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1 Basics of functional analysis

Definition 1.1. A semi-norm on a vector space X over C is a function p: X — [0, 00)
such that for £&,7 € X and a € C,

(1) p(§+mn) <p&) +pn)
(2) p(af) = |alp(§).

A norm is a semi-norm || - || satisfying

€l =0 == &=0.
Remark 1.2. If X has a norm, then d(&,n) = ||§ — || defines a metric on X.
Definition 1.3. A Banach space is a complete normed space.

Definition 1.4. A semi-inner product on a vector space X over C is a function (-, ) :
X x X — C such that for {,n,( € X and a € C,

(1) {€4+n,¢) =&+ 1,0,
(2) (ag,m) = alg,n),

(3) (&) = (n,€),

(4) (5,€) =0.

A inner product is a semi-inner product satisfying

(£, =0 < £=0.

Remark 1.5. If X has an (semi-)inner product, then p(&) = (£,&)1/2 defines a (semi-
Jnorm on X.

Theorem 1.6 (Cauchy-Bunyakowsky-Schwarz inequality). If (-,-) is a semi-inner
product on X, then

& m ] < 1€l Imll.
Proof. 00O . m

Definition 1.7. A Hilbert space H is a Banach space with respect to [|£]| := (£, &)1/2.
A set {&} of vectors is orthonormal if (§;,&;) = d;;. A mazimal orthonormal set is an
orthonormal basis.

Proposition 1.8. If {&} is an ONS in H, then there is an ONB in #H, which contains

{&i}-
Proof. Use Zorn’s lemma. O]
Theorem 1.9. Let {¢;} be an ONS in H. Then the following are equivalent:

(1) {&} is an ONB in H,

(2) For any £ € H, £ =) ,(£, &), (Fourier series expansion)
(3) For any £ € H, ||€]1> = D2, (€, &)]?, (Riesz-Fischer identity)
(4)

4) For any &, € H, (€.n) = Y,(€.&)(6 ). (Paseval identity)
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Remark 1.10. If H is a separable Hilbert space, then there is a countable ONB {¢,} in
H.

Example 1.11. Let S be a countable set. Then

(S ={f: 5= C|Y_|f(s)]* < oo}

ses

is a Hilbert space with an inner product

(f.9) = f(s)g(s).

ses

If §5(t) = 65+ (Kronecker delta), then a set {0s}scs is the canonical ONB for ¢,S5. If
|S| =n < oo, then (S = C".

Definition 1.12. Let X be a normed space. A linear functional f: X — C is bounded if

[f[I':= sup |f(§)] < oo.

l€l<t

We denote by X* the dual space of X, i.e., the set of all bounded linear functionals on X,
which becomes a Banach space.

Theorem 1.13 (Hahn-Banach extension theorem). Let Y be a subspace of a normed
space X. Then

(1) For any g € Y*, there is f € X* such that f|y =g and ||g|| = || f]|
(2) For any 0 # £ € X, there is f € X* such that f(§) = ||¢]| and || f]] = 1.

Proof. Use Zorn’s lemma. m

Definition 1.14. Let X be a normed space. Then X** := (X*)* is a Banach space,
which is called the second dual space of X.
For x € X, we define & € X*™* by Z(f) := f(x) for f € X*. Note that ||z| = ||Z].

Definition 1.15. Let X be a normed space. For any f € X*, we define a semi-norm
pron X by pr(§) == |f(§)| for £ € X. The weak topology on X is defined by the family
{ps}ex» of semi-norms. Hence X becomes a locally convex topological vector space.

For any £ € X, we define a semi-norm pe on X* by pe(f) := [f(&)| for f € X*. The
weak-+ topology on X* is defined by the family {p¢ }¢cx of semi-norms. Hence X* becomes
a locally convex topological vector space.

We remark that we can also define the weak topology in X*, which is coming from
X,

Theorem 1.16. Let C be a convex subset of a normed space X. Then C' is norm closed
if and only if it is weakly closed.

Proof. Use Hahn-Banach separation theorem. O

Theorem 1.17 (Banach-Alaoglu). If X is a normed space, then (X*); = {f €
X*: || f]] <1} is compact in X* in the weak-* topology.
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Example 1.18. Let S be a countable set with |S| = co. For 1 < p < oo, we define a
Banach space

1/p
LS ={f:T=C||fl,:= (Z |f(3)|”) < oo}

seS

For p = oo, we define a Banach space
S ={f: T =>C:|flloc := sgg\f{s)l < 00}

We also define
ceS = {f € looS | [supp(f)| < oo}
and

oS = {f € 0.8 | lim f(s) =0} =5 1=

Then we have ¢S C €,S C ¢pS C €sS. Moreover, if 1 < ¢ < p < oo, then for f € £,S we
have || f|l, < || fllq, and thus ¢,S C ¢,S. Note that ¢.S is also dense in ¢,5 with respect
to the norm || - ||, for 1 <p < 0.

