Intensive course at Nagoya University Oct.28 – Nov.1.2013

Rui Okayasu

November 11, 2013

Contents

1	Basics of functional analysis	2
2	Basics of C^* -algebras	5
3	"Classical" group C^* -algebras	11
4	"New" group C^* -algebras	17
5	Positive definite functions on \mathbb{F}_d	19

1 Basics of functional analysis

Definition 1.1. A semi-norm on a vector space X over \mathbb{C} is a function $p: X \to [0, \infty)$ such that for $\xi, \eta \in X$ and $\alpha \in \mathbb{C}$,

(1) $p(\xi + \eta) \le p(\xi) + p(\eta)$

(2)
$$p(\alpha\xi) = |\alpha|p(\xi).$$

A *norm* is a semi-norm $\|\cdot\|$ satisfying

$$\|\xi\| = 0 \iff \xi = 0.$$

Remark 1.2. If X has a norm, then $d(\xi, \eta) = ||\xi - \eta||$ defines a metric on X.

Definition 1.3. A *Banach space* is a complete normed space.

Definition 1.4. A semi-inner product on a vector space X over \mathbb{C} is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ such that for $\xi, \eta, \zeta \in X$ and $\alpha \in \mathbb{C}$,

(1) $\langle \xi + \eta, \zeta \rangle = \langle \xi, \zeta \rangle + \langle \eta, \zeta \rangle,$

(2)
$$\langle \alpha \xi, \eta \rangle = \alpha \langle \xi, \eta \rangle,$$

(3)
$$\langle \xi, \eta \rangle = \overline{\langle \eta, \xi \rangle},$$

(4) $\langle \xi, \xi \rangle \ge 0.$

A *inner product* is a semi-inner product satisfying

$$\langle \xi, \xi \rangle = 0 \iff \xi = 0.$$

Remark 1.5. If X has an (semi-)inner product, then $p(\xi) = \langle \xi, \xi \rangle^{1/2}$ defines a (semi-)norm on X.

Theorem 1.6 (Cauchy-Bunyakowsky-Schwarz inequality). If $\langle \cdot, \cdot \rangle$ is a semi-inner product on X, then

$$|\langle \xi, \eta \rangle| \le \|\xi\| \|\eta\|.$$

Proof. 省略.

Definition 1.7. A Hilbert space \mathcal{H} is a Banach space with respect to $\|\xi\| := \langle \xi, \xi \rangle^{1/2}$.

A set $\{\xi_i\}$ of vectors is orthonormal if $\langle \xi_i, \xi_j \rangle = \delta_{ij}$. A maximal orthonormal set is an orthonormal basis.

Proposition 1.8. If $\{\xi_i\}$ is an ONS in \mathcal{H} , then there is an ONB in \mathcal{H} , which contains $\{\xi_i\}$.

Proof. Use Zorn's lemma.

Theorem 1.9. Let $\{\xi_i\}$ be an ONS in \mathcal{H} . Then the following are equivalent:

- (1) $\{\xi_i\}$ is an ONB in \mathcal{H} ,
- (2) For any $\xi \in \mathcal{H}, \xi = \sum_i \langle \xi, \xi_i \rangle \xi_i$, (Fourier series expansion)
- (3) For any $\xi \in \mathcal{H}$, $\|\xi\|^2 = \sum_i |\langle \xi, \xi_i \rangle|^2$, (Riesz-Fischer identity)
- (4) For any $\xi, \eta \in \mathcal{H}, \langle \xi, \eta \rangle = \sum_i \langle \xi, \xi_i \rangle \langle \xi_i, \eta \rangle$, (Paseval identity)

Remark 1.10. If \mathcal{H} is a separable Hilbert space, then there is a countable ONB $\{\xi_n\}$ in \mathcal{H} .

Example 1.11. Let S be a countable set. Then

$$\ell_2 S := \{ f \colon S \to \mathbb{C} \mid \sum_{s \in S} |f(s)|^2 < \infty \}$$

is a Hilbert space with an inner product

$$\langle f,g\rangle := \sum_{s\in S} f(s)\overline{g(s)}.$$

If $\delta_s(t) = \delta_{s,t}$ (Kronecker delta), then a set $\{\delta_s\}_{s \in S}$ is the canonical ONB for $\ell_2 S$. If $|S| = n < \infty$, then $\ell_2 S = \mathbb{C}^n$.

Definition 1.12. Let X be a normed space. A linear functional $f: X \to \mathbb{C}$ is bounded if

$$||f|| := \sup_{\|\xi\| \le 1} |f(\xi)| < \infty.$$

We denote by X^* the *dual space* of X, i.e., the set of all bounded linear functionals on X, which becomes a Banach space.

Theorem 1.13 (Hahn-Banach extension theorem). Let Y be a subspace of a normed space X. Then

- (1) For any $g \in Y^*$, there is $f \in X^*$ such that $f|_Y = g$ and ||g|| = ||f||.
- (2) For any $0 \neq \xi \in X$, there is $f \in X^*$ such that $f(\xi) = ||\xi||$ and ||f|| = 1.

Proof. Use Zorn's lemma.

Definition 1.14. Let X be a normed space. Then $X^{**} := (X^*)^*$ is a Banach space, which is called the *second dual space* of X.

For $x \in X$, we define $\hat{x} \in X^{**}$ by $\hat{x}(f) := f(x)$ for $f \in X^*$. Note that $||x|| = ||\hat{x}||$.

Definition 1.15. Let X be a normed space. For any $f \in X^*$, we define a semi-norm p_f on X by $p_f(\xi) := |f(\xi)|$ for $\xi \in X$. The weak topology on X is defined by the family $\{p_f\}_{f \in X^*}$ of semi-norms. Hence X becomes a locally convex topological vector space.

For any $\xi \in X$, we define a semi-norm p_{ξ} on X^* by $p_{\xi}(f) := |f(\xi)|$ for $f \in X^*$. The *weak-* topology* on X^* is defined by the family $\{p_{\xi}\}_{\xi \in X}$ of semi-norms. Hence X^* becomes a locally convex topological vector space.

We remark that we can also define the weak topology in X^* , which is coming from X^{**} .

Theorem 1.16. Let C be a convex subset of a normed space X. Then C is norm closed if and only if it is weakly closed.

Proof. Use Hahn-Banach separation theorem.

Theorem 1.17 (Banach-Alaoglu). If X is a normed space, then $(X^*)_1 := \{f \in X^* : ||f|| \le 1\}$ is compact in X^* in the weak-* topology.

Example 1.18. Let S be a countable set with $|S| = \infty$. For $1 \le p < \infty$, we define a Banach space

$$\ell_p S := \{ f \colon \Gamma \to \mathbb{C} \mid \|f\|_p := \left(\sum_{s \in S} |f(s)|^p\right)^{1/p} < \infty \}.$$

For $p = \infty$, we define a Banach space

$$\ell_{\infty}S := \{f \colon \Gamma \to \mathbb{C} \colon ||f||_{\infty} := \sup_{s \in S} |f(s)| < \infty\}.$$

We also define

$$c_c S := \{ f \in \ell_\infty S \mid |\operatorname{supp}(f)| < \infty \}$$

and

$$c_0 S := \{ f \in \ell_\infty S \mid \lim_{s \to \infty} f(s) = 0 \} = \overline{c_c S}^{\|\cdot\|_\infty}$$

Then we have $c_c S \subset \ell_p S \subset c_0 S \subset \ell_\infty S$. Moreover, if $1 \leq q , then for <math>f \in \ell_q S$ we have $||f||_p \leq ||f||_q$, and thus $\ell_q S \subset \ell_p S$. Note that $c_c S$ is also dense in $\ell_p S$ with respect to the norm $|| \cdot ||_p$ for $1 \leq p < \infty$.

For $1 \le p, q \le \infty$ with 1/p + 1/q = 1, we have

- (1) $||fg||_1 \le ||f||_p ||g||_q$ (Hölder inequality)
- (2) $||f+g||_p \le ||f||_p + ||g||_p$ (Minkowski inequality)

If $1 \le p < \infty$, $1 < q \le \infty$ with 1/p + 1/q = 1, then $(\ell_p S)^* = \ell_q S$ via the identification $\ell_q S \ni q \mapsto \hat{q} \in (\ell_p S)^*$,

where

$$\hat{g}(f) := \sum_{s \in S} f(s)g(s). \quad (f \in \ell_p S)$$

We remark that $(\ell_{\infty}S)^* \neq \ell_1 S$ and $(c_0 S)^* = \ell_1 S$.

Example 1.19. Let X be a compact Hausdorff space. We denote by C(X) the set of all \mathbb{C} -valued continuous functions on X. Then C(X) is a Banach space with respect to a norm

$$||f||_{\infty} := \sup_{x \in X} |f(x)|.$$

We denote by M(X) the set of all regular \mathbb{C} -valued Borel measures on X, and $M(X)_+$ the set of all regular finite positive Borel measures on X. Note that $M(X) = \operatorname{span} M(X)_+$.

Theorem 1.20 (Riesz-Markov-Kakutani). For $\varphi \in C(X)^*$ with $\varphi \ge 0$, there is unique $\mu \in M(X)_+$ such that

$$\varphi(f) = \int_X f d\mu \quad (f \in C(X))$$

It follows that $C(X)^* = M(X)$.

Theorem 1.21 (Stone-Weierstrass). If a subalgebra A of C(X) satisfies

- (1) for any $x \neq x'$, there is $f \in A$ such that $f(x) \neq f(x')$,
- (2) if $f \in A$, then $\overline{f} \in A$,
- (3) $1 \in A$,

then A is dense in C(X).

2 Basics of C*-algebras

Definition 2.1. An *algebra* is a vector space A over \mathbb{C} with a multiplication : $A \times A \ni$ $(a, b) \mapsto ab \in A$ satisfying the following conditions: for any $a, b, c \in A$ and $\alpha \in \mathbb{C}$,

$$(1) \ (ab)c = a(bc),$$

- (2) $(\alpha a)b = a(\alpha b) = \alpha(ab),$
- $(3) \ a(b+c) = ab + ac,$
- (4) (a+b)c = ac + bc.

