $\ell_{2} S$. If $|S|=n<\infty$, then $\ell_{2} S=\mathbb{C}^{n}$.

Definition 1.12. Let X be a normed space. A linear functional $f: X \rightarrow \mathbb{C}$ is bounded if

$$
\|f\|:=\sup _{\|\xi\| \leq 1}|f(\xi)|<\infty
$$

We denote by X^{*} the dual space of X, i.e., the set of all bounded linear functionals on X, which becomes a Banach space.

Theorem 1.13 (Hahn-Banach extension theorem). Let Y be a subspace of a normed space X. Then
(1) For any $g \in Y^{*}$, there is $f \in X^{*}$ such that $\left.f\right|_{Y}=g$ and $\|g\|=\|f\|$.
(2) For any $0 \neq \xi \in X$, there is $f \in X^{*}$ such that $f(\xi)=\|\xi\|$ and $\|f\|=1$.

Proof. Use Zorn's lemma.
Definition 1.14. Let X be a normed space. Then $X^{* *}:=\left(X^{*}\right)^{*}$ is a Banach space, which is called the second dual space of X.

For $x \in X$, we define $\hat{x} \in X^{* *}$ by $\hat{x}(f):=f(x)$ for $f \in X^{*}$. Note that $\|x\|=\|\hat{x}\|$.
Definition 1.15. Let X be a normed space. For any $f \in X^{*}$, we define a semi-norm p_{f} on X by $p_{f}(\xi):=|f(\xi)|$ for $\xi \in X$. The weak topology on X is defined by the family $\left\{p_{f}\right\}_{f \in X^{*}}$ of semi-norms. Hence X becomes a locally convex topological vector space.

For any $\xi \in X$, we define a semi-norm p_{ξ} on X^{*} by $p_{\xi}(f):=|f(\xi)|$ for $f \in X^{*}$. The weak-* topology on X^{*} is defined by the family $\left\{p_{\xi}\right\}_{\xi \in X}$ of semi-norms. Hence X^{*} becomes a locally convex topological vector space.

We remark that we can also define the weak topology in X^{*}, which is coming from $X^{* *}$.

Theorem 1.16. Let C be a convex subset of a normed space X. Then C is norm closed if and only if it is weakly closed.

Proof. Use Hahn-Banach separation theorem.
Theorem 1.17 (Banach-Alaoglu). If X is a normed space, then $\left(X^{*}\right)_{1}:=\{f \in$ $\left.X^{*}:\|f\| \leq 1\right\}$ is compact in X^{*} in the weak-* topology.

Example 1.18. Let S be a countable set with $|S|=\infty$. For $1 \leq p<\infty$, we define a Banach space

$$
\ell_{p} S:=\left\{f: \Gamma \rightarrow \mathbb{C} \mid\|f\|_{p}:=\left(\sum_{s \in S}|f(s)|^{p}\right)^{1 / p}<\infty\right\}
$$

For $p=\infty$, we define a Banach space

$$
\ell_{\infty} S:=\left\{f: \Gamma \rightarrow \mathbb{C}:\|f\|_{\infty}:=\sup _{s \in S}|f(s)|<\infty\right\} .
$$

We also define

$$
c_{c} S:=\left\{f \in \ell_{\infty} S| | \operatorname{supp}(f) \mid<\infty\right\}
$$

and

$$
c_{0} S:=\left\{f \in \ell_{\infty} S \mid \lim _{s \rightarrow \infty} f(s)=0\right\}=\overline{c_{c} S} \overline{\|}^{\|\cdot\|_{\infty}} .
$$

Then we have $c_{c} S \subset \ell_{p} S \subset c_{0} S \subset \ell_{\infty} S$. Moreover, if $1 \leq q<p \leq \infty$, then for $f \in \ell_{q} S$ we have $\|f\|_{p} \leq\|f\|_{q}$, and thus $\ell_{q} S \subset \ell_{p} S$. Note that $c_{c} S$ is also dense in $\ell_{p} S$ with respect to the norm $\|\cdot\|_{p}$ for $1 \leq p<\infty$.

For $1 \leq p, q \leq \infty$ with $1 / p+1 / q=1$, we have
(1) $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$ (Hölder inequality)
(2) $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ (Minkowski inequality)

If $1 \leq p<\infty, 1<q \leq \infty$ with $1 / p+1 / q=1$, then $\left(\ell_{p} S\right)^{*}=\ell_{q} S$ via the identification

$$
\ell_{q} S \ni g \mapsto \hat{g} \in\left(\ell_{p} S\right)^{*},
$$

where

$$
\hat{g}(f):=\sum_{s \in S} f(s) g(s) . \quad\left(f \in \ell_{p} S\right)
$$

We remark that $\left(\ell_{\infty} S\right)^{*} \neq \ell_{1} S$ and $\left(c_{0} S\right)^{*}=\ell_{1} S$.
Example 1.19. Let X be a compact Hausdorff space. We denote by $C(X)$ the set of all \mathbb{C}-valued continuous functions on X. Then $C(X)$ is a Banach space with respect to a norm

$$
\|f\|_{\infty}:=\sup _{x \in X}|f(x)| .
$$

We denote by $M(X)$ the set of all regular \mathbb{C}-valued Borel measures on X, and $M(X)_{+}$ the set of all regular finite positive Borel measures on X. Note that $M(X)=\operatorname{span} M(X)_{+}$.

Theorem 1.20 (Riesz-Markov-Kakutani). For $\varphi \in C(X)^{*}$ with $\varphi \geq 0$, there is unique $\mu \in M(X)_{+}$such that

$$
\varphi(f)=\int_{X} f d \mu \quad(f \in C(X)) .
$$

It follows that $C(X)^{*}=M(X)$.
Theorem 1.21 (Stone-Weierstrass). If a subalgebra A of $C(X)$ satisfies
(1) for any $x \neq x^{\prime}$, there is $f \in A$ such that $f(x) \neq f\left(x^{\prime}\right)$,
(2) if $f \in A$, then $\bar{f} \in A$,
(3) $1 \in A$,
then A is dense in $C(X)$.

2 Basics of C*-algebras

Definition 2.1. An algebra is a vector space A over \mathbb{C} with a multiplication : $A \times A \ni$ $(a, b) \mapsto a b \in A$ satisfying the following conditions: for any $a, b, c \in A$ and $\alpha \in \mathbb{C}$,
(1) $(a b) c=a(b c)$,
(2) $(\alpha a) b=a(\alpha b)=\alpha(a b)$,
(3) $a(b+c)=a b+a c$,
(4) $(a+b) c=a c+b c$.

If A is an algebra, then we say A is $a b e l i a n$ if $a b=b a$ for any $a, b \in A$. We also say A is unital if there exists the unit $1 \in A$ such that $1 a=a 1=a$ for any $a \in A$.

A Banach algebra is a complete normed algebra A with a norm satisfying the following conditions:

$$
\|a b\| \leq\|a\|\|b\| \text { for any } a, b \in A
$$

If A is a Banach algebra and A has a unit with $\|1\|=1$, then A is called a unital Banach algebra.

A *-algebra is an algebra A with a involution $A \ni a \mapsto a^{*} \in A$ satisfying the following conditions: for any $a, b \in A$ and $\alpha \in \mathbb{C}$,
(1) $\left(a^{*}\right)^{*}=a$,
(2) $(a+b)^{*}=a^{*}+b^{*}$,
(3) $(\alpha a)^{*}=\bar{\alpha} a$,
(4) $(a b)^{*}=b^{*} a^{*}$.

A C^{*}-algebra A is a Banach algebra with a involution satisfying the so-called C*condition:

$$
\left\|a^{*} a\right\|=\|a\|^{2} \text { for } a \in A .
$$

Remark 2.2. If A is a C^{*}-algebra, then $\left\|a^{*}\right\|=\|a\|$ for any $a \in A$. Moreover, if A is unital, then $1^{*}=1$ and $\|1\|=1$. [Problem 1]

Example 2.3. Let S be a countable set with $|S|=\infty$. Then $\ell_{\infty} S$ is a unital C^{*}-algebra. [Problem 2]

Example 2.4. Let X be a compact Hausdorff space. Then $C(X)$ is a unital C^{*}-algebra. [Problem 3]

Example 2.5. Let \mathcal{H} be a (separable) Hilbert space. Then $\mathbb{B}(\mathcal{H})$ is a unital C^{*}-algebra. If $\operatorname{dim} \mathcal{H}=\infty$, then $\mathbb{K}(\mathcal{H})$ is non-unital. More generaly, norm-closed $*$-subalgebra $A \subset \mathbb{B}(\mathcal{H})$ is a (concrete) C^{*}-algebra.

If $\operatorname{dim} \mathcal{H}=n<\infty$, then $\mathcal{H}=\mathbb{C}^{n}$ and $\mathbb{B}(\mathcal{H})=\mathbb{M}_{n}$ (the set of all $n \times n$ matrices over $\mathbb{C})$.

Definition 2.6. Let A be unital Banach algebra and $a \in A$. We say a is invertible in A if there exists $b \in A$ such that $b a=a b=1$. Notice that such b is unique, and so we may write $a^{-1}:=b$. The set

$$
G L(A):=\{a \in A \mid a \text { is invertible in } A\} .
$$

is a group under the multiplication.