If A is an algebra, then we say A is *abelian* if ab = ba for any $a, b \in A$. We also say A is *unital* if there exists the unit $1 \in A$ such that 1a = a1 = a for any $a \in A$.

A *Banach algebra* is a complete normed algebra A with a norm satisfying the following conditions:

 $||ab|| \le ||a|| ||b||$ for any $a, b \in A$.

If A is a Banach algebra and A has a unit with ||1|| = 1, then A is called a unital Banach algebra.

A *-algebra is an algebra A with a involution $A \ni a \mapsto a^* \in A$ satisfying the following conditions: for any $a, b \in A$ and $\alpha \in \mathbb{C}$,

- (1) $(a^*)^* = a$,
- (2) $(a+b)^* = a^* + b^*$,
- (3) $(\alpha a)^* = \overline{\alpha} a$,
- (4) $(ab)^* = b^*a^*$.

A C^* -algebra A is a Banach algebra with a involution satisfying the so-called C*condition:

$$||a^*a|| = ||a||^2$$
 for $a \in A$

Remark 2.2. If A is a C^{*}-algebra, then $||a^*|| = ||a||$ for any $a \in A$. Moreover, if A is unital, then $1^* = 1$ and ||1|| = 1. [**Problem 1**]

Example 2.3. Let S be a countable set with $|S| = \infty$. Then $\ell_{\infty}S$ is a unital C*-algebra. [Problem 2]

Example 2.4. Let X be a compact Hausdorff space. Then C(X) is a unital C*-algebra. [Problem 3]

Example 2.5. Let \mathcal{H} be a (separable) Hilbert space. Then $\mathbb{B}(\mathcal{H})$ is a unital C^* -algebra. If $\dim \mathcal{H} = \infty$, then $\mathbb{K}(\mathcal{H})$ is non-unital. More generally, norm-closed *-subalgebra $A \subset \mathbb{B}(\mathcal{H})$ is a (concrete) C^* -algebra.

If dim $\mathcal{H} = n < \infty$, then $\mathcal{H} = \mathbb{C}^n$ and $\mathbb{B}(\mathcal{H}) = \mathbb{M}_n$ (the set of all $n \times n$ matrices over \mathbb{C}).

Definition 2.6. Let A be unital Banach algebra and $a \in A$. We say a is *invertible* in A if there exists $b \in A$ such that ba = ab = 1. Notice that such b is unique, and so we may write $a^{-1} := b$. The set

 $GL(A) := \{a \in A \mid a \text{ is invertible in } A\}.$

is a group under the multiplication.

Definition 2.7. Let A be unital Banach algebra and $a \in A$. We define the spectrum of a by

$$\sigma(a) = \sigma_A(a) := \{ \alpha \in \mathbb{C} \mid a - \alpha 1 \notin GL(A) \},\$$

Example 2.8. If $f \in C(X)$, then $\sigma(f) = f(X)$. [Problem 4]

Example 2.9. If $T \in \mathbb{M}_n$, then $\sigma(T)$ is the set of all eigenvalues of T.

Theorem 2.10. Let A be unital Banach algebra and $a \in A$. Then $\sigma(a)$ is a non-empty compact subset of \mathbb{C} .

Proof. 省略. (複素解析を使う.)

Theorem 2.11 (Gelfand-Mazur). Let A be a unital Banach algebra. If any non-zero $a \in A$ is invertible, then $A = \mathbb{C}$.

Proof. Let $0 \neq a \in A$. Then there is $\alpha \in \sigma(a)$. Hence $a - \alpha 1$ is not invertible and must be zero, i.e., $a = \alpha 1$.

Definition 2.12. Let A be unital Banach algebra and $a \in A$. We define the *spectral radius* of a by

$$r(a) := \{ |\alpha| \mid \alpha \in \sigma(a) \}$$

Example 2.13. If $f \in C(X)$, then $r(f) = ||f||_{\infty}$.

Example 2.14. If

$$a = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \in \mathbb{M}_2,$$

then ||a|| = 1, but r(a) = 0. [Problem 5]

Theorem 2.15 (Beurling). Let A be a unital Banach algebra and $a \in A$. Then

$$r(a) = \lim_{n \to \infty} \|a^n\|^{1/n} = \inf_{n \in \mathbb{N}} \|a^n\|^{1/n}.$$

Proof. 省略.

Corollary 2.16. Let A be a unital C^{*}-algebra. If $a \in A$ is norml, i.e., $a^*a = aa^*$, then ||a|| = r(a).

Proof. Since

$$\|a^{2^{n}}\|^{2} = \|(a^{2^{n}})^{*}a^{2^{n}}\| = \|(a^{*}a)^{2^{n}}\| = \|(a^{*}a)^{2^{n-1}}\|^{2} = \dots = \|a^{*}a\|^{2^{n}} = \|a\|^{2^{n+1}},$$

we have $\|a\| = \|a^{2^{n}}\|^{1/2^{n}} \to r(a).$

Remark 2.17. If A is a unital C^{*}-algebra, then $||a|| = ||a^*a||^{1/2} = r(a^*a)^{1/2}$. Hence the C^{*}-norm is completely determined by its algebraic structure and it is unique.

Definition 2.18. Let A be a unital (Banach) algebra. A subspace I of A is said to be *left* (resp. *right*) *ideal of* A if

$$a \in A$$
 and $b \in I \implies ab \in I$ (resp. $ba \in I$).

An *ideal* in A is a left and a right ideal in A.

Example 2.19. Let Y be a closed subset of a compact Hausdorff space X. Then

$$I_Y := \{ f \in C(X) \mid f|_Y = 0 \}$$

is an ideal of C(X). [Problem 6]

Example 2.20. The matrix algebra \mathbb{M}_n has no proper ideal. [Problem 7]

Proposition 2.21. Let A be a unital Banach algebra, $I \subset A$ a closed ideal. Then the quotient space A/I becomes a unital Banach algebra as follows:

- (1) [a] + [b] := [a + b],
- (2) $\alpha[a] := [\alpha a],$
- (3) [a][b] := [ab],
- (4) $||[a]|| := \inf\{||a+b||: b \in I\},\$

where $[a] := a + I = \{a + b \mid b \in I\} \in A/I.$

Proof. 省略.

Remark 2.22. What is the quotient algebra $C(X)/I_Y$ for a closed subset Y of X. [Problem 8]

Definition 2.23. A maxiaml ideal in a unital (Banach) algebra A is a proper ideal in A, which is not contained in any other proper ideal in A.

Example 2.24. For any element $x \in X$, then $I_{\{x\}}$ is a maximal ideal in C(X). [Problem 9]

Remark 2.25. For any ideal I of unital (Banach) algebra A, by Zorn's lemma, there exists a maximal ideal J of A such that $I \subset J$.

Proposition 2.26. Let I be an ideal of unital Banach algebra A. Then

- (1) The closure \overline{I} is an ideal of A.
- (2) If I is maximal, then I is closed.

Proof. 省略.

Theorem 2.27. Let *I* be an ideal of unital abelian Banach algebra *A*. Then *I* is maximal if and only if $A/I = \mathbb{C}$.

Proof. An ideal I is maximal if and only if A/I is a field. Use Gelfand-Mazur theorem. \Box

Definition 2.28. Let A, B be (unital) algebras. A homomorphism from A to B is a linear map $\pi: A \to B$ such that $\pi(ab) = \pi(a)\pi(b)$ for any $a, b \in A$. If $\pi(1_A) = 1_B$, then we say π is unital. When A, B are *-algebras, we say π is *-homomorphism if $\pi(a^*) = \pi(a)^*$.

A character on an abelian algebra A is a non-zero homomorphism $\chi: A \to \mathbb{C}$. We denote by \hat{A} the set of all characters on A.

Example 2.29. For $x \in X$, we define a character χ_x on C(X) by $\chi_x(f) := f(x)$ for $f \in C(X)$. Then ker $\chi_x = I_{\{x\}}$, i.e., it is a maximal ideal.

Theorem 2.30. Let A be a unital abelian Banach algebra.

- (1) If $\chi \in A$, then $\chi(1) = 1$ and $\|\chi(a)\| \le \|a\|$.
- (2) $\hat{A} \neq \emptyset$ and the map $\chi \mapsto \ker \chi$ is a bijection from \hat{A} onto the set of all maximal ideals of A.
- (3) $\sigma(a) = \{\chi(a) \colon \chi \in \hat{A}\}$ for $a \in A$.

Proof. (1) It is easy to see that $\chi(1) = 1$. Hence $\|\chi\| \ge 1$. Suppose that $\|\chi\| > 1$, i.e., there is $0 \ne a \in A$ such that $\|a\| < 1 = \chi(a)$. If we put $b = \sum_{n \in \mathbb{N}} a^n \in A$, then a + ab = b. Therefore we have

$$\chi(b) = \chi(a) + \chi(a)\chi(b) = 1 + \chi(b),$$

which is a contradiction.

(2) It is easy to show that ker χ is a maximal ideal for any $\chi \in \hat{A}$. Conversely, if $I \subset A$ is a maximal ideal, then $A/I = \mathbb{C}$. Hence we define a character $\chi \colon A \ni a \mapsto [a] \in A/I = \mathbb{C}$, which satisfies ker $\chi = I$.

(3) If $\alpha \in \sigma(a)$, then $a - \alpha 1$ is not invertible. Hence there is a maximal ideal $I = \ker \chi$ such that $a - \alpha 1 \in I$. So $\chi(a) = \alpha$. Conversely, if $\alpha = \chi(a)$, then $\chi(a - \alpha 1) = 0$. Hence $a - \alpha 1$ is not invertible.

Theorem 2.31. Let A be a unital abelian Banach algebra. Then $A \subset A^*$ is a weak-* compact Hausdorff space.

Proof. It is easy to see that \hat{A} is weak-* closed. By Banach-Alaoglu theorem, it is weak-* compact.