Definition 2．7．Let A be unital Banach algebra and $a \in A$ ．We define the spectrum of a by

$$
\sigma(a)=\sigma_{A}(a):=\{\alpha \in \mathbb{C} \mid a-\alpha 1 \notin G L(A)\},
$$

Example 2．8．If $f \in C(X)$ ，then $\sigma(f)=f(X)$ ．［Problem 4］
Example 2．9．If $T \in \mathbb{M}_{n}$ ，then $\sigma(T)$ is the set of all eigenvalues of T ．
Theorem 2．10．Let A be unital Banach algebra and $a \in A$ ．Then $\sigma(a)$ is a non－empty compact subset of \mathbb{C} ．

Proof．省略．（複素解析を使う．）

Theorem 2.11 （Gelfand－Mazur）．Let A be a unital Banach algebra．If any non－zero $a \in A$ is invertible，then $A=\mathbb{C}$ ．

Proof．Let $0 \neq a \in A$ ．Then there is $\alpha \in \sigma(a)$ ．Hence $a-\alpha 1$ is not invertible and must be zero，i．e．，$a=\alpha 1$ ．

Definition 2．12．Let A be unital Banach algebra and $a \in A$ ．We define the spectral radius of a by

$$
r(a):=\{|\alpha| \mid \alpha \in \sigma(a)\} .
$$

Example 2．13．If $f \in C(X)$ ，then $r(f)=\|f\|_{\infty}$ ．
Example 2．14．If

$$
a=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \in \mathbb{M}_{2},
$$

then $\|a\|=1$ ，but $r(a)=0$ ．［Problem 5］
Theorem 2.15 （Beurling）．Let A be a unital Banach algebra and $a \in A$ ．Then

$$
r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=\inf _{n \in \mathbb{N}}\left\|a^{n}\right\|^{1 / n}
$$

Proof．省略．
Corollary 2．16．Let A be a unital C^{*}－algebra．If $a \in A$ is norml，i．e．，$a^{*} a=a a^{*}$ ，then $\|a\|=r(a)$ ．

Proof．Since

$$
\left\|a^{2^{n}}\right\|^{2}=\left\|\left(a^{2^{n}}\right)^{*} a^{2^{n}}\right\|=\left\|\left(a^{*} a\right)^{2^{n}}\right\|=\left\|\left(a^{*} a\right)^{2^{n-1}}\right\|^{2}=\cdots=\left\|a^{*} a\right\|^{2^{n}}=\|a\|^{2^{n+1}},
$$

we have $\|a\|=\left\|a^{2^{n}}\right\|^{1 / 2^{n}} \rightarrow r(a)$ ．
Remark 2．17．If A is a unital C^{*}－algebra，then $\|a\|=\left\|a^{*} a\right\|^{1 / 2}=r\left(a^{*} a\right)^{1 / 2}$ ．Hence the C^{*}－norm is completely determined by its algebraic stracture and it is unique．

Definition 2．18．Let A be a unital（Banach）algebra．A subspace I of A is said to be left（resp．right）ideal of A if

$$
a \in A \text { and } b \in I \Longrightarrow a b \in I \text { (resp. } b a \in I) .
$$

An ideal in A is a left and a right ideal in A ．

Example 2．19．Let Y be a closed subset of a compact Hausdorff space X ．Then

$$
I_{Y}:=\left\{f \in C(X)|f|_{Y}=0\right\}
$$

is an ideal of $C(X)$ ．［Problem 6］
Example 2．20．The matrix algebra \mathbb{M}_{n} has no proper ideal．［Problem 7］
Proposition 2．21．Let A be a unital Banach algebra，$I \subset A$ a closed ideal．Then the quotient space A / I becomes a unital Banach algebra as follows：
（1）$[a]+[b]:=[a+b]$ ，
（2）$\alpha[a]:=[\alpha a]$ ，
（3）$[a][b]:=[a b]$ ，
（4）$\|[a]\|:=\inf \{\|a+b\|: b \in I\}$ ，
where $[a]:=a+I=\{a+b \mid b \in I\} \in A / I$ ．
Proof．省略．
Remark 2．22．What is the quotient algebra $C(X) / I_{Y}$ for a closed subset Y of X ．［Prob－ lem 8］

Definition 2．23．A maxiaml ideal in a unital（Banach）algebra A is a proper ideal in A ， which is not contained in any other proper ideal in A ．

Example 2．24．For any element $x \in X$ ，then $I_{\{x\}}$ is a maximal ideal in $C(X)$ ．［Problem 9］

Remark 2．25．For any ideal I of unital（Banach）algebra A ，by Zorn＇s lemma，there exists a maximal ideal J of A such that $I \subset J$ ．

Proposition 2．26．Let I be an ideal of unital Banach algebra A ．Then
（1）The closure \bar{I} is an ideal of A ．
（2）If I is maximal，then I is closed．

Proof．省略．

Theorem 2．27．Let I be an ideal of unital abelian Banach algebra A ．Then I is maximal if and only if $A / I=\mathbb{C}$ ．

Proof．An ideal I is maximal if and only if A / I is a field．Use Gelfand－Mazur theorem．
Definition 2．28．Let A, B be（unital）algebras．A homomorphism from A to B is a linear map $\pi: A \rightarrow B$ such that $\pi(a b)=\pi(a) \pi(b)$ for any $a, b \in A$ ．If $\pi\left(1_{A}\right)=1_{B}$ ，then we say π is unital．When A, B are $*$－algebras，we say π is $*$－homomorphism if $\pi\left(a^{*}\right)=\pi(a)^{*}$ ．

A character on an abelian algebra A is a non－zero homomorphism $\chi: A \rightarrow \mathbb{C}$ ．We denote by \hat{A} the set of all characters on A ．

Example 2．29．For $x \in X$ ，we define a character χ_{x} on $C(X)$ by $\chi_{x}(f):=f(x)$ for $f \in C(X)$ ．Then $\operatorname{ker} \chi_{x}=I_{\{x\}}$ ，i．e．，it is a maximal ideal．

Theorem 2．30．Let A be a unital abelian Banach algebra．
(1) If $\chi \in \hat{A}$, then $\chi(1)=1$ and $\|\chi(a)\| \leq\|a\|$.
(2) $\hat{A} \neq \emptyset$ and the map $\chi \mapsto \operatorname{ker} \chi$ is a bijection from \hat{A} onto the set of all maximal ideals of A.
(3) $\sigma(a)=\{\chi(a): \chi \in \hat{A}\}$ for $a \in A$.

Proof. (1) It is easy to see that $\chi(1)=1$. Hence $\|\chi\| \geq 1$. Suppose that $\|\chi\|>1$, i.e., there is $0 \neq a \in A$ such that $\|a\|<1=\chi(a)$. If we put $b=\sum_{n \in \mathbb{N}} a^{n} \in A$, then $a+a b=b$. Therefore we have

$$
\chi(b)=\chi(a)+\chi(a) \chi(b)=1+\chi(b),
$$

which is a contradiction.
(2) It is easy to show that ker χ is a maximal ideal for any $\chi \in \hat{A}$. Conversely, if $I \subset A$ is a maximal ideal, then $A / I=\mathbb{C}$. Hence we define a character $\chi: A \ni a \mapsto[a] \in A / I=\mathbb{C}$, which satisfies ker $\chi=I$.
(3) If $\alpha \in \sigma(a)$, then $a-\alpha 1$ is not invertible. Hence there is a maximal ideal $I=\operatorname{ker} \chi$ such that $a-\alpha 1 \in I$. So $\chi(a)=\alpha$. Conversely, if $\alpha=\chi(a)$, then $\chi(a-\alpha 1)=0$. Hence $a-\alpha 1$ is not invertible.

Theorem 2.31. Let A be a unital abelian Banach algebra. Then $\hat{A} \subset A^{*}$ is a weak-* compact Hausdorff space.

Proof. It is easy to see that \hat{A} is weak-* closed. By Banach-Alaoglu theorem, it is weak-* compact.

Definition 2.32. Let A be a unital abelian Banach algebra. For $a \in A$, we define $\hat{a} \in C(\hat{A})$ by $\hat{a}(\chi)=\chi(a)$. Then we define the Gelfand transform $\gamma: A \rightarrow C(\hat{A})$ by $\gamma(a)=\hat{a}$.

Theorem 2.33 (Gelfand-Naimark). Let A be a unital abelian Banach algebra. The the Gelfand transform γ is a norm-decreasing homomorphism and $\|\hat{a}\|_{\infty}=r(a)$ for $a \in A$.

If A is C^{*}-algebra, then γ is isometric $*$-isomorphism.
Proof. It is easy to see that γ is homomorphism. For any $a \in A$, we have

$$
\|\gamma(a)\|=\|\hat{a}\|_{\infty}=\sup _{\chi \in \hat{A}}|\hat{a}(\chi)|=r(a) \leq\|a\| .
$$

Now assume that A is a C^{*}-algebra. Since A is abelian, any $a \in A$ is normal. Hence $\|\hat{a}\|_{\infty}=r(a)=\|a\|$ and so γ is isometric.

It is easy to check that $\gamma(A) \subset C(\hat{A})$ is closed $*$-subalgebra. By Stone-Weierstrass theorem, we have $\gamma(A)=C(\hat{A})$.

Definition 2.34. Let A be a unital C^{*}-algebra and $a \in A$. We say
(1) a is unitay if $a^{*} a=a a^{*}=1$,
(2) a is self-adjoint if $a^{*}=a$.

We denote by $\mathcal{U}(A)$ the set of all unitaries in A, and by $A_{\text {sa }}$ the set of all self-adjoint elements in A.

Theorem 2.35. Let A be a unital C^{*}-algebra and $a \in A$. Then
(1) If a is unitary, then $\sigma(a) \subset \mathbb{T}=\{\alpha \in \mathbb{C}:|\alpha|=1\}$.
（2）If a is self－adjoint，then $\sigma(a) \subset[-\|a\|,\|a\|]$ ．

Proof．省略．

Theorem 2．36．Let B be a unital C^{*}－subalgebra of a unital C^{*}－algebra A with $1_{B}=1_{A}$ ． Then $\sigma_{B}(a)=\sigma_{A}(a)$ for $a \in B$ ．

Proof．It is trivial that $\sigma_{A}(a) \subset \sigma_{B}(a)$ ．Conversely，let $b=a-\alpha 1 \in B$ ．Then it suffices to show that if $\exists b^{-1} \in A$ ，then $b^{-1} \in B$ ．If b is self－adjoint，then $\sigma_{B}(b) \subset \mathbb{R}$ ．Hence for any $\varepsilon>0$ ，we have $(b-i \varepsilon 1)^{-1} \in B$ ．Since $\left\|(b-i \varepsilon 1)^{-1}-b^{-1}\right\| \rightarrow 0$ ，we have $b^{-1} \in B$ ．If b is not self－adjoint，then $\left(b^{*} b\right)^{-1} \in A$ implies $\left(b^{*} b\right)^{-1} \in B$ ．Hence $b^{-1}=\left(b^{*} b\right)^{-1} b^{*} \in B$ ．

Definition 2．37．Let A be a unital C^{*}－algebra and $a \in A$ normal．We denote by $C^{*}(a)$ a unital abelian C^{*}－subalgebra of A ，which is generated by a ．
Theorem 2．38．Let A be a unital C^{*}－algebra and $a \in A$ normal．The map $\hat{a}: \widehat{C^{*}(a)} \ni$ $\chi \mapsto \chi(a) \in \sigma(a)$ is homeomorphic．Hence it induces the isometric $*$－isomorphism $\gamma^{-1} \circ$ $\hat{a}^{t}: C(\sigma(a)) \rightarrow C^{*}(a)$ with $z \mapsto a$ ，where z is the inclusion map of $\sigma(a)$ in \mathbb{C} ．

Proof．省略．

Definition 2．39．For a normal element a in a unital C^{*}－algebra A ，we denote by γ_{a} the unique unital＊－homomorphism from $C(\sigma(a))$ to A ，which is called the functional calculus of a ．If p is a polynomial，then $\gamma_{a}(p)=p(a)$ ，so for $f \in C(\sigma(a))$ we write $f(a)=\gamma_{a}(f)$ ．