Definition 2.32. Let A be a unital abelian Banach algebra. For $a \in A$, we define $\hat{a} \in C(\hat{A})$ by $\hat{a}(\chi) = \chi(a)$. Then we define the *Gelfand transform* $\gamma \colon A \to C(\hat{A})$ by $\gamma(a) = \hat{a}$.

Theorem 2.33 (Gelfand-Naimark). Let A be a unital abelian Banach algebra. The the Gelfand transform γ is a norm-decreasing homomorphism and $\|\hat{a}\|_{\infty} = r(a)$ for $a \in A$. If A is C^{*}-algebra, then γ is isometric *-isomorphism.

Proof. It is easy to see that γ is homomorphism. For any $a \in A$, we have

$$\|\gamma(a)\| = \|\hat{a}\|_{\infty} = \sup_{\chi \in \hat{A}} |\hat{a}(\chi)| = r(a) \le \|a\|.$$

Now assume that A is a C^{*}-algebra. Since A is abelian, any $a \in A$ is normal. Hence $\|\hat{a}\|_{\infty} = r(a) = \|a\|$ and so γ is isometric.

It is easy to check that $\gamma(A) \subset C(\hat{A})$ is closed *-subalgebra. By Stone-Weierstrass theorem, we have $\gamma(A) = C(\hat{A})$.

Definition 2.34. Let A be a unital C^* -algebra and $a \in A$. We say

- (1) *a* is *unitay* if $a^*a = aa^* = 1$,
- (2) a is self-adjoint if $a^* = a$.

We denote by $\mathcal{U}(A)$ the set of all unitaries in A, and by A_{sa} the set of all self-adjoint elements in A.

Theorem 2.35. Let A be a unital C^* -algebra and $a \in A$. Then

(1) If a is unitary, then $\sigma(a) \subset \mathbb{T} = \{ \alpha \in \mathbb{C} : |\alpha| = 1 \}.$

(2) If a is self-adjoint, then $\sigma(a) \subset [-\|a\|, \|a\|]$.

Proof. 省略.

Theorem 2.36. Let *B* be a unital *C*^{*}-subalgebra of a unital *C*^{*}-algebra *A* with $1_B = 1_A$. Then $\sigma_B(a) = \sigma_A(a)$ for $a \in B$.

Proof. It is trivial that $\sigma_A(a) \subset \sigma_B(a)$. Conversely, let $b = a - \alpha 1 \in B$. Then it suffices to show that if $\exists b^{-1} \in A$, then $b^{-1} \in B$. If b is self-adjoint, then $\sigma_B(b) \subset \mathbb{R}$. Hence for any $\varepsilon > 0$, we have $(b - i\varepsilon 1)^{-1} \in B$. Since $||(b - i\varepsilon 1)^{-1} - b^{-1}|| \to 0$, we have $b^{-1} \in B$. If b is not self-adjoint, then $(b^*b)^{-1} \in A$ implies $(b^*b)^{-1} \in B$. Hence $b^{-1} = (b^*b)^{-1}b^* \in B$. \Box

Definition 2.37. Let A be a unital C^* -algebra and $a \in A$ normal. We denote by $C^*(a)$ a unital abelian C^* -subalgebra of A, which is generated by a.

Theorem 2.38. Let A be a unital C^* -algebra and $a \in A$ normal. The map $\hat{a} \colon \widehat{C^*(a)} \ni \chi \mapsto \chi(a) \in \sigma(a)$ is homeomorphic. Hence it induces the isometric *-isomorphism $\gamma^{-1} \circ \hat{a}^t \colon C(\sigma(a)) \to C^*(a)$ with $z \mapsto a$, where z is the inclusion map of $\sigma(a)$ in \mathbb{C} .

Proof. 省略.

Definition 2.39. For a normal element a in a unital C^* -algebra A, we denote by γ_a the unique unital *-homomorphism from $C(\sigma(a))$ to A, which is called the *functional calculus* of a. If p is a polynomial, then $\gamma_a(p) = p(a)$, so for $f \in C(\sigma(a))$ we write $f(a) = \gamma_a(f)$.

Theorem 2.40 (Spectral Mapping). Let A be a unital C*-algebra and $a \in A$ normal. Then $\sigma(f(a)) = f(\sigma(a))$ for $f \in C(\sigma(a))$.

Proof. 省略.

Definition 2.41. Let A be a unital C^{*}-algebra. We say $a \in A$ is *positive* if a is self-adjoint and $\sigma(a) \subset [0, \infty)$. In this case, we write $a \ge 0$. We also denote $A_+ = \{a \in A : a \ge 0\}$.

Definition 2.42. For self-adjoint elements a, b in a unital C^* -algebra A, we write $a \leq b$ if $b - a \geq 0$.

Example 2.43. If A = C(X), then $f \in C(X)$ is positive if and only if $f(x) \ge 0$ for any $x \in X$.

Theorem 2.44. Let A be a unital C*-algebra and $a \in A$. Then $a \ge 0$ if and only if $a = b^*b$ for some $b \in A$.

Proof. If $a \ge 0$, then there is $b \ge 0$ such that $a = b^2$. Conversely, if $a = b^*b$, then a is self-adjoint. Moreover there are $a_+, a_- \ge 0$ such that $a = a_+ - a_-$ and $a_+a_- = 0$. Hence it suffices to show that $a_- = 0$. If we set $c = ba_-$, then $c^*c = a_-b^*ba_- = -a_-^3 \le 0$. Since $\sigma(c^*c) \cup \{0\} = \sigma(cc^*) \cup \{0\}$, $cc^* \le 0$. Since $c^*c = 2\operatorname{Re}(c)^2 + 2\operatorname{Im}(c)^2 - cc^* \ge 0$, $c^*c \in A_+ \cap (-A_+) = \{0\}$. Hence $a_- = 0$.

Theorem 2.45. Let A be a unital C^* -algebra and $a, b, c \in A$.

- (1) $a \ge b \ge 0 \Longrightarrow ||a|| \ge ||b||,$
- (2) $a \ge b \Longrightarrow c^*ac \ge c^*bc$,
- (3) a, b are invertible and $a \ge b \ge 0 \implies 0 \le b^{-1} \le a^{-1}$.

Proof. (1) Use the Gelfand transform.

(2) Use the previous theorem.

(3) First prove that if $c \ge 1$, then $c^{-1} \le 1$, by using the Gelfand transform. Next put $c = a^{-1/2}ba^{-1/2} \ge 1$.

Theorem 2.46. Let A, B be unital C^* -algebras and $\pi \colon A \to B$ a unital *-homomorphism. Then

- (1) $\pi(a) \ge 0$ for $a \in A_+$,
- (2) $||\pi(a)|| \le ||a||$ for $a \in A$,
- (3) If π is injective, then π is isometric.

Proof. (1) Easy.

(2) Since $\sigma(\pi(a)) \subset \sigma(a)$, we have

$$\|a\|^2 = \|a^*a\| = r(a^*a) \ge r(\pi(a^*a)) = r(\pi(a)^*\pi(a)) = \|\pi(a)^*\pi(a)\| = \|\pi(a)\|^2.$$

(3) It suffices to show that $||\pi(a^*a)|| = ||a^*a||$. Hence we may assume that A, B are abelian. We define $\pi' \colon \hat{B} \ni \chi \mapsto \chi \circ \pi \in \hat{A}$. Then we have $\pi'(\hat{B}) = \hat{A}$. Hence for $a \in A$,

$$||a|| = ||\hat{a}||_{\infty} = \sup_{\chi \in \hat{A}} |\chi(a)| = \sup_{\chi \in \hat{B}} |\chi(\pi(a))| = ||\pi(a)||.$$

Definition 2.47. Let A be a unital C^{*}-algebra. A linear functional $\omega \colon A \to \mathbb{C}$ is positive if $\omega(a) \geq 0$ for $a \in A_+$.

Example 2.48. Any positive linear functional ω on C(X) is given by $\mu \in M(X)_+$ via

$$\omega(f) = \int_X f(x)d\mu(x).$$

(Riesz-Markov-Kakutani representation theorem.)

Example 2.49. Any positive linear functional ω on \mathbb{M}_n is given by $h \in \mathbb{M}_{n,+}$ such that

$$\omega(a) = \operatorname{Tr}(ah),$$

where Tr is the canonical trace on \mathbb{M}_n .

Proposition 2.50 (Schwarz inequality). If ω is a positive linear functional on a unital C^* -algebra A, then

$$|\omega(b^*a)|^2 \le \omega(b^*b)\omega(a^*a)$$

for any $a, b \in A$.

Proof. Notice that $\langle a, b \rangle = \omega(b^*a)$ is a semi-inner product on A.

Theorem 2.51. Let A be a unital C^{*}-algebra. If ω is a positive linear functional on a unital C^{*}-algebra, then ω is bounded with $\|\omega\| = \omega(1)$.

Proof. If $||a|| \leq 1$, then $0 \leq a^*a \leq 1$. Hence by Schwarz inequality,

$$|\omega(a)|^2 = |\omega(1a)|^2 \le \omega(1)\omega(a^*a) \le \omega(1)^2.$$

Theorem 2.52. Let A be a unital C^* -algebra and $\omega \in A^*$. Then ω is positive if and only if $\omega(1) = \|\omega\|$.

Proof. Suppose that $\omega(1) = \|\omega\| = 1$. First show that $\omega(a) \in \mathbb{R}$ for $a \in A_{sa}$. Next if $a \ge 0$ with $\|a\| = 1$, then $1 - a \in A_{sa}$ and $\|1 - a\| \le 1$. So $1 - \omega(a) = \omega(1 - a) \le 1$. \Box

Definition 2.53. Let A be a unital C*-algebra. We denote by A_+^* the set of all positive linear functionals on A. If $\omega \in A_+^*$ with $\|\omega\| = \omega(1) = 1$, then we call it a *state*. We denote by S(A) the set of all states on A.

Theorem 2.54. Let A be a unital C^* -algebra. Then S(A) is a weak-* compact convex subset of A^* .