Theorem 2.40 （Spectral Mapping）．Let A be a unital C^{*}－algebra and $a \in A$ normal． Then $\sigma(f(a))=f(\sigma(a))$ for $f \in C(\sigma(a))$ ．

Proof．省略．

Definition 2．41．Let A be a unital C^{*}－algebra．We say $a \in A$ is positive if a is self－adjoint and $\sigma(a) \subset[0, \infty)$ ．In this case，we write $a \geq 0$ ．We also denote $A_{+}=\{a \in A: a \geq 0\}$ ．

Definition 2．42．For self－adjoint elements a, b in a unital C^{*}－algebra A ，we write $a \leq b$ if $b-a \geq 0$ ．

Example 2．43．If $A=C(X)$ ，then $f \in C(X)$ is positive if and only if $f(x) \geq 0$ for any $x \in X$ ．

Theorem 2．44．Let A be a unital C^{*}－algebra and $a \in A$ ．Then $a \geq 0$ if and only if $a=b^{*} b$ for some $b \in A$ ．

Proof．If $a \geq 0$ ，then there is $b \geq 0$ such that $a=b^{2}$ ．Conversely，if $a=b^{*} b$ ，then a is self－adjoint．Moreover there are $a_{+}, a_{-} \geq 0$ such that $a=a_{+}-a_{-}$and $a_{+} a_{-}=0$ ．Hence it suffices to show that $a_{-}=0$ ．If we set $c=b a_{-}$，then $c^{*} c=a_{-} b^{*} b a_{-}=-a_{-}^{3} \leq 0$ ． Since $\sigma\left(c^{*} c\right) \cup\{0\}=\sigma\left(c c^{*}\right) \cup\{0\}, c c^{*} \leq 0$ ．Since $c^{*} c=2 \operatorname{Re}(c)^{2}+2 \operatorname{Im}(c)^{2}-c c^{*} \geq 0$ ， $c^{*} c \in A_{+} \cap\left(-A_{+}\right)=\{0\}$ ．Hence $a_{-}=0$ ．

Theorem 2．45．Let A be a unital C^{*}－algebra and $a, b, c \in A$ ．
（1）$a \geq b \geq 0 \Longrightarrow\|a\| \geq\|b\|$ ，
（2）$a \geq b \Longrightarrow c^{*} a c \geq c^{*} b c$ ，
（3）a, b are invertible and $a \geq b \geq 0 \Longrightarrow 0 \leq b^{-1} \leq a^{-1}$ ．

Proof. (1) Use the Gelfand transform.
(2) Use the previous theorem.
(3) First prove that if $c \geq 1$, then $c^{-1} \leq 1$, by using the Gelfand transform. Next put $c=a^{-1 / 2} b a^{-1 / 2} \geq 1$.

Theorem 2.46. Let A, B be unital C^{*}-algebras and $\pi: A \rightarrow B$ a unital $*$-homomorphism. Then
(1) $\pi(a) \geq 0$ for $a \in A_{+}$,
(2) $\|\pi(a)\| \leq\|a\|$ for $a \in A$,
(3) If π is injective, then π is isometric.

Proof. (1) Easy.
(2) Since $\sigma(\pi(a)) \subset \sigma(a)$, we have

$$
\|a\|^{2}=\left\|a^{*} a\right\|=r\left(a^{*} a\right) \geq r\left(\pi\left(a^{*} a\right)\right)=r\left(\pi(a)^{*} \pi(a)\right)=\left\|\pi(a)^{*} \pi(a)\right\|=\|\pi(a)\|^{2} .
$$

(3) It suffices to show that $\left\|\pi\left(a^{*} a\right)\right\|=\left\|a^{*} a\right\|$. Hence we may assume that A, B are abelian. We define $\pi^{\prime}: \hat{B} \ni \chi \mapsto \chi \circ \pi \in \hat{A}$. Then we have $\pi^{\prime}(\hat{B})=\hat{A}$. Hence for $a \in A$,

$$
\|a\|=\|\hat{a}\|_{\infty}=\sup _{\chi \in \hat{A}}|\chi(a)|=\sup _{\chi \in \hat{B}}|\chi(\pi(a))|=\|\pi(a)\| .
$$

Definition 2.47. Let A be a unital C^{*}-algebra. A linear functional $\omega: A \rightarrow \mathbb{C}$ is positive if $\omega(a) \geq 0$ for $a \in A_{+}$.

Example 2.48. Any positive linear functional ω on $C(X)$ is given by $\mu \in M(X)_{+}$via

$$
\omega(f)=\int_{X} f(x) d \mu(x)
$$

(Riesz-Markov-Kakutani representation theorem.)

Example 2.49. Any positive linear functional ω on \mathbb{M}_{n} is given by $h \in \mathbb{M}_{n,+}$ such that

$$
\omega(a)=\operatorname{Tr}(a h),
$$

where Tr is the canonical trace on \mathbb{M}_{n}.
Proposition 2.50 (Schwarz inequality). If ω is a positive linear functional on a unital C^{*}-algebra A, then

$$
\left|\omega\left(b^{*} a\right)\right|^{2} \leq \omega\left(b^{*} b\right) \omega\left(a^{*} a\right)
$$

for any $a, b \in A$.
Proof. Notice that $\langle a, b\rangle=\omega\left(b^{*} a\right)$ is a semi-inner product on A.
Theorem 2.51. Let A be a unital C^{*}-algebra. If ω is a positive linear functional on a unital C^{*}-algebra, then ω is bounded with $\|\omega\|=\omega(1)$.
Proof. If $\|a\| \leq 1$, then $0 \leq a^{*} a \leq 1$. Hence by Schwarz inequality,

$$
|\omega(a)|^{2}=|\omega(1 a)|^{2} \leq \omega(1) \omega\left(a^{*} a\right) \leq \omega(1)^{2} .
$$

Theorem 2.52. Let A be a unital C^{*}-algebra and $\omega \in A^{*}$. Then ω is positive if and only if $\omega(1)=\|\omega\|$.
Proof. Suppose that $\omega(1)=\|\omega\|=1$. First show that $\omega(a) \in \mathbb{R}$ for $a \in A_{\text {sa }}$. Next if $a \geq 0$ with $\|a\|=1$, then $1-a \in A_{\mathrm{sa}}$ and $\|1-a\| \leq 1$. So $1-\omega(a)=\omega(1-a) \leq 1$.
Definition 2.53. Let A be a unital C^{*}-algebra. We denote by A_{+}^{*} the set of all positive linear functionals on A. If $\omega \in A_{+}^{*}$ with $\|\omega\|=\omega(1)=1$, then we call it a state. We denote by $S(A)$ the set of all states on A.
Theorem 2.54. Let A be a unital C^{*}-algebra. Then $S(A)$ is a weak-* compact convex subset of A^{*}.
Proof. Since $S(A)=\left\{\omega \in A_{+}^{*}: \omega(1)=1\right\}$, it is weak-* closed convex. By Bnach-Alaoglu theorem, $S(A)$ is weak-* compact.
Theorem 2.55. Let A be a non-zero unital C^{*}-algebra and $a \in A$ normal. Then there is $\omega \in S(A)$ such that $\omega(a)=\|a\|$.
Proof. We may assume that $a \neq 0$. Since $B=C^{*}(a)$ is abelian, there is $\chi \in \hat{B}$ such that $\|a\|=\|\hat{a}\|_{\infty}=|\chi(a)|$. By Hahn-Banach extension theorem, there is an extension ω such that $\|\omega\|=1$. Since $\omega(1)=\chi(1)=1, \omega$ is positive with $\|\omega\|=1$.
Definition 2.56. Let A be a unital C^{*}-algebra and $\omega \in S(A)$. Then

$$
N_{\omega}:=\left\{a \in A: \omega\left(a^{*} a\right)=0\right\}
$$

is a closed left ideal of A. (Use Schwarz inequality.) Next we define a inner product on A / N_{ω} by

$$
\langle[a],[b]\rangle:=\omega\left(b^{*} a\right),
$$

and denote by \mathcal{H}_{ω} the completion of A / N_{ω}. Now we define a $*$-homomorphism $\pi_{\omega}: A \rightarrow$ $\mathbb{B}\left(\mathcal{H}_{\omega}\right)$ by

$$
\pi_{\omega}(a)[b]:=[a b] .
$$

If we set $\xi_{\omega}=[1] \in \mathcal{H}_{\omega}$, then ξ_{ω} is cyclic for π_{ω}, i.e., $\pi_{\omega}(A) \xi_{\omega}$ is dense in \mathcal{H}_{ω}. We say $\left(\pi_{\omega}, \mathcal{H}_{\omega}, \xi_{\omega}\right)$ is the GNS repersentation associated with ω.
Theorem 2.57 (Gelfand-Naimark). If A is a unital C^{*}-algebra, then it has a faithful representation.
Proof. We define the universal representation $\pi_{u}:=\bigoplus_{\omega \in S(A)} \pi_{\omega}$. If $\pi_{u}(a)=0$, then $\pi_{\omega}\left(a^{*} a\right)=0$ for any $\omega \in S(A)$. If we put $b=\left(a^{*} a\right)^{1 / 4}$, then $\left\|\pi_{u}(b)\right\|^{4}=\left\|\pi_{u}(b)^{4}\right\|=$ $\left\|\pi_{u}\left(a^{*} a\right)\right\|=0$ and so $\pi_{u}(b)=0$. Therefore there is $\omega \in S(A)$ such that $\left\|a^{*} a\right\|=\omega\left(a^{*} a\right)=$ $\omega\left(b^{4}\right)=\left\|\pi_{\omega}(b)[b]\right\|^{2}=0$. Hence $a=0$.

3 "Classical" group C^{*}-algebras

Definition 3.1. Let Γ be a countable discrete group. Then $c_{c} \Gamma$ becomes a unital $*$-algebra with the multiplication

$$
f * g(s):=\sum_{t \in \Gamma} f(t) g\left(t^{-1} s\right)
$$

and the involution

$$
f^{*}(s):=\overline{f\left(s^{-1}\right)}
$$

with the unit δ_{e}. The above operations can be also defined on $\ell_{1} \Gamma$, which becomes a unital *-algebra.

Definition 3．2．A unitay representation of Γ is a homomorphism of Γ into the unitary group of $\mathbb{B}\left(\ell_{2} \Gamma\right)$ ．We denote by λ the left regular representation：

$$
(\lambda(s) f)(t):=f\left(s^{-1} t\right) \quad(s, t \in \Gamma) .
$$

Remark 3．3．Let $\left\{\delta_{t}\right\}_{t \in \Gamma}$ be the canonical ONB for $\ell_{2} \Gamma$ ．Then

$$
\lambda(s) \delta_{t}=\delta_{s t} \quad(s, t \in \Gamma)
$$

［Problem 10］

Lemma 3．4．There is a one－to－one correspondence between the set of all unitary repre－ sentation of Γ and the set of all representations of $c_{c} \Gamma$（or $\ell_{1} \Gamma$ ）：

$$
\pi \mapsto \tilde{\pi}(f):=\sum_{s \in \Gamma} f(s) \pi(s), \quad\left(f \in c_{c} \Gamma\right)
$$

and

$$
\|\tilde{\pi}(f)\| \leq\|f\|_{1}
$$

Proof．省略．
Remark 3．5．For $f \in c_{c} \Gamma$ ，we have

$$
\tilde{\lambda}(f) g=f * g \quad\left(g \in \ell_{2} \Gamma\right)
$$

［Problem 11］
We also simply write π for the extened representation $\tilde{\pi}$ of $c_{c} \Gamma$ ．
Lemma 3．6．The extended representation λ of $c_{c} \Gamma$（or $\ell_{1} \Gamma$ ）is injective．

Proof．省略．

Definition 3．7．The reduced group C^{*}－algebra is defined to be $C_{\lambda}^{*} \Gamma:=\overline{\lambda\left(c_{c} \Gamma\right)}=\overline{\lambda\left(\ell_{1} \Gamma\right)} \subset$ $\mathbb{B}\left(\ell_{2} \Gamma\right)$ ．

The full group C^{*}－algebra it the completion of $c_{c} \Gamma$ with respect to the C^{*}－norm

$$
\|f\|_{u}:=\sup \{\|\pi(f)\|: \pi \text { is a unitary representation of } \Gamma\}
$$

Example 3．8．Let $\Gamma=\mathbb{Z}=\langle a\rangle$ be the integer group．The Fourier transform induces the unitary $u: \ell_{2} \mathbb{Z} \rightarrow L^{2}(\mathbb{T}), f \mapsto \mathcal{F}(f)=\hat{f}$ ，which is defined by

$$
\hat{f}(z):=\sum_{n \in \mathbb{Z}} f(n) z^{n}
$$

Then for any $f \in c_{c} \mathbb{Z}$ and $g \in \ell_{2} \mathbb{Z}$ ，we have

$$
u \lambda(f) u^{*} \hat{g}=u \lambda(f) g=\mathcal{F}(f * g)=\hat{f} \hat{g}=M_{\hat{f}} \hat{g}
$$

where $M_{f} \in \mathbb{B}\left(L^{2}(\mathbb{T})\right)$ is defined by $M_{f} g:=f g$ for $f \in C(\mathbb{T})$ and $g \in L^{2}(\mathbb{T})$ ，which gives an isometric $*$－homomorphism $C(\mathbb{T}) \rightarrow \mathbb{B}\left(L^{2}(\mathbb{T})\right)$ ．Hence the map $\lambda(f) \mapsto u \lambda(f) u^{*}=M_{\hat{f}}$ gives a isometric $*$－isomorphism between $C_{\lambda}^{*} \mathbb{Z}$ and $C(\mathbb{T})$ ．

Since \mathbb{Z} is abelian，$C^{*} \mathbb{Z}$ is a unital abelian C^{*}－algebra．By the Gelfand transform，we have $C^{*} \mathbb{Z}=C\left(\widehat{C^{*} \mathbb{Z}}\right)$ ．For each chracter χ on $C^{*} \mathbb{Z}$ ，we have a scalar $z=\chi\left(\delta_{a}\right) \in \mathbb{T}$ and this gives a homeomorphism．Therefore $C^{*} \mathbb{Z}=C_{\lambda}^{*} \mathbb{Z}=C(\mathbb{T})$ ．

More generally，for every abelian group Γ ，the Pontryagin duality gives $C^{*} \Gamma=C_{\lambda}^{*} \Gamma=$ $C(\hat{\Gamma})$ ．

Proposition 3.9. Let $\pi: \Gamma \rightarrow \mathbb{B}(\mathcal{H})$ be a unitary representation. Then there is a unique *-homomorphism $\bar{\pi}: C^{*}(\Gamma) \rightarrow \mathbb{B}(\mathcal{H})$ such that $\bar{\pi}(f)=\pi(f)$ for $f \in c_{c} \Gamma$.

Proof. It follows from $\|\pi(f)\| \leq\|f\|_{u}$ for $f \in c_{c} \Gamma$.
Definition 3.10. A function $\varphi: \Gamma \rightarrow \mathbb{C}$ is said to be positive definite if the matrix

$$
\left[\varphi\left(s^{-1} t\right)\right]_{s, t \in F} \in \mathbb{M}_{F}
$$

is positive for any finite subset $F \subset \Gamma$, i.e.,

$$
\sum_{i, j=1}^{n} \overline{\alpha_{i}} \varphi\left(s_{i}^{-1} s_{j}\right) \alpha_{j} \geq 0
$$

for any $n \in \mathbb{N}, s_{1}, \ldots, s_{n} \in \Gamma$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$.
We denote by $P(\Gamma)$ the set of all positive definite functions on Γ.
Example 3.11. For $f \in c_{c} \Gamma$, the function $f^{*} * f$ is positive definite. [Problem 12]
Remark 3.12. Let $\pi: \Gamma \rightarrow \mathbb{B}(\mathcal{H})$ be a unitary representation and $\xi \in \mathcal{H}$. If we define

$$
\varphi(s):=\langle\pi(s) \xi, \xi\rangle
$$

then φ is positive definite. [Problem 13]
Proposition 3.13. Let $f \in c_{c} \Gamma$. Then the following are equivalent:
(1) f is positive definite,
(2) $\lambda(f)$ is positive.

Proof. For a finite subset $F \subset \Gamma$, set $\xi=\sum_{s \in F} \alpha_{s} \delta_{s} \in \ell_{2} \Gamma$. Then

$$
\langle\lambda(f) \xi, \xi\rangle=\sum_{r \in \operatorname{supp}(f)} \sum_{s, t \in F} f(r) \alpha_{s} \overline{\alpha_{t}}\left\langle\lambda(r) \delta_{s}, \delta_{t}\right\rangle=\sum_{s, t \in F} \overline{\alpha_{t}} f\left(t s^{-1}\right) \alpha_{s} .
$$

Definition 3.14. For a function $\varphi: \Gamma \rightarrow \mathbb{C}$, we define a correspoinding functional $\omega_{\varphi}: c_{c} \Gamma \rightarrow \mathbb{C}$ by

$$
\omega_{\varphi}(f)=\sum_{s \in \Gamma} f(s) \varphi(s)
$$

Theorem 3.15. Let φ be function with $\varphi(e)=1$. The following are equivalent:
(1) φ is positive definite.
(2) there exists a unitary representation λ_{φ} of Γ on a Hilbert space \mathcal{H}_{φ} and a cyclic vector ξ_{φ} such that

$$
\varphi(s)=\left\langle\lambda_{\varphi}(s) \xi_{\varphi}, \xi_{\varphi}\right\rangle
$$

(3) ω_{φ} extends to a state on $C^{*} \Gamma$.

Proof. $(1) \Longrightarrow(2)$: Let φ be a positive definite function. Define a semi-inner product on $c_{c} \Gamma$ by

$$
\langle f, g\rangle_{\varphi}=\sum_{s, t \in \Gamma} \varphi\left(s^{-1} t\right) f(t) \overline{g(s)}
$$

By the separation and the completion, we get a Hilbert space $\ell_{2}^{\varphi} \Gamma$. Then we define $\lambda_{\varphi}(s)[f]=[s f]$ for $f \in c_{c} \Gamma$ and $\xi_{\varphi}=\left[\delta_{e}\right]$, which satisfy desired properties, where $(s f)(t)=$ $f\left(s^{-1} t\right)$.
$(2) \Longrightarrow(3)$: Trivial.
$(3) \Longrightarrow(1)$: If we write

$$
f=\sum_{i=1}^{n} \alpha_{i} \delta_{s_{i}} \in c_{c} \Gamma
$$

then

$$
\sum_{i, j=1}^{n} \overline{\alpha_{i}} \varphi\left(s_{i}^{-1} s_{j}\right) \alpha_{j}=\omega_{\varphi}\left(f^{*} * f\right) \geq 0
$$

Corollary 3.16. The map $P(\Gamma) \ni \varphi \mapsto \omega_{\varphi} \in\left(C^{*} \Gamma\right)_{+}^{*}$ gives a bijection.
Proposition 3.17. Let φ_{1}, φ_{2} be positive definite functions on Γ. Then the product $\varphi_{1} \varphi_{2}$ is also positive definite.

Proof. Let $a_{k}=\left[a_{i j}^{(k)}\right], a_{i j}^{(k)}=\varphi_{k}\left(s_{i}^{-1} s_{j}\right)$ for $k=1,2$. Then a_{1}, a_{2} are positive matrices. Then $a=a_{1} \circ a_{2}=\left[a_{i j}^{(1)} a_{i j}^{(2)}\right]$ (Schur product) is also positive. Hence if $\xi=\left[\alpha_{1}, \ldots, \alpha_{n}\right] \in$ \mathbb{C}^{n}, then

$$
\sum_{i, j=1}^{n} \overline{\alpha_{i}} \varphi_{1}\left(s_{i}^{-1} s_{j}\right) \varphi_{2}\left(s_{i}^{-1} s_{j}\right) \alpha_{j}=\langle a \xi, \xi\rangle \geq 0
$$

Definition 3.18. A group Γ is amenable if there exists a state $\mu \in \ell_{\infty} \Gamma$ which is invariant under left translation: for any $s \in \Gamma$ and $f \in \ell_{\infty} \Gamma, \mu(s f)=\mu(f)$.

Definition 3.19. Let $\operatorname{Prob}(\Gamma)$ be the space of all probability measures on Γ :

$$
\operatorname{Prob}(\Gamma)=\left\{\mu \in \ell_{1} \Gamma: \mu \geq 0, \sum_{s \in \Gamma} \mu(s)=1\right\} .
$$

Definition 3.20. We say Γ has an approximate invariant mean if for any finite subset $F \subset \Gamma$ and $\varepsilon>0$, there exists $\mu \in \operatorname{Prob}(\Gamma)$ such that

$$
\max _{s \in E}\|s \mu-\mu\|_{1}<\varepsilon
$$

where $s \mu(F)=\mu\left(s^{-1} F\right)$ for $F \subset \Gamma$.
Definition 3.21. We say Γ satisfies the Følner condition if for any finite subset $E \subset \Gamma$ and $\varepsilon>0$, there exists a finite subset $F \subset \Gamma$ such that

$$
\max _{s \in E} \frac{|s F \triangle F|}{|F|}<\varepsilon
$$

where $s F=\{s t: t \in F\}$.

Example 3.22. All abelian groups are amenable by the Markov-Kakutani fixed point theorem.