Proof. Since $S(A) = \{ \omega \in A_+^* : \omega(1) = 1 \}$, it is weak-* closed convex. By Bnach-Alaoglu theorem, S(A) is weak-* compact.

Theorem 2.55. Let A be a non-zero unital C^{*}-algebra and $a \in A$ normal. Then there is $\omega \in S(A)$ such that $\omega(a) = ||a||$.

Proof. We may assume that $a \neq 0$. Since $B = C^*(a)$ is abelian, there is $\chi \in \hat{B}$ such that $||a|| = ||\hat{a}||_{\infty} = |\chi(a)|$. By Hahn-Banach extension theorem, there is an extension ω such that $||\omega|| = 1$. Since $\omega(1) = \chi(1) = 1$, ω is positive with $||\omega|| = 1$.

Definition 2.56. Let A be a unital C^* -algebra and $\omega \in S(A)$. Then

$$N_{\omega} := \{ a \in A \colon \omega(a^*a) = 0 \}$$

is a closed left ideal of A. (Use Schwarz inequality.) Next we define a inner product on A/N_{ω} by

$$\langle [a], [b] \rangle := \omega(b^*a),$$

and denote by \mathcal{H}_{ω} the completion of A/N_{ω} . Now we define a *-homomorphism $\pi_{\omega} \colon A \to \mathbb{B}(\mathcal{H}_{\omega})$ by

$$\pi_{\omega}(a)[b] := [ab].$$

If we set $\xi_{\omega} = [1] \in \mathcal{H}_{\omega}$, then ξ_{ω} is *cyclic* for π_{ω} , i.e., $\pi_{\omega}(A)\xi_{\omega}$ is dense in \mathcal{H}_{ω} . We say $(\pi_{\omega}, \mathcal{H}_{\omega}, \xi_{\omega})$ is the *GNS repersentation* associated with ω .

Theorem 2.57 (Gelfand-Naimark). If A is a unital C^* -algebra, then it has a faithful representation.

Proof. We define the universal representation $\pi_u := \bigoplus_{\omega \in S(A)} \pi_\omega$. If $\pi_u(a) = 0$, then $\pi_\omega(a^*a) = 0$ for any $\omega \in S(A)$. If we put $b = (a^*a)^{1/4}$, then $\|\pi_u(b)\|^4 = \|\pi_u(b)^4\| = \|\pi_u(a^*a)\| = 0$ and so $\pi_u(b) = 0$. Therefore there is $\omega \in S(A)$ such that $\|a^*a\| = \omega(a^*a) = \omega(b^4) = \|\pi_\omega(b)[b]\|^2 = 0$. Hence a = 0.

3 "Classical" group C^* -algebras

Definition 3.1. Let Γ be a countable discrete group. Then $c_c\Gamma$ becomes a unital *-algebra with the multiplication

$$f * g(s) := \sum_{t \in \Gamma} f(t)g(t^{-1}s)$$

and the involution

$$f^*(s) := \overline{f(s^{-1})}$$

with the unit δ_e . The above operations can be also defined on $\ell_1\Gamma$, which becomes a unital *-algebra.

Definition 3.2. A unital representation of Γ is a homomorphism of Γ into the unitary group of $\mathbb{B}(\ell_2\Gamma)$. We denote by λ the *left regular representation*:

$$(\lambda(s)f)(t) := f(s^{-1}t) \quad (s, t \in \Gamma).$$

Remark 3.3. Let $\{\delta_t\}_{t\in\Gamma}$ be the canonical ONB for $\ell_2\Gamma$. Then

$$\lambda(s)\delta_t = \delta_{st} \quad (s, t \in \Gamma).$$

[Problem 10]

Lemma 3.4. There is a one-to-one correspondence between the set of all unitary representation of Γ and the set of all representations of $c_c \Gamma$ (or $\ell_1 \Gamma$):

$$\pi \mapsto \tilde{\pi}(f) := \sum_{s \in \Gamma} f(s)\pi(s), \quad (f \in c_c \Gamma)$$

and

$$\|\tilde{\pi}(f)\| \le \|f\|_1$$

Proof. 省略.

Remark 3.5. For $f \in c_c \Gamma$, we have

$$\lambda(f)g = f * g \ (g \in \ell_2 \Gamma).$$

[Problem 11]

We also simply write π for the extend representation $\tilde{\pi}$ of $c_c \Gamma$.

Lemma 3.6. The extended representation λ of $c_c \Gamma$ (or $\ell_1 \Gamma$) is injective.

Proof. 省略.

Definition 3.7. The reduced group C^* -algebra is defined to be $C^*_{\lambda}\Gamma := \overline{\lambda(c_c\Gamma)} = \overline{\lambda(\ell_1\Gamma)} \subset \mathbb{B}(\ell_2\Gamma).$

The full group C^* -algebra it the completion of $c_c \Gamma$ with respect to the C^* -norm

 $||f||_u := \sup\{||\pi(f)|| : \pi \text{ is a unitary representation of } \Gamma\}.$

Example 3.8. Let $\Gamma = \mathbb{Z} = \langle a \rangle$ be the integer group. The Fourier transform induces the unitary $u: \ell_2 \mathbb{Z} \to L^2(\mathbb{T}), f \mapsto \mathcal{F}(f) = \hat{f}$, which is defined by

$$\hat{f}(z) := \sum_{n \in \mathbb{Z}} f(n) z^n.$$

Then for any $f \in c_c \mathbb{Z}$ and $g \in \ell_2 \mathbb{Z}$, we have

$$u\lambda(f)u^*\hat{g} = u\lambda(f)g = \mathcal{F}(f*g) = \hat{f}\hat{g} = M_{\hat{f}}\hat{g},$$

where $M_f \in \mathbb{B}(L^2(\mathbb{T}))$ is defined by $M_f g := fg$ for $f \in C(\mathbb{T})$ and $g \in L^2(\mathbb{T})$, which gives an isometric *-homomorphism $C(\mathbb{T}) \to \mathbb{B}(L^2(\mathbb{T}))$. Hence the map $\lambda(f) \mapsto u\lambda(f)u^* = M_{\hat{f}}$ gives a isometric *-isomorphism between $C^*_{\lambda}\mathbb{Z}$ and $C(\mathbb{T})$.

Since \mathbb{Z} is abelian, $C^*\mathbb{Z}$ is a unital abelian C^* -algebra. By the Gelfand transform, we have $C^*\mathbb{Z} = C(\widehat{C^*\mathbb{Z}})$. For each chracter χ on $C^*\mathbb{Z}$, we have a scalar $z = \chi(\delta_a) \in \mathbb{T}$ and this gives a homeomorphism. Therefore $C^*\mathbb{Z} = C^*_{\lambda}\mathbb{Z} = C(\mathbb{T})$.

More generally, for every abelian group Γ , the *Pontryagin duality* gives $C^*\Gamma = C^*_{\lambda}\Gamma = C(\hat{\Gamma})$.

Proposition 3.9. Let $\pi: \Gamma \to \mathbb{B}(\mathcal{H})$ be a unitary representation. Then there is a unique *-homomorphism $\overline{\pi}: C^*(\Gamma) \to \mathbb{B}(\mathcal{H})$ such that $\overline{\pi}(f) = \pi(f)$ for $f \in c_c \Gamma$.

Proof. It follows from $||\pi(f)|| \leq ||f||_u$ for $f \in c_c \Gamma$.

Definition 3.10. A function $\varphi \colon \Gamma \to \mathbb{C}$ is said to be *positive definite* if the matrix

$$[\varphi(s^{-1}t)]_{s,t\in F}\in\mathbb{M}_F$$

is positive for any finite subset $F \subset \Gamma$, i.e.,

$$\sum_{i,j=1}^{n} \overline{\alpha_i} \varphi(s_i^{-1} s_j) \alpha_j \ge 0$$

for any $n \in \mathbb{N}, s_1, \ldots, s_n \in \Gamma$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$.

We denote by $P(\Gamma)$ the set of all positive definite functions on Γ .

Example 3.11. For $f \in c_c \Gamma$, the function $f^* * f$ is positive definite. [Problem 12]

Remark 3.12. Let $\pi: \Gamma \to \mathbb{B}(\mathcal{H})$ be a unitary representation and $\xi \in \mathcal{H}$. If we define

$$\varphi(s) := \langle \pi(s)\xi, \xi \rangle,$$

then φ is positive definite. [Problem 13]

Proposition 3.13. Let $f \in c_c \Gamma$. Then the following are equivalent:

- (1) f is positive definite,
- (2) $\lambda(f)$ is positive.

Proof. For a finite subset $F \subset \Gamma$, set $\xi = \sum_{s \in F} \alpha_s \delta_s \in \ell_2 \Gamma$. Then

$$\langle \lambda(f)\xi,\xi\rangle = \sum_{r\in \mathrm{supp}(f)} \sum_{s,t\in F} f(r)\alpha_s \overline{\alpha_t} \langle \lambda(r)\delta_s,\delta_t\rangle = \sum_{s,t\in F} \overline{\alpha_t} f(ts^{-1})\alpha_s.$$

Definition 3.14. For a function $\varphi \colon \Gamma \to \mathbb{C}$, we define a corresponding functional $\omega_{\varphi} \colon c_c \Gamma \to \mathbb{C}$ by

$$\omega_{\varphi}(f) = \sum_{s \in \Gamma} f(s)\varphi(s).$$

Theorem 3.15. Let φ be function with $\varphi(e) = 1$. The following are equivalent:

(1) φ is positive definite.

(2) there exists a unitary representation λ_{φ} of Γ on a Hilbert space \mathcal{H}_{φ} and a cyclic vector ξ_{φ} such that

$$\varphi(s) = \langle \lambda_{\varphi}(s)\xi_{\varphi}, \xi_{\varphi} \rangle.$$

(3) ω_{φ} extends to a state on $C^*\Gamma$.

Proof. (1) \Longrightarrow (2): Let φ be a positive definite function. Define a semi-inner product on $c_c \Gamma$ by

$$\langle f,g\rangle_{\varphi}=\sum_{s,t\in\Gamma}\varphi(s^{-1}t)f(t)\overline{g(s)}$$

By the separation and the completion, we get a Hilbert space $\ell_2^{\varphi}\Gamma$. Then we define $\lambda_{\varphi}(s)[f] = [sf]$ for $f \in c_c\Gamma$ and $\xi_{\varphi} = [\delta_e]$, which satisfy desired properties, where $(sf)(t) = f(s^{-1}t)$.

 $(2) \Longrightarrow (3)$: Trivial.

 $(3) \Longrightarrow (1)$: If we write

$$f = \sum_{i=1}^{n} \alpha_i \delta_{s_i} \in c_c \Gamma,$$

then

$$\sum_{i,j=1}^{n} \overline{\alpha_i} \varphi(s_i^{-1} s_j) \alpha_j = \omega_{\varphi}(f^* * f) \ge 0.$$

Corollary 3.16. The map $P(\Gamma) \ni \varphi \mapsto \omega_{\varphi} \in (C^*\Gamma)^*_+$ gives a bijection.

Proposition 3.17. Let φ_1, φ_2 be positive definite functions on Γ . Then the product $\varphi_1 \varphi_2$ is also positive definite.

Proof. Let $a_k = [a_{ij}^{(k)}], a_{ij}^{(k)} = \varphi_k(s_i^{-1}s_j)$ for k = 1, 2. Then a_1, a_2 are positive matrices. Then $a = a_1 \circ a_2 = [a_{ij}^{(1)}a_{ij}^{(2)}]$ (Schur product) is also positive. Hence if $\xi = [\alpha_1, \ldots, \alpha_n] \in \mathbb{C}^n$, then

$$\sum_{i,j=1}^{n} \overline{\alpha_i} \varphi_1(s_i^{-1} s_j) \varphi_2(s_i^{-1} s_j) \alpha_j = \langle a\xi, \xi \rangle \ge 0.$$

Definition 3.18. A group Γ is *amenable* if there exists a state $\mu \in \ell_{\infty}\Gamma$ which is invariant under left translation: for any $s \in \Gamma$ and $f \in \ell_{\infty}\Gamma$, $\mu(sf) = \mu(f)$.

Definition 3.19. Let $\operatorname{Prob}(\Gamma)$ be the space of all probability measures on Γ :

$$\operatorname{Prob}(\Gamma) = \{ \mu \in \ell_1 \Gamma \colon \mu \ge 0, \sum_{s \in \Gamma} \mu(s) = 1 \}.$$

Definition 3.20. We say Γ has an *approximate invariant mean* if for any finite subset $F \subset \Gamma$ and $\varepsilon > 0$, there exists $\mu \in \operatorname{Prob}(\Gamma)$ such that

$$\max_{s\in E} \|s\mu - \mu\|_1 < \varepsilon,$$

where $s\mu(F) = \mu(s^{-1}F)$ for $F \subset \Gamma$.

Definition 3.21. We say Γ satisfies the *Følner condition* if for any finite subset $E \subset \Gamma$ and $\varepsilon > 0$, there exists a finite subset $F \subset \Gamma$ such that

$$\max_{s \in E} \frac{|sF \triangle F|}{|F|} < \varepsilon,$$

where $sF = \{st : t \in F\}$.

Example 3.22. All abelian groups are amenable by the **Markov-Kakutani fixed point** theorem.

Example 3.23. The free group \mathbb{F}_d is not amenable for $d \ge 2$. Let d = 2 and a, b be the free generators. Set

 $A^+ = \{ \text{all reduced words starting with } a \} \subset \mathbb{F}_d,$

similarly let A^-, B^+, B^- . Then for $C = \{e, b, b^2, \dots, \} \subset \mathbb{F}_d$, we have

$$\mathbb{F}_d = A^+ \sqcup A^- \sqcup (B^+ \setminus C) \sqcup (B^- \sqcup C)$$

= $A^+ \sqcup aA^-$
= $b^{-1}(B^+ \setminus C) \sqcup (B^- \sqcup C).$

Suppose that there is an invariant state μ on $\ell_{\infty} \mathbb{F}_d$. Then

$$1 = \mu(1) = \mu(\chi_{A^+}) + \mu(\chi_{A^-}) + \mu(\chi_{B^+ \setminus C}) + \mu(\chi_{B^- \sqcup C})$$

= $\mu(\chi_{A^+}) + \mu(a\chi_{A^-}) + \mu(b^{-1}\chi_{B^+ \setminus C}) + \mu(\chi_{B^- \sqcup C})$
= $2\mu(1) = 2,$

which is a contradiction.

More generally, if Γ contains \mathbb{F}_d , then Γ is non-amenable.

Theorem 3.24. Let Γ be a contable discrete group. Then the following are equivalent:

- (1) Γ is amenable,
- (2) Γ has an approximate invariant mean,
- (3) Γ satisfies the Følner condition,
- (4) there is unit vectors $\xi_i \in \ell_2 \Gamma$ such that $\|\lambda(s)\xi_i \xi_i\|_2 \to 0$ for $s \in \Gamma$,
- (5) there is a sequence (φ_i) of finitly supported positive definite functions on Γ such that $\varphi_i(s) \to 1$ for $s \in \Gamma$,
- (6) $C^*\Gamma = C^*_{\lambda}\Gamma$,
- (7) $C^*_{\lambda}\Gamma$ has a character, i.e., one-dimensional representation.

Proof. (1)=>(2): Let μ be an invariant mean on $\ell_{\infty}\Gamma$. Since $\ell_{1}\Gamma$ is weak-* dence in $(\ell_{\infty}\Gamma)^{*}$, there is a sequence $\mu_{i} \in \operatorname{Prob}(\Gamma)$ such that $\mu_{i} \to \mu$ in $(\ell_{\infty}\Gamma)^{*}$ in the weak-* topology. Since $(\ell_{1}\Gamma)^{*} = \ell_{\infty}\Gamma$, we have $s\mu_{i} - \mu_{i} \to 0$ in $\ell_{1}\Gamma$ in the weak topology. Hence for any $s_{1}, \ldots, s_{n} \in \Gamma$, since the weak and norm closed doincide on a convex subset, we have

$$0 \in \overline{\operatorname{conv}} \bigoplus_{i=1}^{n} \{ s_i \mu - \mu \colon \mu \in \operatorname{Prob}(\Gamma) \} \subset (\ell_1 \Gamma)^n.$$

(2) \Longrightarrow (3): Let $E \subset \Gamma$ be a finite subset and $\varepsilon > 0$. Choose $\mu \in \operatorname{Prob}(\Gamma)$ such that

$$\sum_{s\in E}\|s\mu-\mu\|_1<\varepsilon.$$

For $f \in \ell_1 \Gamma$ with $f \ge 0$ and $r \ge 0$, we define

$$F(f,r) = \{t \in \Gamma \colon f(t) > r\}.$$

Observe that if f(t) > g(t), then

$$|\chi_{F(f,r)}(t) - \chi_{F(g,r)}(t)| = 1 \iff f(t) > r \ge t.$$

Hence

$$\begin{split} |s\mu - \mu||_{1} &= \sum_{t \in \Gamma} |s\mu(t) - \mu(t)| \\ &= \sum_{t \in \Gamma} \int_{0}^{1} |\chi_{F(s\mu,r)}(t) - \chi_{F(\mu,r)}(t)| dr \\ &= \int_{0}^{1} \sum_{t \in \Gamma} |\chi_{F(s\mu,r)}(t) - \chi_{F(\mu,r)}(t)| dr \\ &= \int_{0}^{1} |sF(\mu,r) \triangle F(\mu,r)| dr. \end{split}$$

Therefore

$$\varepsilon \int_0^1 |F(\mu, r)| dr = \varepsilon > \sum_{s \in E} \|s\mu - \mu\|_1 = \int_0^1 \sum_{s \in E} |sF(\mu, r) \triangle F(\mu, r)| dr$$

Thus for some r, we must have

$$\sum_{s \in E} |sF(\mu, r) \triangle F(\mu, r)| < \varepsilon |F(\mu, r)|.$$

(3) \Longrightarrow (4): Take a Følner sequence (F_i) , i.e., (F_i) is a sequence of finite subsets of Γ such that

$$\frac{|sF_i \triangle F_i|}{|F_i|} \to 0$$

for any $s \in \Gamma$. Set $\xi_i = |F_i|^{-1/2} \chi_{F_i} \in \ell_2 \Gamma$. Observe that for finite subsets $E, F \subset \Gamma$,

$$\|\chi_E - \chi_F\|_2^2 = |E \triangle F|.$$

Hence

$$\|\lambda(s)\xi_i - \xi_i\|_2^2 = \frac{1}{|F_i|} \|\chi_{sF_i} - \chi_{F_i}\|_2^2 = \frac{|sF_i \triangle F_i|}{|F_i|} \to 0$$

(4) \Longrightarrow (5): Take unit vectors $\xi_i \in \ell_2 \Gamma$ with condition (4). We may assume that each ξ_i is finitely supported. Then $\varphi_i(s) = \langle \lambda(s)\xi_i, \xi_i \rangle$ is positive definite and $\varphi_i(s) \to ||\xi_i||_2^2 = 1$. (5) \Longrightarrow (6): We will prove it in the next section.

(6) \Longrightarrow (7): The trivial representation $\tau_0 \colon \Gamma \ni s \mapsto 1 \in \mathbb{C}$ extends to $C^*\Gamma = C^*_{\lambda}\Gamma$.