Example 3.23. The free group \mathbb{F}_{d} is not amenable for $d \geq 2$. Let $d=2$ and a, b be the free generators. Set

$$
A^{+}=\{\text {all reduced words starting with } a\} \subset \mathbb{F}_{d},
$$

similarly let A^{-}, B^{+}, B^{-}. Then for $C=\left\{e, b, b^{2}, \ldots,\right\} \subset \mathbb{F}_{d}$, we have

$$
\begin{aligned}
\mathbb{F}_{d} & =A^{+} \sqcup A^{-} \sqcup\left(B^{+} \backslash C\right) \sqcup\left(B^{-} \sqcup C\right) \\
& =A^{+} \sqcup a A^{-} \\
& =b^{-1}\left(B^{+} \backslash C\right) \sqcup\left(B^{-} \sqcup C\right) .
\end{aligned}
$$

Suppose that there is an invariant state μ on $\ell_{\infty} \mathbb{F}_{d}$. Then

$$
\begin{aligned}
1=\mu(1) & =\mu\left(\chi_{A^{+}}\right)+\mu\left(\chi_{A^{-}}\right)+\mu\left(\chi_{B^{+} \backslash C}\right)+\mu\left(\chi_{B^{-} \sqcup C}\right) \\
& =\mu\left(\chi_{A^{+}}\right)+\mu\left(a \chi_{A^{-}}\right)+\mu\left(b^{-1} \chi_{B^{+} \backslash C}\right)+\mu\left(\chi_{B^{-} \sqcup C}\right) \\
& =2 \mu(1)=2,
\end{aligned}
$$

which is a contradiction.
More generally, if Γ contains \mathbb{F}_{d}, then Γ is non-amenable.
Theorem 3.24. Let Γ be a contable discrete group. Then the following are equivalent:
(1) Γ is amenable,
(2) Γ has an approximate invariant mean,
(3) Γ satisfies the Følner condition,
(4) there is unit vectors $\xi_{i} \in \ell_{2} \Gamma$ such that $\left\|\lambda(s) \xi_{i}-\xi_{i}\right\|_{2} \rightarrow 0$ for $s \in \Gamma$,
(5) there is a sequence $\left(\varphi_{i}\right)$ of finitly supported positive definite functions on Γ such that $\varphi_{i}(s) \rightarrow 1$ for $s \in \Gamma$,
(6) $C^{*} \Gamma=C_{\lambda}^{*} \Gamma$,
(7) $C_{\lambda}^{*} \Gamma$ has a character, i.e., one-dimenssional representation.

Proof. (1) $\Longrightarrow(2)$: Let μ be an invariant mean on $\ell_{\infty} \Gamma$. Since $\ell_{1} \Gamma$ is weak-* dence in $\left(\ell_{\infty} \Gamma\right)^{*}$, there is a sequence $\mu_{i} \in \operatorname{Prob}(\Gamma)$ such that $\mu_{i} \rightarrow \mu$ in $\left(\ell_{\infty} \Gamma\right)^{*}$ in the weak-* topology. Since $\left(\ell_{1} \Gamma\right)^{*}=\ell_{\infty} \Gamma$, we have $s \mu_{i}-\mu_{i} \rightarrow 0$ in $\ell_{1} \Gamma$ in the weak topology. Hence for any $s_{1}, \ldots, s_{n} \in \Gamma$, since the weak and norm closed doincide on a convex subset, we have

$$
0 \in \overline{\operatorname{conv}} \bigoplus_{i=1}^{n}\left\{s_{i} \mu-\mu: \mu \in \operatorname{Prob}(\Gamma)\right\} \subset\left(\ell_{1} \Gamma\right)^{n}
$$

$(2) \Longrightarrow(3):$ Let $E \subset \Gamma$ be a finite subset and $\varepsilon>0$. Choose $\mu \in \operatorname{Prob}(\Gamma)$ such that

$$
\sum_{s \in E}\|s \mu-\mu\|_{1}<\varepsilon .
$$

For $f \in \ell_{1} \Gamma$ with $f \geq 0$ and $r \geq 0$, we define

$$
F(f, r)=\{t \in \Gamma: f(t)>r\} .
$$

Observe that if $f(t)>g(t)$, then

$$
\left|\chi_{F(f, r)}(t)-\chi_{F(g, r)}(t)\right|=1 \Longleftrightarrow f(t)>r \geq t .
$$

Hence

$$
\begin{aligned}
\|s \mu-\mu\|_{1} & =\sum_{t \in \Gamma}|s \mu(t)-\mu(t)| \\
& =\sum_{t \in \Gamma} \int_{0}^{1}\left|\chi_{F(s \mu, r)}(t)-\chi_{F(\mu, r)}(t)\right| d r \\
& =\int_{0}^{1} \sum_{t \in \Gamma}\left|\chi_{F(s \mu, r)}(t)-\chi_{F(\mu, r)}(t)\right| d r \\
& =\int_{0}^{1}|s F(\mu, r) \triangle F(\mu, r)| d r .
\end{aligned}
$$

Therefore

$$
\varepsilon \int_{0}^{1}|F(\mu, r)| d r=\varepsilon>\sum_{s \in E}\|s \mu-\mu\|_{1}=\int_{0}^{1} \sum_{s \in E}|s F(\mu, r) \triangle F(\mu, r)| d r .
$$

Thus for some r, we must have

$$
\sum_{s \in E}|s F(\mu, r) \triangle F(\mu, r)|<\varepsilon|F(\mu, r)| .
$$

$(3) \Longrightarrow(4)$: Take a Følner sequence $\left(F_{i}\right)$, i.e., $\left(F_{i}\right)$ is a sequence of finite subsets of Γ such that

$$
\frac{\left|s F_{i} \triangle F_{i}\right|}{\left|F_{i}\right|} \rightarrow 0
$$

for any $s \in \Gamma$. Set $\xi_{i}=\left|F_{i}\right|^{-1 / 2} \chi_{F_{i}} \in \ell_{2} \Gamma$. Observe that for finite subsets $E, F \subset \Gamma$,

$$
\left\|\chi_{E}-\chi_{F}\right\|_{2}^{2}=|E \triangle F| .
$$

Hence

$$
\left\|\lambda(s) \xi_{i}-\xi_{i}\right\|_{2}^{2}=\frac{1}{\left|F_{i}\right|}\left\|\chi_{s F_{i}}-\chi_{F_{i}}\right\|_{2}^{2}=\frac{\left|s F_{i} \triangle F_{i}\right|}{\left|F_{i}\right|} \rightarrow 0
$$

$(4) \Longrightarrow(5)$: Take unit vectors $\xi_{i} \in \ell_{2} \Gamma$ with condition (4). We may assume that each ξ_{i} is finitely suppoted. Then $\varphi_{i}(s)=\left\langle\lambda(s) \xi_{i}, \xi_{i}\right\rangle$ is positive definite and $\varphi_{i}(s) \rightarrow\left\|\xi_{i}\right\|_{2}^{2}=1$.
$(5) \Longrightarrow(6)$: We will prove it in the next section.
$(6) \Longrightarrow(7)$: The trivial representation $\tau_{0}: \Gamma \ni s \mapsto 1 \in \mathbb{C}$ extends to $C^{*} \Gamma=C_{\lambda}^{*} \Gamma$.
$(7) \Longrightarrow(1)$: Let $\tau: C_{\lambda}^{*} \Gamma \rightarrow \mathbb{C}$ be any unital $*$-homomorphism, which regard it as a state. By Hahn-Banach theorem, we can extend it to $\mathbb{B}\left(\ell_{2} \Gamma\right)$. Since $\ell_{\infty} \Gamma \ni f \mapsto M_{f} \in \mathbb{B}\left(\ell_{2} \Gamma\right)$, τ is also defined on $\ell_{\infty} \Gamma$. Since $M_{s f}=\lambda(s) M_{f} \lambda\left(s^{-1}\right) \in \ell_{\infty} \Gamma$, we have

$$
\tau\left(M_{s f}\right)=\tau\left(\lambda(s) M_{f} \lambda(s)^{*}\right)=\tau(\lambda(s)) \tau\left(M_{f}\right) \overline{\tau(\lambda(s))}=\tau\left(M_{f}\right)
$$

for any $s \in \Gamma$ and $f \in \ell_{\infty} \Gamma$, (because $\lambda(s)$ belongs to the multiplicative domain of τ).
Remark 3.25. Let $p \geq 1$ be fixed. The condition (5) in the above can be replaced by the following:
(5) $)_{p}$ there is a sequence $\left(\varphi_{i}\right)$ of positive definite functions in $\ell_{p} \Gamma$ such that $\varphi_{i}(s) \rightarrow 1$ for $s \in \Gamma$,

Indeed, it is easy that $(5) \Longrightarrow(5)_{p}$. Conversely, take $k \in \mathbb{N}$ with $k \geq p$. Then φ_{i}^{k} are positive definite such that $\varphi_{i}^{k}(s) \rightarrow 1$ and $\varphi_{i}^{k} \in \ell_{1} \Gamma \subset C_{\lambda}^{*} \Gamma$. Fix $i \geq 1$. Let $\left\|\lambda\left(\varphi_{i}^{k}\right)^{1 / 2}\right\|=$ $c_{i} \geq 0$. By taking $f_{i} \in c_{c} \Gamma$ such that

$$
\left\|\lambda\left(\varphi_{i}^{k}\right)^{1 / 2}-\lambda\left(f_{i}\right)\right\|<\frac{1}{2 i\left(c_{i}+1\right)}
$$

Then we have

$$
\left\|\lambda\left(\varphi_{i}^{k}\right)-\lambda\left(f_{i}^{*} * f_{i}\right)\right\|<\frac{1}{i}
$$

Hence for any $s \in \Gamma$,

$$
\left|\varphi_{i}^{k}(s)-f_{i}^{*} * f_{i}(s)\right|=\left|\left\langle\left[\lambda\left(\varphi_{i}^{k}\right)-\lambda\left(f_{i}^{*} * f_{i}\right)\right] \delta_{e}, \delta_{s}\right\rangle\right| \leq\left\|\lambda\left(\varphi_{i}^{k}\right)-\lambda\left(f_{i}^{*} * f_{i}\right)\right\| \rightarrow 0
$$

It follows that $f_{i}^{*} * f_{i}(s) \rightarrow 1$.