 $(7) \Longrightarrow (1)$: Let $\tau : C_{\lambda}^* \Gamma \to \mathbb{C}$ be any unital *-homomorphism, which regard it as a state. By Hahn-Banach theorem, we can extend it to $\mathbb{B}(\ell_2 \Gamma)$. Since $\ell_{\infty} \Gamma \ni f \mapsto M_f \in \mathbb{B}(\ell_2 \Gamma)$, τ is also defined on $\ell_{\infty} \Gamma$. Since $M_{sf} = \lambda(s) M_f \lambda(s^{-1}) \in \ell_{\infty} \Gamma$, we have

$$\tau(M_{sf}) = \tau(\lambda(s)M_f\lambda(s)^*) = \tau(\lambda(s))\tau(M_f)\overline{\tau(\lambda(s))} = \tau(M_f)$$

for any $s \in \Gamma$ and $f \in \ell_{\infty}\Gamma$, (because $\lambda(s)$ belongs to the multiplicative domain of τ). \Box

Remark 3.25. Let $p \ge 1$ be fixed. The condition (5) in the above can be replaced by the following:

4 "NEW" GROUP C*-ALGEBRAS

 $(5)_p$ there is a sequence (φ_i) of positive definite functions in $\ell_p \Gamma$ such that $\varphi_i(s) \to 1$ for $s \in \Gamma$,

Indeed, it is easy that $(5) \Longrightarrow (5)_p$. Conversely, take $k \in \mathbb{N}$ with $k \ge p$. Then φ_i^k are positive definite such that $\varphi_i^k(s) \to 1$ and $\varphi_i^k \in \ell_1 \Gamma \subset C_\lambda^* \Gamma$. Fix $i \ge 1$. Let $\|\lambda(\varphi_i^k)^{1/2}\| = c_i \ge 0$. By taking $f_i \in c_c \Gamma$ such that

$$\|\lambda(\varphi_i^k)^{1/2} - \lambda(f_i)\| < \frac{1}{2i(c_i+1)}.$$

Then we have

$$\|\lambda(\varphi_i^k) - \lambda(f_i^* * f_i)\| < \frac{1}{i}.$$

Hence for any $s \in \Gamma$,

$$|\varphi_i^k(s) - f_i^* * f_i(s)| = |\langle [\lambda(\varphi_i^k) - \lambda(f_i^* * f_i)] \delta_e, \delta_s \rangle| \le ||\lambda(\varphi_i^k) - \lambda(f_i^* * f_i)|| \to 0.$$

It follows that $f_i^* * f_i(s) \to 1$.

4 "New" group C^* -algebras

Definition 4.1. Let π be a unitary representation of a contable discrete group Γ on a Hilbert space \mathcal{H} . For $\xi, \eta \in \mathcal{H}$, we denote the *matrix coefficient* of π by

$$\pi_{\xi,\eta}(s) := \langle \pi(s)\xi, \eta \rangle.$$

Note that $\pi_{\xi,\eta} \in \ell_{\infty} \Gamma$.

Definition 4.2. Let D be a non-zero ideal of $\ell_{\infty}\Gamma$. If there exists a dense subspace \mathcal{H}_0 of \mathcal{H} such that $\pi_{\xi,\eta} \in D$ for all $\xi, \eta \in \mathcal{H}_0$, then π is called *D*-representation. If D is invariant under the left and right translation of Γ on $\ell_{\infty}\Gamma$, then it is said to be translation invariant. In this case, D contains $c_c\Gamma$

Example 4.3. $c_c\Gamma$, $\ell_p\Gamma$, $c_0\Gamma$ are translation invariant ideals of $\ell_{\infty}\Gamma$.

Lemma 4.4. If π has a cyclic vector ζ such that $\pi_{\zeta,\zeta} \in D$, then π is a *D*-representation with respect to a dense subspace

$$\mathcal{H}_0 = \operatorname{span}\{\pi(s)\xi \colon s \in \Gamma\}.$$

Proof. Let $\xi = \pi(s)\zeta$, $\eta = \pi(t)\zeta$. Then

$$\pi_{\xi,\eta}(r) = \langle \pi(r)\xi,\eta\rangle = \langle \pi(t^{-1}rs)\zeta,\zeta\rangle = \pi_{\zeta,\zeta}(t^{-1}rs).$$

Hence $\pi_{\xi,\eta} \in D$.

Remark 4.5. It is easy to see that λ is a c_c -representation, or a *D*-representation for any *D*.

Definition 4.6. The C^* -algebra $C_D^*\Gamma$ is the C^* -completion of the group ring $\mathbb{C}\Gamma$ by $\|\cdot\|_D$, where

 $||f||_D = \sup\{||\pi(f)||: \pi \text{ is a } D \text{-representation}\} \text{ for } f \in c_c \Gamma.$

Remark 4.7. Note that if D_1 and D_2 are ideals of $\ell_{\infty}\Gamma$ with $D_1 \supset D_2$, then there exists the canonical quotient map from $C_{D_1}^*\Gamma$ onto $C_{D_2}^*\Gamma$.

Remark 4.8. Let (π_i, \mathcal{H}_i) be a family of all *D*-representations of Γ with a dense subspace $\mathcal{H}_{i,0}$. Then $\pi_u = \bigoplus_i \pi_i$ is a *D*-representation of Γ with a dense subspace $\mathcal{H}_{u,0} = \bigoplus_{\text{finite}} \mathcal{H}_{i,0}$, which gives a faithful *D*-representation of $C_D^*\Gamma$. Indeed, suppose that there is $0 \neq x \in C_D^*\Gamma$ such that $\pi_u(x) = 0$. Take $f_n \in c_c\Gamma$ such that $||f_n - x||_D \to 0$. Then $\pi_u(f_n) \to \pi_u(x) = 0$. However $||\pi_u(f_n)|| = ||f_n||_D \to ||x||_D \neq 0$, which is a contradiction.

Remark 4.9. It easily follows from the definition that $C^*_{\ell_{\infty}}\Gamma = C^*\Gamma$.

Lemma 4.10 (Cowling-Haagerup-Howe theorem). Let $\pi: \Gamma \to \mathbb{B}(\mathcal{H})$ be a unitary representation with a cyclic vector $\zeta \in \mathcal{H}$ such that $\pi_{\zeta,\zeta} \in \ell_2 \Gamma$. Then $\|\pi(f)\| \leq \|\lambda(f)\|$ for $f \in c_c \Gamma$.

Proof. 省略.

Theorem 4.11. $C^*_{\ell_p}\Gamma = C^*_{\lambda}\Gamma$ for $1 \le p \le 2$.

Proof. There is a canonical quotient $\Phi: C^*_{\ell_p} \Gamma \to C^*_{\lambda} \Gamma$. Suppose that $0 \neq x \in \ker \Phi$. Take a ℓ_p -representation $\pi: \Gamma \to \mathbb{B}(\mathcal{H})$ such that $||\pi(x)|| \neq 0$. Hence there is $\zeta \in \mathcal{H}_0$ such that $\pi(x)\zeta \neq 0$. Set

$$\mathcal{H}'_0 = \operatorname{span} \{ \pi(s)\zeta \colon s \in \Gamma \} \subset \mathcal{H}' = \mathcal{H}'_0 \subset \mathcal{H},$$

and $\pi'(s) = \pi(s)|_{\mathcal{H}'}$ for $s \in \Gamma$. Then

$$\pi'_{\zeta,\zeta}(s) = \langle \pi(s)\zeta, \zeta \rangle \in \ell_p \Gamma,$$

and ζ is cyclic for π' . Therefore π' is ℓ_p -representation with $\pi'(x) \neq 0$. Since $\pi'_{\zeta,\zeta} \in \ell_2 \Gamma$, by CHH theorem, we have $\|\pi'(f)\| \leq \|\lambda(f)\|$ for $f \in c_c \Gamma$. Take $f_n \in c_c \Gamma$ such that $\|f_n - x\|_{\ell_p} \to 0$. Then $\pi'(f_n) \to \pi'(x)$ and $\Phi(f_n) = \lambda(f_n) \to \Phi(x) = 0$, which is a contradiction.

Lemma 4.12. Let $\varphi \in P(\Gamma)$. If $\varphi \in D$, then GNS-representation of ω_{φ} is *D*-representation.

Proof. Let ξ_{φ} be a corresponding cyclic vector. Then $\varphi = \pi_{\xi_{\varphi},\xi_{\varphi}} \in D$.

Lemma 4.13 (Glimm's lemma). Let $A \subset \mathbb{B}(\mathcal{H})$ be a separable C^* -algebra such that $A \cap \mathbb{K}(\mathcal{H}) = \{0\}$. If $\omega \in S(A)$, then there exist orthonormal vectors (ξ_n) such that $\langle a\xi_n, \xi_n \rangle \to \varphi(a)$ for all $a \in A$.

Proof. 省略.

Theorem 4.14. $C^*\Gamma = C_D^*\Gamma \iff$ there is positive definite $\varphi_n \in D$ such that $\varphi_n \to 1$ pointwise.

Proof. (\iff) It suffices to show that the set of vector states with respect to *D*-representations is weak-* dense in $S(C^*\Gamma)$. For $\varphi \in P(\Gamma)$, we define $\psi_n = \varphi_n \varphi \in P(\Gamma)$. Note that $\psi_n \to \varphi$ pointwise. Since $\psi_n \in D$, the GNS-representation of ψ_n is *D*-representation.

 $(\Longrightarrow) Assume that <math>C^*\Gamma = C_D^*\Gamma$. Then there is a faithful *D*-representation of $C^*\Gamma$ with a dense subspace $\mathcal{H}_0 \subset \mathcal{H}$ such that $\pi(C^*\Gamma) \cap \mathbb{K}(\mathcal{H}) = \{0\}$. Set $A = \pi(C^*\Gamma) \subset \mathbb{B}(\mathcal{H})$. Define $\tau \in S(A)$ by $\tau(\pi(f)) = \sum_s f(s)$ for $f \in c_c\Gamma$. By Glimm's lemma, we have $\langle \pi(\delta_s)\xi_n, \xi_n \rangle \to 1$. Take $\mathcal{H}_0 \ni \xi'_n$ such that $\|\xi'_n - \xi_n\| < 1/n$. Then $\pi_{\xi'_n,\xi'_n} \in D$ is positive definite and $\pi_{\xi'_n,\xi'_n} \to 1$ pointwise.

Corollary 4.15. (1) Γ is amenable if and only if $C^*\Gamma = C^*_{c_c}\Gamma = C^*_{\lambda}\Gamma$,

(2) Γ has the Haagerup property, i.e., there exists a sequence (φ_n) of positive definite functions in $c_0\Gamma$ such that $\varphi_n \to 1$ pointwise, if and only if $C^*\Gamma = C^*_{c_0}\Gamma$.

Remark 4.16. For 2 , the following holds:

$$\mathbf{C}^*(\mathbb{F}_d) \stackrel{(1)}{=} \mathbf{C}^*_{c_0}(\mathbb{F}_d) \stackrel{(2)}{\neq} \mathbf{C}^*_{\ell_p}(\mathbb{F}_d) \stackrel{???}{\neq} \mathbf{C}^*_{\ell_2}(\mathbb{F}_d) \stackrel{(3)}{=} \mathbf{C}^*_{\lambda}(\mathbb{F}_d),$$

where

- (1) by the Haagerup property,
- (2) by non-amenablity,
- (3) by CHH theorem.

5 Positive definite functions on \mathbb{F}_d

Definition 5.1. Let \mathbb{F}_d be the free group on finitely many generators a_1, \ldots, a_d with $d \ge 2$. We denote by |s| the *word length* of $s \in \mathbb{F}_d$ with respect to the canonical generating set $\{a_1, a_1^{-1}, \ldots, a_d, a_d^{-1}\}$. For $k \ge 0$, we put

$$W_k = \{ s \in \mathbb{F}_d \mid |s| = k \}.$$

We denote by χ_k the characteristic function for W_k .

Lemma 5.2. Let $q \in [1,2]$. Let k, ℓ and m be non negative integers. Let f and g be functions on \mathbb{F}_d such that $\operatorname{supp}(f) \subset W_k$ and $\operatorname{supp}(g) \subset W_\ell$, respectively. If $|k - \ell| \leq m \leq k + \ell$ and $k + \ell - m$ is even, then

$$||(f * g)\chi_m||_q \le ||f||_q ||g||_q,$$

and if m is any other value, then

$$\|(f*g)\chi_m\|_q = 0.$$

Proof. Note that

$$(f * g)(r) = \sum_{\substack{s,t \in \mathbb{F}_d \\ r = st}} f(s)g(t) = \sum_{\substack{|s|=k \\ |t|=\ell \\ r = st}} f(s)g(t).$$

Since the possible values of |st| are $|k - \ell|, |k - \ell| + 2, ..., k + \ell$, we have

$$\|(f*g)\chi_m\|_q = 0$$

for any other values of m.

The case where q = 1 is trivial. So let $q \neq 1$.

First we assume that $m = k + \ell$. If |r| = m, then r can be uniquely written as a product st with |s| = k and $|t| = \ell$. Hence

$$(f * g)(r) = f(s)g(t).$$

Therefore

$$\|(f * g)\chi_m\|_q^q = \sum_{\substack{|st|=k+\ell\\|s|=k\\|t|=\ell}} |f(s)|^q |g(t)|^q \le \sum_{\substack{|s|=k\\|t|=\ell}} |f(s)|^q |g(t)|^q = \|f\|_q^q \|g\|_q^q.$$

Next we assume that $m = |k-\ell|, |k-\ell|+2, \ldots, k+\ell-2$. Then, we have $m = k+\ell-2j$ for $1 \leq j \leq \min\{k,\ell\}$. Let r = st with |r| = m, |s| = k and $|t| = \ell$. Then r can be uniquely written as a product s't' such that s = s'u, $t = u^{-1}t'$ with |s'| = k-j, $|t'| = \ell-j$ and $|u| = |u^{-1}| = j$. We define

$$f'(s) = \left(\sum_{|u|=j} |f(su)|^q\right)^{\frac{1}{q}} \text{ if } |s| = k - j, \text{ and } f'(s) = 0 \text{ otherwise.}$$

We also define

$$g'(t) = \left(\sum_{|u|=j} |g(u^{-1}t)|^q\right)^{\frac{1}{q}}$$
 if $|t| = \ell - j$, and $g'(t) = 0$ otherwise.

Note that $\operatorname{supp}(f') \subset W_{k-j}$ and $\operatorname{supp}(g') \subset W_{\ell-j}$. Moreover

$$||f'||_q^q = \sum_{|t|=k-j} \left(\sum_{|v|=j} |f(tv)|^q \right) = ||f||_q^q,$$

and similarly $||g'||_q = ||g||_q$. Take $2 \le p < \infty$ with 1/p + 1/q = 1. By Hölder's inequality,

$$\begin{split} |(f*g)(r)| &= \left| \sum_{\substack{|s|=k\\|t|=\ell\\r=st}} f(s)g(t) \right| = \left| \sum_{|u|=j} f(s'u)g(u^{-1}t') \right| \\ &\leq \left(\sum_{|u|=j} |f(s'u)|^q \right)^{\frac{1}{q}} \left(\sum_{|u|=j} |g(u^{-1}t')|^p \right)^{\frac{1}{p}} \\ &\leq \left(\sum_{|u|=j} |f(s'u)|^q \right)^{\frac{1}{q}} \left(\sum_{|u|=j} |g(u^{-1}t')|^q \right)^{\frac{1}{q}} \\ &= f'(s')g'(t') = (f'*g')(r). \end{split}$$

Hence $|(f * g)\chi_m| \leq (f' * g')\chi_m$. Since $(k - j) + (\ell - j) = m$, it follows from the first part of the proof that

$$\|(f * g)\chi_m\|_q \le \|(f' * g')\chi_m\|_q \le \|f'\|_q \|g'\|_q = \|f\|_q \|g\|_q.$$

20

Lemma 5.3. Let $1 \leq q \leq p \leq \infty$ with 1/p + 1/q = 1. Let $\pi \colon \Gamma \to \mathbb{B}(\mathcal{H})$ be a unitary representation with a cyclic vector ζ such that $\pi_{\zeta,\zeta} \in \ell_p \Gamma$. Then

$$\|\pi(f)\| \le \liminf_{n \to \infty} \|(f^* * f)^{(*2n)}\|_q^{\frac{1}{4n}}$$

for $f \in c_c \Gamma$.

Proof. For $f \in c_c \Gamma$, we set $g = f^* * f$. Then $\pi(g)$ is self-adjoint. By the spectral decomposition, for $\xi \in \mathcal{H}$ there is a regular Borel complex measure μ on \mathbb{R} such that

$$\langle \pi(g)\xi,\xi\rangle = \int td\mu(t).$$

Then

$$\|\pi(g)\xi\|^{2} = \langle \pi(g)^{2}\xi,\xi\rangle = \int t^{2}d\mu(t)$$

$$\leq \left(\int t^{2n}d\mu(t)\right)^{1/n} \left(\int 1d\mu(t)\right)^{1-1/n}$$

$$= \langle \pi(g)^{2n}\xi,\xi\rangle^{1/n} \|\xi\|^{1-1/n}$$

Hence

$$\|\pi(g)\xi\| \le \liminf_{n \to \infty} \langle \pi(g)^{2n}\xi,\xi \rangle^{1/2n} \|\xi\|.$$

If we put $\xi = \pi(h)\zeta$, $\varphi(r) = \pi_{\zeta,\zeta}(r)$ with $h \in c_c\Gamma$ and $\psi(r) = \pi_{\xi,\xi}(r)$, then

$$\psi(r) = \langle \pi(r)\pi(h)\zeta, \pi(h)\zeta \rangle = \sum_{s,t} h(s)\overline{h(t)}\varphi(t^{-1}rs).$$

Hence, $\psi \in \ell_p \Gamma$. By Hölder's inequality,

$$|\langle \pi(g)^{2n}\xi,\xi\rangle| = \left|\sum_{r\in\Gamma} g^{(*2n)}(r)\psi(r)\right| \le \left\|g^{(*2n)}\right\|_q \|\psi\|_p.$$

Since $\mathcal{H}_0 = \{\pi(h)\zeta \colon h \in c_c\Gamma\}$ is dense in \mathcal{H} , we have

$$\|\pi(g)\| \le \liminf_{n \to \infty} \|g^{(*2n)}\|_q^{\frac{1}{2n}}.$$

Lemma 5.4. Let k be a non negative integer. Let $1 \le q \le p \le \infty$ with 1/p + 1/q = 1. If a unitary representation π of \mathbb{F}_d on a Hilbert space \mathcal{H} has a cyclic vector ζ such that $\pi_{\zeta,\zeta} \in \ell_p \mathbb{F}_d$, then

 $\|\pi(f)\| \le (k+1)\|f\|_q.$

for $f \in c_c \mathbb{F}_d$ with $\operatorname{supp}(f) \subset W_k$.

Proof. The case where q = 1 and $p = \infty$ is trivial. So we may assume that $1 < q \le 2$ and $2 \le p < \infty$ with 1/p + 1/q = 1.