4 "New" group C^{*}-algebras

Definition 4.1. Let π be a unitary representation of a contable discrete group Γ on a Hilbert space \mathcal{H}. For $\xi, \eta \in \mathcal{H}$, we denote the matrix coefficient of π by

$$
\pi_{\xi, \eta}(s):=\langle\pi(s) \xi, \eta\rangle
$$

Note that $\pi_{\xi, \eta} \in \ell_{\infty} \Gamma$.
Definition 4.2. Let D be a non-zero ideal of $\ell_{\infty} \Gamma$. If there exists a dense subspace \mathcal{H}_{0} of \mathcal{H} such that $\pi_{\xi, \eta} \in D$ for all $\xi, \eta \in \mathcal{H}_{0}$, then π is called D-representation. If D is invariant under the left and right translation of Γ on $\ell_{\infty} \Gamma$, then it is said to be translation invariant. In this case, D contains $c_{c} \Gamma$

Example 4.3. $c_{c} \Gamma, \ell_{p} \Gamma, c_{0} \Gamma$ are translation invariant ideals of $\ell_{\infty} \Gamma$.
Lemma 4.4. If π has a cyclic vector ζ such that $\pi_{\zeta, \zeta} \in D$, then π is a D-representation with respect to a dense subspace

$$
\mathcal{H}_{0}=\operatorname{span}\{\pi(s) \xi: s \in \Gamma\}
$$

Proof. Let $\xi=\pi(s) \zeta, \eta=\pi(t) \zeta$. Then

$$
\pi_{\xi, \eta}(r)=\langle\pi(r) \xi, \eta\rangle=\left\langle\pi\left(t^{-1} r s\right) \zeta, \zeta\right\rangle=\pi_{\zeta, \zeta}\left(t^{-1} r s\right)
$$

Hence $\pi_{\xi, \eta} \in D$.
Remark 4.5. It is easy to see that λ is a c_{c}-representation, or a D-representation for any D.

Definition 4.6. The C^{*}-algebra $C_{D}^{*} \Gamma$ is the C^{*}-completion of the group ring $\mathbb{C} \Gamma$ by $\|\cdot\|_{D}$, where

$$
\|f\|_{D}=\sup \{\|\pi(f)\|: \pi \text { is a } D \text {-representation }\} \quad \text { for } f \in c_{c} \Gamma .
$$

Remark 4．7．Note that if D_{1} and D_{2} are ideals of $\ell_{\infty} \Gamma$ with $D_{1} \supset D_{2}$ ，then there exists the canonical quotient map from $C_{D_{1}}^{*} \Gamma$ onto $C_{D_{2}}^{*} \Gamma$ ．

Remark 4．8．Let $\left(\pi_{i}, \mathcal{H}_{i}\right)$ be a family of all D－representations of Γ with a dense sub－ space $\mathcal{H}_{i, 0}$ ．Then $\pi_{u}=\bigoplus_{i} \pi_{i}$ is a D－representation of Γ with a dense subspace $\mathcal{H}_{u, 0}=$ $\bigoplus_{\text {finite }} \mathcal{H}_{i, 0}$ ，which gives a faithful D－representation of $C_{D}^{*} \Gamma$ ．Indeed，suppose that there is $0 \neq x \in C_{D}^{*} \Gamma$ such that $\pi_{u}(x)=0$ ．Take $f_{n} \in c_{c} \Gamma$ such that $\left\|f_{n}-x\right\|_{D} \rightarrow 0$ ．Then $\pi_{u}\left(f_{n}\right) \rightarrow \pi_{u}(x)=0$ ．However $\left\|\pi_{u}\left(f_{n}\right)\right\|=\left\|f_{n}\right\|_{D} \rightarrow\|x\|_{D} \neq 0$ ，which is a contradiction．

Remark 4．9．It easily follows from the definition that $C_{\ell_{\infty}}^{*} \Gamma=C^{*} \Gamma$ ．
Lemma 4.10 （Cowling－Haagerup－Howe theorem）．Let $\pi: \Gamma \rightarrow \mathbb{B}(\mathcal{H})$ be a unitary representation with a cyclic vector $\zeta \in \mathcal{H}$ such that $\pi_{\zeta, \zeta} \in \ell_{2} \Gamma$ ．Then $\|\pi(f)\| \leq\|\lambda(f)\|$ for $f \in c_{c} \Gamma$ ．

Proof．省略．
Theorem 4．11．$C_{\ell_{p}}^{*} \Gamma=C_{\lambda}^{*} \Gamma$ for $1 \leq p \leq 2$ ．
Proof．There is a canonical quotient $\Phi: C_{\ell_{p}}^{*} \Gamma \rightarrow C_{\lambda}^{*} \Gamma$ ．Suppose that $0 \neq x \in \operatorname{ker} \Phi$ ．Take a ℓ_{p}－representation $\pi: \Gamma \rightarrow \mathbb{B}(\mathcal{H})$ such that $\|\pi(x)\| \neq 0$ ．Hence there is $\zeta \in \mathcal{H}_{0}$ such that $\pi(x) \zeta \neq 0$ ．Set

$$
\mathcal{H}_{0}^{\prime}=\operatorname{span}\{\pi(s) \zeta: s \in \Gamma\} \subset \mathcal{H}^{\prime}=\overline{\mathcal{H}_{0}^{\prime}} \subset \mathcal{H}
$$

and $\pi^{\prime}(s)=\left.\pi(s)\right|_{\mathcal{H}^{\prime}}$ for $s \in \Gamma$ ．Then

$$
\pi_{\zeta, \zeta}^{\prime}(s)=\langle\pi(s) \zeta, \zeta\rangle \in \ell_{p} \Gamma
$$

and ζ is cyclic for π^{\prime} ．Therefore π^{\prime} is ℓ_{p}－representation with $\pi^{\prime}(x) \neq 0$ ．Since $\pi_{\zeta, \zeta}^{\prime} \in \ell_{2} \Gamma$ ， by CHH theorem，we have $\left\|\pi^{\prime}(f)\right\| \leq\|\lambda(f)\|$ for $f \in c_{c} \Gamma$ ．Take $f_{n} \in c_{c} \Gamma$ such that $\left\|f_{n}-x\right\|_{\ell_{p}} \rightarrow 0$ ．Then $\pi^{\prime}\left(f_{n}\right) \rightarrow \pi^{\prime}(x)$ and $\Phi\left(f_{n}\right)=\lambda\left(f_{n}\right) \rightarrow \Phi(x)=0$ ，which is a contradiction．

Lemma 4．12．Let $\varphi \in P(\Gamma)$ ．If $\varphi \in D$ ，then GNS－representation of ω_{φ} is D－representation．
Proof．Let ξ_{φ} be a corresponding cyclic vector．Then $\varphi=\pi_{\xi_{\varphi}, \xi_{\varphi}} \in D$ ．

Lemma 4.13 （Glimm＇s lemma）．Let $A \subset \mathbb{B}(\mathcal{H})$ be a separable C^{*}－algebra such that $A \cap \mathbb{K}(\mathcal{H})=\{0\}$ ．If $\omega \in S(A)$ ，then there exist orthonormal vectors $\left(\xi_{n}\right)$ such that $\left\langle a \xi_{n}, \xi_{n}\right\rangle \rightarrow \varphi(a)$ for all $a \in A$ ．

Proof．省略．

Theorem 4．14．$C^{*} \Gamma=C_{D}^{*} \Gamma \Longleftrightarrow$ there is positive definite $\varphi_{n} \in D$ such that $\varphi_{n} \rightarrow 1$ pointwise．

Proof．（ $\Longleftarrow)$ It suffices to show that the set of vector states with respect to D－representations is weak－＊dense in $S\left(C^{*} \Gamma\right)$ ．For $\varphi \in P(\Gamma)$ ，we define $\psi_{n}=\varphi_{n} \varphi \in P(\Gamma)$ ．Note that $\psi_{n} \rightarrow \varphi$ pointwise．Since $\psi_{n} \in D$ ，the GNS－representation of ψ_{n} is D－representation．
(\Longrightarrow) Assume that $C^{*} \Gamma=C_{D}^{*} \Gamma$ ．Then there is a faithful D－representation of $C^{*} \Gamma$ with a dense subspace $\mathcal{H}_{0} \subset \mathcal{H}$ such that $\pi\left(C^{*} \Gamma\right) \cap \mathbb{K}(\mathcal{H})=\{0\}$ ．Set $A=\pi\left(C^{*} \Gamma\right) \subset \mathbb{B}(\mathcal{H})$ ． Define $\tau \in S(A)$ by $\tau(\pi(f))=\sum_{s} f(s)$ for $f \in c_{c} \Gamma$ ．By Glimm＇s lemma，we have $\left\langle\pi\left(\delta_{s}\right) \xi_{n}, \xi_{n}\right\rangle \rightarrow 1$ ．Take $\mathcal{H}_{0} \ni \xi_{n}^{\prime}$ such that $\left\|\xi_{n}^{\prime}-\xi_{n}\right\|<1 / n$ ．Then $\pi_{\xi_{n}^{\prime}, \xi_{n}^{\prime}}^{\prime} \in D$ is positive definite and $\pi_{\xi_{n}^{\prime}, \xi_{n}^{\prime}} \rightarrow 1$ pointwise．

Corollary 4.15. (1) Γ is amenable if and only if $C^{*} \Gamma=C_{c_{c}}^{*} \Gamma=C_{\lambda}^{*} \Gamma$,
(2) Γ has the Haagerup property, i.e., there exists a sequence $\left(\varphi_{n}\right)$ of positive definite functions in $c_{0} \Gamma$ such that $\varphi_{n} \rightarrow 1$ pointwise, if and only if $C^{*} \Gamma=C_{c_{0}}^{*} \Gamma$.

Remark 4.16. For $2<p<\infty$, the following holds:

$$
\mathrm{C}^{*}\left(\mathbb{F}_{d}\right) \stackrel{(1)}{=} \mathrm{C}_{c_{0}}^{*}\left(\mathbb{F}_{d}\right) \stackrel{(2)}{\neq \mathrm{C}_{\ell_{p}}^{*}}\left(\mathbb{F}_{d}\right) \stackrel{? ? ?}{=} \mathrm{C}_{\ell_{2}}^{*}\left(\mathbb{F}_{d}\right) \stackrel{(3)}{=} \mathrm{C}_{\lambda}^{*}\left(\mathbb{F}_{d}\right),
$$

where
(1) by the Haagerup property,
(2) by non-amenablity,
(3) by CHH theorem.