Consider $\|(f^* * f)^{(*2n)}\|_q$. Write $f_{2j-1} = f^*$ and $f_{2j} = f$ for j = 1, 2, ..., 2n. Then

$$(f^* * f)^{(*2n)} = f_1 * f_2 * \dots * f_{4n}.$$

We also denote $g = f_2 * \cdots * f_{4n}$. So we have

$$(f^* * f)^{(*2n)} = f_1 * g.$$

Note that $\operatorname{supp}(f_j) \subset W_k$ for $j = 1, 2, \ldots, 4n$ and $g \in c_c \mathbb{F}_d$. Put $g_\ell = g\chi_\ell$. Then $\operatorname{supp}(g_\ell) \subset W_\ell$ and

$$\|g\|_{q}^{q} = \sum_{\ell=0}^{\infty} \|g_{\ell}\|_{q}^{q}$$

Here, remark that $\|g_{\ell}\|_q = 0$ for all but finitely many ℓ . Moreover set

$$h = f_1 * g = \sum_{\ell=0}^{\infty} f_1 * g_\ell$$

and $h_m = h\chi_m$. Then $h \in c_c \mathbb{F}_d$ and

$$||h||_q^q = \sum_{m=0}^\infty ||h_m||_q^q.$$

Here, notice that $||h_m||_q = 0$ for all but finitely many m. By Lemma 5.2,

$$\|(f_1 * g_\ell)\chi_m\|_q \le \|f_1\|_q \|g_\ell\|_q$$

in the case where $|k - \ell| \le m \le k + \ell$ and $k + \ell - m$ is even. Hence

$$\|h_m\|_q = \left\|\sum_{\ell=0}^{\infty} (f_1 * g_\ell)\chi_m\right\|_q \le \sum_{\ell=0}^{\infty} \|(f_1 * g_\ell)\chi_m\|_q \le \|f_1\|_q \sum_{\substack{\ell=|m-k|\\m+k-\ell \text{ even}}}^{m+k} \|g_\ell\|_q$$

By writing $\ell = m + k - 2j$,

$$\begin{aligned} \|h_m\|_q &\leq \|f_1\|_q \sum_{j=0}^{\min\{m,k\}} \|g_{m+k-2j}\|_q \\ &\leq \|f_1\|_q \left(\sum_{j=0}^{\min\{m,k\}} \|g_{m+k-2j}\|_q^q\right)^{\frac{1}{q}} \left(\sum_{j=0}^{\min\{m,k\}} 1^p\right)^{\frac{1}{p}} \\ &\leq (k+1)^{\frac{1}{p}} \|f_1\|_q \left(\sum_{j=0}^{\min\{m,k\}} \|g_{m+k-2j}\|_q^q\right)^{\frac{1}{q}}. \end{aligned}$$

Then

$$\begin{split} \|h\|_{q}^{q} &= \sum_{m=0}^{\infty} \|h_{m}\|_{q}^{q} \leq (k+1)^{\frac{q}{p}} \|f_{1}\|_{q}^{q} \sum_{m=0}^{\infty} \sum_{j=0}^{\min\{m,k\}} \|g_{m+k-2j}\|_{q}^{q} \\ &= (k+1)^{\frac{q}{p}} \|f_{1}\|_{q}^{q} \sum_{j=0}^{k} \sum_{m=j}^{\infty} \|g_{m+k-2j}\|_{q}^{q} \\ &= (k+1)^{\frac{q}{p}} \|f_{1}\|_{q}^{q} \sum_{j=0}^{k} \sum_{\ell=k-j}^{\infty} \|g_{\ell}\|_{q}^{q} \\ &\leq (k+1)^{\frac{q}{p}} \|f_{1}\|_{q}^{q} \sum_{j=0}^{k} \|g\|_{q}^{q} \\ &= (k+1)^{\frac{q}{p}+1} \|f_{1}\|_{q}^{q} \|g\|_{q}^{q}. \end{split}$$

Hence $||f_1 * g||_q \leq (k+1)||f_1||_q ||g||_q$. Therefore we inductively get,

$$||f_1 * (f_2 * \dots * f_{4n})||_q \le (k+1)||f_1||_q ||f_2 * \dots * f_{4n}||_q \le \dots \le (k+1)^{4n-1}||f||_q^{4n}.$$

Thus it follows from Lemma 5.3 that

$$\|\pi(f)\| \le \liminf_{n \to \infty} \left\| (f^* * f)^{(*2n)} \right\|_q^{\frac{1}{4n}} \le (k+1) \|f\|_q.$$

Remark 5.5. For $0 < \alpha < 1$, we set $\varphi_{\alpha}(s) = \alpha^{|s|}$, and it is positive definite on \mathbb{F}_d by [Ha, Lemma 1.2].

Theorem 5.6. Let $2 \leq p < \infty$. Let φ be a positive definite function on \mathbb{F}_d . Then the following conditions are equivalent:

- (1) φ can be extended to the positive linear functional on $C^*_{\ell_p} \mathbb{F}_d$.
- (2) $\sup_k |\varphi \chi_k|_p (k+1)^{-1} < \infty.$
- (3) The function $s \mapsto \varphi(s)(1+|s|)^{-1-\frac{2}{p}}$ belongs to $\ell_p \mathbb{F}_d$.
- (4) For any $\alpha \in (0, 1)$, the function $s \mapsto \varphi(s) \alpha^{|s|}$ belongs to $\ell_p \mathbb{F}_d$.

Proof. We may assume that $\varphi(e) = 1$.

(1) \Longrightarrow (2): It follows from (1) that ω_{φ} extends to the state on $C^*_{\ell_p} \mathbb{F}_d$. Hence for $f \in c_c \mathbb{F}_d$, we have

$$|\omega_{\varphi}(f)| \le ||f||_{\ell_p}$$

If we put $f = |\varphi|^{p-2}\overline{\varphi}\chi_k$, then

$$|\omega_{\varphi}(f)| = |\varphi\chi_k|_p^p.$$

Let π be an ℓ_p -representation of \mathbb{F}_d on a Hilbert space \mathcal{H} with a dense subspace \mathcal{H}_0 . Then

$$\|\pi(f)\|^2 = \sup_{\substack{\xi \in \mathcal{H}_0 \\ \|\xi\|=1}} \langle \pi(f^* * f)\xi, \xi \rangle_{\mathcal{H}}$$

Fix $\zeta \in \mathcal{H}_0$ with $\|\zeta\| = 1$. We denote by σ the restriction of π onto the subspace

$$\mathcal{H}_{\sigma} = \overline{\operatorname{span}} \{ \pi(s)\zeta \colon s \in \mathbb{F}_d \} \subset \mathcal{H}.$$

Then

$$\langle \pi(f^**f)\xi,\xi\rangle_{\mathcal{H}} = \langle \sigma(f^**f)\xi,\xi\rangle_{\mathcal{H}_{\sigma}}.$$

Since ζ is cyclic for σ such that $\sigma_{\xi,\xi} \in \ell_p(\mathbb{F}_d)$, by Lemma 5.4,

$$\|\sigma(f)\| \le (k+1)\|f\|_q.$$

Hence

$$\|\sigma(f^**f)\| = \|\sigma(f)\|^2 \le (k+1)^2 \|f\|_q^2$$

Therefore we obtain

 $\|f\|_{\ell_p}^2 = \sup\{\|\pi(f)\|^2 \colon \pi \text{ is an } \ell_p \text{-representation}\} \le (k+1)^2 \|f\|_q^2 = (k+1)^2 \|\varphi\chi_k\|_p^{2(p-1)},$ namely,

$$||f||_{\ell_p} \le (k+1) ||\varphi\chi_k||_p^{p-1}$$

Consequently,

$$\|\varphi\chi_n\|_p \le k+1$$

 $(2) \Longrightarrow (3) \Longrightarrow (4)$: Easy.

(4) \Longrightarrow (1): Note that $\psi_{\alpha} = \varphi \varphi_{\alpha}$ is also positive definite. By the GNS construction, we obtain the unitary representation π_{α} of \mathbb{F}_d with the cyclic vector ξ_{α} such that for $f \in c_c \mathbb{F}_d$,

$$\omega_{\psi_{\alpha}}(f) = \langle \pi_{\alpha}(f)\xi_{\alpha},\xi_{\alpha}\rangle$$

Since π_{α} is an ℓ_p -representation, $\omega_{\psi_{\alpha}}$ can be seen as a state on $C^*_{\ell_p} \mathbb{F}_d$. By taking the weak-* limit of $\omega_{\psi_{\alpha}}$ as $\alpha \nearrow 1$, we conclude that ω_{φ} can be extended to the state on $C^*_{\ell_p} \mathbb{F}_d$.

Corollary 5.7. Let $p \in [2, \infty)$ and $\alpha \in (0, 1)$. The positive definite function φ_{α} can be extended to the state on $C^*_{\ell_p} \mathbb{F}_d$ if and only if

$$\alpha \le (2d-1)^{-\frac{1}{p}}.$$

Proof. It follows from the fact $\varphi_{\alpha} \in \ell_p \mathbb{F}_d \iff \alpha < (2d-1)^{-\frac{1}{p}}$. [Problem 14]

Corollary 5.8. For $2 \leq q , the canonical quotient map from <math>C^*_{\ell_p} \mathbb{F}_d$ onto $C^*_{\ell_q} \mathbb{F}_d$ is not injective.

Proof. It suffices to consider the case where $p \neq \infty$, because \mathbb{F}_d is not amenable.

Suppose that the canonical quotient map from $C^*_{\ell_p} \mathbb{F}_d$ onto $C^*_{\ell_q} \mathbb{F}_d$ is injective for some q < p. Take a real number α with

$$(2d-1)^{-\frac{1}{q}} < \alpha \le (2d-1)^{-\frac{1}{p}}.$$

By using Corollary 5.7,

 $|\omega_{\varphi_{\alpha}}(f)| \leq ||f||_{\ell_{p}} = ||f||_{\ell_{q}} \quad \text{for } f \in c_{c} \mathbb{F}_{d}.$

Therefore it follows that $\omega_{\varphi_{\alpha}}$ can be also extended to the state on $C^*_{\ell_q} \mathbb{F}_d$, but it contradicts to the choice of α .

References

- [BG] N. P. Brown and E. Guentner; New C^{*}-completions of discrete groups and related spaces. Preprint. arXiv:1205.4649.
- [BOz] N. P. Brown and N. Ozawa; C*-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, 88. American Mathematical Society, Providence, RI, 2008. xvi+509
- [CHaHo] M. Cowling, U. Haagerup and R. Howe; Almost L² matrix coefficients. J. Reine Angew. Math. 387 (1988), 97–110.
- [Da] K. R. Davidson; C^{*}-algebras by example. Fields Institute Monographs, **6**. American Mathematical Society, Providence, RI, 1996. xiv+309 pp.
- [Ha] U. Haagerup; An example of a nonnuclear C^{*}-algebra, which has the metric approximation property. Invent. Math. **50** (1978/79), no. 3, 279–293.

- [Mu] G. J. Murphy; C^{*}-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990. x+286 pp.
- [Ok] R. Okayasu; Free group C*-algebras associated with ℓ_p . Preprint. arXiv:1203.0800