5 Positive definite functions on \mathbb{F}_{d}

Definition 5.1. Let \mathbb{F}_{d} be the free group on finitely many generators a_{1}, \ldots, a_{d} with $d \geq 2$. We denote by $|s|$ the word length of $s \in \mathbb{F}_{d}$ with respect to the canonical generating set $\left\{a_{1}, a_{1}^{-1}, \ldots, a_{d}, a_{d}^{-1}\right\}$. For $k \geq 0$, we put

$$
W_{k}=\left\{s \in \mathbb{F}_{d}| | s \mid=k\right\} .
$$

We denote by χ_{k} the characteristic function for W_{k}.
Lemma 5.2. Let $q \in[1,2]$. Let k, ℓ and m be non negative integers. Let f and g be functions on \mathbb{F}_{d} such that $\operatorname{supp}(f) \subset W_{k}$ and $\operatorname{supp}(g) \subset W_{\ell}$, respectively. If $|k-\ell| \leq$ $m \leq k+\ell$ and $k+\ell-m$ is even, then

$$
\left\|(f * g) \chi_{m}\right\|_{q} \leq\|f\|_{q}\|g\|_{q},
$$

and if m is any other value, then

$$
\left\|(f * g) \chi_{m}\right\|_{q}=0
$$

Proof. Note that

$$
(f * g)(r)=\sum_{\substack{s, t \in \mathbb{F}_{d} \\ r=s t}} f(s) g(t)=\sum_{\substack{|s|=k \\|t|=\ell \\ r=s t}} f(s) g(t) .
$$

Since the possible values of $|s t|$ are $|k-\ell|,|k-\ell|+2, \ldots, k+\ell$, we have

$$
\left\|(f * g) \chi_{m}\right\|_{q}=0
$$

for any other values of m.
The case where $q=1$ is trivial. So let $q \neq 1$.
First we assume that $m=k+\ell$. If $|r|=m$, then r can be uniquely written as a product st with $|s|=k$ and $|t|=\ell$. Hence

$$
(f * g)(r)=f(s) g(t) .
$$

Therefore

$$
\left\|(f * g) \chi_{m}\right\|_{q}^{q}=\sum_{\substack{|s t|=k+\ell \\| |=k \\|t| \mid=\ell}}|f(s)|^{q}|g(t)|^{q} \leq \sum_{\substack{|s|=k \\|t|=\ell}}|f(s)|^{q}|g(t)|^{q}=\|f\|_{q}^{q}\|g\|_{q}^{q} .
$$

Next we assume that $m=|k-\ell|,|k-\ell|+2, \ldots, k+\ell-2$. Then, we have $m=k+\ell-2 j$ for $1 \leq j \leq \min \{k, \ell\}$. Let $r=s t$ with $|r|=m,|s|=k$ and $|t|=\ell$. Then r can be uniquely written as a product $s^{\prime} t^{\prime}$ such that $s=s^{\prime} u, t=u^{-1} t^{\prime}$ with $\left|s^{\prime}\right|=k-j,\left|t^{\prime}\right|=\ell-j$ and $|u|=\left|u^{-1}\right|=j$. We define

$$
f^{\prime}(s)=\left(\sum_{|u|=j}|f(s u)|^{q}\right)^{\frac{1}{q}} \text { if }|s|=k-j, \text { and } f^{\prime}(s)=0 \text { otherwise. }
$$

We also define

$$
g^{\prime}(t)=\left(\sum_{|u|=j}\left|g\left(u^{-1} t\right)\right|^{q}\right)^{\frac{1}{q}} \text { if }|t|=\ell-j, \text { and } g^{\prime}(t)=0 \text { otherwise. }
$$

Note that $\operatorname{supp}\left(f^{\prime}\right) \subset W_{k-j}$ and $\operatorname{supp}\left(g^{\prime}\right) \subset W_{\ell-j}$. Moreover

$$
\left\|f^{\prime}\right\|_{q}^{q}=\sum_{|t|=k-j}\left(\sum_{|v|=j}|f(t v)|^{q}\right)=\|f\|_{q}^{q}
$$

and similarly $\left\|g^{\prime}\right\|_{q}=\|g\|_{q}$. Take $2 \leq p<\infty$ with $1 / p+1 / q=1$. By Hölder's inequality,

$$
\begin{aligned}
|(f * g)(r)| & =\left|\sum_{\substack{|s|=k \\
| | \mid=\ell \\
r=s t}} f(s) g(t)\right|=\left|\sum_{|u|=j} f\left(s^{\prime} u\right) g\left(u^{-1} t^{\prime}\right)\right| \\
& \leq\left(\sum_{|u|=j}\left|f\left(s^{\prime} u\right)\right|^{q}\right)^{\frac{1}{q}}\left(\sum_{|u|=j}\left|g\left(u^{-1} t^{\prime}\right)\right|^{p}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{|u|=j}\left|f\left(s^{\prime} u\right)\right|^{q}\right)^{\frac{1}{q}}\left(\sum_{|u|=j}\left|g\left(u^{-1} t^{\prime}\right)\right|^{q}\right)^{\frac{1}{q}} \\
& =f^{\prime}\left(s^{\prime}\right) g^{\prime}\left(t^{\prime}\right)=\left(f^{\prime} * g^{\prime}\right)(r) .
\end{aligned}
$$

Hence $\left|(f * g) \chi_{m}\right| \leq\left(f^{\prime} * g^{\prime}\right) \chi_{m}$. Since $(k-j)+(\ell-j)=m$, it follows from the first part of the proof that

$$
\left\|(f * g) \chi_{m}\right\|_{q} \leq\left\|\left(f^{\prime} * g^{\prime}\right) \chi_{m}\right\|_{q} \leq\left\|f^{\prime}\right\|_{q}\left\|g^{\prime}\right\|_{q}=\|f\|_{q}\|g\|_{q}
$$

Lemma 5.3. Let $1 \leq q \leq p \leq \infty$ with $1 / p+1 / q=1$. Let $\pi: \Gamma \rightarrow \mathbb{B}(\mathcal{H})$ be a unitary representation with a cyclic vector ζ such that $\pi_{\zeta, \zeta} \in \ell_{p} \Gamma$. Then

$$
\|\pi(f)\| \leq \liminf _{n \rightarrow \infty}\left\|\left(f^{*} * f\right)^{(* 2 n)}\right\|_{q}^{\frac{1}{4 n}}
$$

for $f \in c_{c} \Gamma$.
Proof. For $f \in c_{c} \Gamma$, we set $g=f^{*} * f$. Then $\pi(g)$ is self-adjoint. By the spectral decomposition, for $\xi \in \mathcal{H}$ there is a regular Borel complex measure μ on \mathbb{R} such that

$$
\langle\pi(g) \xi, \xi\rangle=\int t d \mu(t)
$$

Then

$$
\begin{aligned}
\|\pi(g) \xi\|^{2} & =\left\langle\pi(g)^{2} \xi, \xi\right\rangle=\int t^{2} d \mu(t) \\
& \leq\left(\int t^{2 n} d \mu(t)\right)^{1 / n}\left(\int 1 d \mu(t)\right)^{1-1 / n} \\
& =\left\langle\pi(g)^{2 n} \xi, \xi\right\rangle^{1 / n}\|\xi\|^{1-1 / n}
\end{aligned}
$$

Hence

$$
\|\pi(g) \xi\| \leq \liminf _{n \rightarrow \infty}\left\langle\pi(g)^{2 n} \xi, \xi\right\rangle^{1 / 2 n}\|\xi\| .
$$

If we put $\xi=\pi(h) \zeta, \varphi(r)=\pi_{\zeta, \zeta}(r)$ with $h \in c_{c} \Gamma$ and $\psi(r)=\pi_{\xi, \xi}(r)$, then

$$
\psi(r)=\langle\pi(r) \pi(h) \zeta, \pi(h) \zeta\rangle=\sum_{s, t} h(s) \overline{h(t)} \varphi\left(t^{-1} r s\right) .
$$

Hence, $\psi \in \ell_{p} \Gamma$. By Hölder's inequality,

$$
\left|\left\langle\pi(g)^{2 n} \xi, \xi\right\rangle\right|=\left|\sum_{r \in \Gamma} g^{(* 2 n)}(r) \psi(r)\right| \leq\left\|g^{(* 2 n)}\right\|_{q}\|\psi\|_{p}
$$

Since $\mathcal{H}_{0}=\left\{\pi(h) \zeta: h \in c_{c} \Gamma\right\}$ is dense in \mathcal{H}, we have

$$
\|\pi(g)\| \leq \liminf _{n \rightarrow \infty}\left\|g^{(* 2 n)}\right\|_{q}^{\frac{1}{2 n}}
$$

Lemma 5.4. Let k be a non negative integer. Let $1 \leq q \leq p \leq \infty$ with $1 / p+1 / q=1$. If a unitary representation π of \mathbb{F}_{d} on a Hilbert space \mathcal{H} has a cyclic vector ζ such that $\pi_{\zeta, \zeta} \in \ell_{p} \mathbb{F}_{d}$, then

$$
\|\pi(f)\| \leq(k+1)\|f\|_{q} .
$$

for $f \in c_{c} \mathbb{F}_{d}$ with $\operatorname{supp}(f) \subset W_{k}$.
Proof. The case where $q=1$ and $p=\infty$ is trivial. So we may assume that $1<q \leq 2$ and $2 \leq p<\infty$ with $1 / p+1 / q=1$.

Consider $\left\|\left(f^{*} * f\right)^{(* 2 n)}\right\|_{q}$. Write $f_{2 j-1}=f^{*}$ and $f_{2 j}=f$ for $j=1,2, \ldots, 2 n$. Then

$$
\left(f^{*} * f\right)^{(* 2 n)}=f_{1} * f_{2} * \cdots * f_{4 n} .
$$

We also denote $g=f_{2} * \cdots * f_{4 n}$. So we have

$$
\left(f^{*} * f\right)^{(* 2 n)}=f_{1} * g .
$$

Note that $\operatorname{supp}\left(f_{j}\right) \subset W_{k}$ for $j=1,2, \ldots, 4 n$ and $g \in c_{c} \mathbb{F}_{d}$. Put $g_{\ell}=g \chi_{\ell}$. Then $\operatorname{supp}\left(g_{\ell}\right) \subset W_{\ell}$ and

$$
\|g\|_{q}^{q}=\sum_{\ell=0}^{\infty}\left\|g_{\ell}\right\|_{q}^{q} .
$$

Here, remark that $\left\|g_{\ell}\right\|_{q}=0$ for all but finitely many ℓ. Moreover set

$$
h=f_{1} * g=\sum_{\ell=0}^{\infty} f_{1} * g_{\ell}
$$

and $h_{m}=h \chi_{m}$. Then $h \in c_{c} \mathbb{F}_{d}$ and

$$
\|h\|_{q}^{q}=\sum_{m=0}^{\infty}\left\|h_{m}\right\|_{q}^{q} .
$$

Here, notice that $\left\|h_{m}\right\|_{q}=0$ for all but finitely many m. By Lemma 5.2,

$$
\left\|\left(f_{1} * g_{\ell}\right) \chi_{m}\right\|_{q} \leq\left\|f_{1}\right\|_{q}\left\|g_{\ell}\right\|_{q}
$$

in the case where $|k-\ell| \leq m \leq k+\ell$ and $k+\ell-m$ is even. Hence

$$
\left\|h_{m}\right\|_{q}=\left\|\sum_{\ell=0}^{\infty}\left(f_{1} * g_{\ell}\right) \chi_{m}\right\|_{q} \leq \sum_{\ell=0}^{\infty}\left\|\left(f_{1} * g_{\ell}\right) \chi_{m}\right\|_{q} \leq\left\|f_{1}\right\|_{q} \sum_{\substack{\ell=|m-k| \\ m+k-\ell \text { even }}}^{m+k}\left\|g_{\ell}\right\|_{q} .
$$

By writing $\ell=m+k-2 j$,

$$
\begin{aligned}
\left\|h_{m}\right\|_{q} & \leq\left\|f_{1}\right\|_{q} \sum_{j=0}^{\min \{m, k\}}\left\|g_{m+k-2 j}\right\|_{q} \\
& \leq\left\|f_{1}\right\|_{q}\left(\sum_{j=0}^{\min \{m, k\}}\left\|g_{m+k-2 j}\right\|_{q}^{q}\right)^{\frac{1}{q}}\left(\sum_{j=0}^{\min \{m, k\}} 1^{p}\right)^{\frac{1}{p}} \\
& \leq(k+1)^{\frac{1}{p}}\left\|f_{1}\right\|_{q}\left(\sum_{j=0}^{\min \{m, k\}}\left\|g_{m+k-2 j}\right\|_{q}^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

Then

$$
\begin{aligned}
\|h\|_{q}^{q}=\sum_{m=0}^{\infty}\left\|h_{m}\right\|_{q}^{q} & \leq(k+1)^{\frac{q}{p}}\left\|f_{1}\right\|_{q}^{q} \sum_{m=0}^{\infty} \sum_{j=0}^{\min \{m, k\}}\left\|g_{m+k-2 j}\right\|_{q}^{q} \\
& =(k+1)^{\frac{q}{p}}\left\|f_{1}\right\|_{q}^{q} \sum_{j=0}^{k} \sum_{m=j}^{\infty}\left\|g_{m+k-2 j}\right\|_{q}^{q} \\
& =(k+1)^{\frac{q}{p}}\left\|f_{1}\right\|_{q}^{q} \sum_{j=0}^{k} \sum_{\ell=k-j}^{\infty}\left\|g_{\ell}\right\|_{q}^{q} \\
& \leq(k+1)^{\frac{q}{p}}\left\|f_{1}\right\|_{q}^{q} \sum_{j=0}^{k}\|g\|_{q}^{q} \\
& =(k+1)^{\frac{q}{p}+1}\left\|f_{1}\right\|_{q}^{q}\|g\|_{q}^{q} .
\end{aligned}
$$

Hence $\left\|f_{1} * g\right\|_{q} \leq(k+1)\left\|f_{1}\right\|_{q}\|g\|_{q}$. Therefore we inductively get,

$$
\left\|f_{1} *\left(f_{2} * \cdots * f_{4 n}\right)\right\|_{q} \leq(k+1)\left\|f_{1}\right\|_{q}\left\|f_{2} * \cdots * f_{4 n}\right\|_{q} \leq \cdots \leq(k+1)^{4 n-1}\|f\|_{q}^{4 n}
$$

Thus it follows from Lemma 5.3 that

$$
\|\pi(f)\| \leq \liminf _{n \rightarrow \infty}\left\|\left(f^{*} * f\right)^{(* 2 n)}\right\|_{q}^{\frac{1}{4 n}} \leq(k+1)\|f\|_{q}
$$

Remark 5.5. For $0<\alpha<1$, we set $\varphi_{\alpha}(s)=\alpha^{|s|}$, and it is positive definite on \mathbb{F}_{d} by [Ha, Lemma 1.2].

Theorem 5.6. Let $2 \leq p<\infty$. Let φ be a positive definite function on \mathbb{F}_{d}. Then the following conditions are equivalent:
(1) φ can be extended to the positive linear functional on $C_{\ell_{p}}^{*} \mathbb{F}_{d}$.
(2) $\sup _{k}\left|\varphi \chi_{k}\right|_{p}(k+1)^{-1}<\infty$.
(3) The function $s \mapsto \varphi(s)(1+|s|)^{-1-\frac{2}{p}}$ belongs to $\ell_{p} \mathbb{F}_{d}$.
(4) For any $\alpha \in(0,1)$, the function $s \mapsto \varphi(s) \alpha^{|s|}$ belongs to $\ell_{p} \mathbb{F}_{d}$.

Proof. We may assume that $\varphi(e)=1$.
$(1) \Longrightarrow(2)$: It follows from (1) that ω_{φ} extends to the state on $C_{\ell_{p}}^{*} \mathbb{F}_{d}$. Hence for $f \in c_{c} \mathbb{F}_{d}$, we have

$$
\left|\omega_{\varphi}(f)\right| \leq\|f\|_{\ell_{p}} .
$$

If we put $f=|\varphi|^{p-2} \bar{\varphi} \chi_{k}$, then

$$
\left|\omega_{\varphi}(f)\right|=\left|\varphi \chi_{k}\right|_{p}^{p} .
$$

Let π be an ℓ_{p}-representation of \mathbb{F}_{d} on a Hilbert space \mathcal{H} with a dense subspace \mathcal{H}_{0}. Then

$$
\|\pi(f)\|^{2}=\sup _{\substack{\xi \in \mathcal{H} \\\|\xi\|=1}}\left\langle\pi\left(f^{*} * f\right) \xi, \xi\right\rangle_{\mathcal{H}} .
$$

Fix $\zeta \in \mathcal{H}_{0}$ with $\|\zeta\|=1$. We denote by σ the restriction of π onto the subspace

$$
\mathcal{H}_{\sigma}=\overline{\operatorname{span}}\left\{\pi(s) \zeta: s \in \mathbb{F}_{d}\right\} \subset \mathcal{H} .
$$

Then

$$
\left\langle\pi\left(f^{*} * f\right) \xi, \xi\right\rangle_{\mathcal{H}}=\left\langle\sigma\left(f^{*} * f\right) \xi, \xi\right\rangle_{\mathcal{H}_{\sigma}} .
$$

Since ζ is cyclic for σ such that $\sigma_{\xi, \xi} \in \ell_{p}\left(\mathbb{F}_{d}\right)$, by Lemma 5.4,

$$
\|\sigma(f)\| \leq(k+1)\|f\|_{q} .
$$

Hence

$$
\left\|\sigma\left(f^{*} * f\right)\right\|=\|\sigma(f)\|^{2} \leq(k+1)^{2}\|f\|_{q}^{2}
$$

Therefore we obtain

$$
\|f\|_{\ell_{p}}^{2}=\sup \left\{\|\pi(f)\|^{2}: \pi \text { is an } \ell_{p} \text {-representation }\right\} \leq(k+1)^{2}\|f\|_{q}^{2}=(k+1)^{2}\left\|\varphi \chi_{k}\right\|_{p}^{2(p-1)}
$$

namely,

$$
\|f\|_{\ell_{p}} \leq(k+1)\left\|\varphi \chi_{k}\right\|_{p}^{p-1}
$$

Consequently,

$$
\left\|\varphi \chi_{n}\right\|_{p} \leq k+1
$$

$(2) \Longrightarrow(3) \Longrightarrow(4)$: Easy.
$(4) \Longrightarrow(1)$: Note that $\psi_{\alpha}=\varphi \varphi_{\alpha}$ is also positive definite. By the GNS construction, we obtain the unitary representation π_{α} of \mathbb{F}_{d} with the cyclic vector ξ_{α} such that for $f \in c_{c} \mathbb{F}_{d}$,

$$
\omega_{\psi_{\alpha}}(f)=\left\langle\pi_{\alpha}(f) \xi_{\alpha}, \xi_{\alpha}\right\rangle .
$$

Since π_{α} is an ℓ_{p}-representation, $\omega_{\psi_{\alpha}}$ can be seen as a state on $C_{\ell_{p}}^{*} \mathbb{F}_{d}$. By taking the weak-* limit of $\omega_{\psi_{\alpha}}$ as $\alpha \nearrow 1$, we conclude that ω_{φ} can be extended to the state on $C_{\ell_{p}}^{*} \mathbb{F}_{d}$.

Corollary 5.7. Let $p \in[2, \infty)$ and $\alpha \in(0,1)$. The positive definite function φ_{α} can be extended to the state on $C_{\ell_{p}}^{*} \mathbb{F}_{d}$ if and only if

$$
\alpha \leq(2 d-1)^{-\frac{1}{p}} .
$$

Proof. It follows from the fact $\varphi_{\alpha} \in \ell_{p} \mathbb{F}_{d} \Longleftrightarrow \alpha<(2 d-1)^{-\frac{1}{p}}$. [Problem 14]
Corollary 5.8. For $2 \leq q<p \leq \infty$, the canonical quotient map from $C_{\ell_{p}}^{*} \mathbb{F}_{d}$ onto $C_{\ell_{q}}^{*} \mathbb{F}_{d}$ is not injective.

Proof. It suffices to consider the case where $p \neq \infty$, because \mathbb{F}_{d} is not amenable.
Suppose that the canonical quotient map from $C_{\ell_{p}}^{*} \mathbb{F}_{d}$ onto $C_{\ell_{q}}^{*} \mathbb{F}_{d}$ is injective for some $q<p$. Take a real number α with

$$
(2 d-1)^{-\frac{1}{q}}<\alpha \leq(2 d-1)^{-\frac{1}{p}} .
$$

By using Corollary 5.7,

$$
\left|\omega_{\varphi_{\alpha}}(f)\right| \leq\|f\|_{\ell_{p}}=\|f\|_{\ell_{q}} \quad \text { for } f \in c_{c} \mathbb{F}_{d} .
$$

Therefore it follows that $\omega_{\varphi_{\alpha}}$ can be also extended to the state on $C_{\ell_{q}}^{*} \mathbb{F}_{d}$, but it contradicts to the choice of α.

References

[BG] N. P. Brown and E. Guentner; New C^{*}-completions of discrete groups and related spaces. Preprint. arXiv:1205.4649.
[BOz] N. P. Brown and N. Ozawa; C^{*}-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, 88. American Mathematical Society, Providence, RI, 2008. xvi +509
[CHaHo] M. Cowling, U. Haagerup and R. Howe; Almost L^{2} matrix coefficients. J. Reine Angew. Math. 387 (1988), 97-110.
[Da] K. R. Davidson; C*-algebras by example. Fields Institute Monographs, 6. American Mathematical Society, Providence, RI, 1996. xiv+309 pp.
[Ha] U. Haagerup; An example of a nonnuclear C^{*}-algebra, which has the metric approximation property. Invent. Math. 50 (1978/79), no. 3, 279-293.
[Mu] G. J. Murphy; C*-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990. $\mathrm{x}+286 \mathrm{pp}$.
[Ok] R. Okayasu; Free group C^{*}-algebras associated with ℓ_{p}. Preprint. arXiv:1203. 0800