For 1 <p,q < oo with 1/p+1/q =1, we have

() [[fglle < 1 71lpllgll, (HBlder inequality)
2) I +glly < [Ifllp + llgll, (Minkowski inequality)
Ifl1<p<oo,1<q<oowithl/p+1/q=1, then ({,5)* ={,S via the identification
(S 29— g€ (6,S),

where

a(f) =Y _f(s)g(s). (f €6,9)

seSs

We remark that (€5,5)* # (15 and (¢oS)* = ¢1S.

Example 1.19. Let X be a compact Hausdorff space. We denote by C(X) the set of
all C-valued continuous functions on X. Then C'(X) is a Banach space with respect to a
norm

[flloe = sup | f ()]
zeX

We denote by M (X) the set of all regular C-valued Borel measures on X, and M (X)
the set of all regular finite positive Borel measures on X. Note that M (X) = span M (X).

Theorem 1.20 (Riesz-Markov-Kakutani). For ¢ € C(X)* with ¢ > 0, there is unique
€ M(X), such that

o) = [ fan (£ ect0),
X
It follows that C'(X)* = M(X).
Theorem 1.21 (Stone-Weierstrass). If a subalgebra A of C(X) satisfies

(1) for any = # ', there is f € A such that f(z) # f(2/),
(2) if f € A, then f € A,
(3) 1€ A,

then A is dense in C(X).
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2 Basics of C*-algebras

Definition 2.1. An algebra is a vector space A over C with a multiplication : A x A >
(a,b) — ab € A satisfying the following conditions: for any a,b,c € A and o € C,

1) (ab)c = a(bc),

2) (aa)b = a(ab) = a(ab),
3) a(b+c) = ab+ ac,

4) (a+b)c = ac+ be.

(
(
(
(
If A is an algebra, then we say A is abelian if ab = ba for any a,b € A. We also say A
is unital if there exists the unit 1 € A such that 1la = al = a for any a € A.
A Banach algebra is a complete normed algebra A with a norm satisfying the following
conditions:
||ad|| < ||a||||6]| for any a,b € A.

If A is a Banach algebra and A has a unit with ||1|| = 1, then A is called a unital Banach
algebra.

A x-algebra is an algebra A with a involution A 5 a — a* € A satisfying the following
conditions: for any a,b € A and « € C,

1) (@) =a,
(2) (a+b)* =a*+b*,
(3) (aa)® =aa,

(

A C*-algebra A is a Banach algebra with a involution satisfying the so-called C*-
condition:
la*a| = ||a||® for a € A.

Remark 2.2. If A is a C*-algebra, then ||a*|| = ||a|| for any a € A. Moreover, if A is
unital, then 1* =1 and ||1|| = 1. [Problem 1]

Example 2.3. Let S be a countable set with |S| = co. Then ¢,,S is a unital C*-algebra.
[Problem 2]

Example 2.4. Let X be a compact Hausdorff space. Then C'(X) is a unital C*-algebra.
[Problem 3]

Example 2.5. Let H be a (separable) Hilbert space. Then B(#) is a unital C*-algebra. If
dim H = oo, then K(#) is non-unital. More generaly, norm-closed *-subalgebra A C B(H)
is a (concrete) C*-algebra.

If dimH =n < oo, then H = C" and B(H) = M, (the set of all n x n matrices over
C).

Definition 2.6. Let A be unital Banach algebra and a € A. We say a is invertible in A
if there exists b € A such that ba = ab = 1. Notice that such b is unique, and so we may
write a=! := b. The set

GL(A) :={a € A | ais invertible in A}.

is a group under the multiplication.
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Definition 2.7. Let A be unital Banach algebra and a € A. We define the spectrum of
a by
o(a) =0a(a):={aeCla—al € GL(A)},

Example 2.8. If f € C'(X), then o(f) = f(X). [Problem 4]
Example 2.9. If T' € M, then o(T) is the set of all eigenvalues of 7.

Theorem 2.10. Let A be unital Banach algebra and a € A. Then o(a) is a non-empty
compact subset of C.

Proof. OO . (0000000 0

Theorem 2.11 (Gelfand-Mazur). Let A be a unital Banach algebra. If any non-zero
a € A is invertible, then A = C.

Proof. Let 0 # a € A. Then there is a € o(a). Hence a — a1 is not invertible and must
be zero, i.e., a = al. O

Definition 2.12. Let A be unital Banach algebra and a € A. We define the spectral

radius of a by
r(a) :=A{la|| a € o(a)}.
Example 2.13. If f € C(X), then 7(f) = || f]| -

Example 2.14. If

0 1
&—|:0 0‘|€M2,

then ||a|| =1, but r(a) = 0. [Problem 5]
Theorem 2.15 (Beurling). Let A be a unital Banach algebra and a € A. Then

n”l/n n”l/n'

r(a) = lim [la"[/" = inf [la
Proof. 00O . O]

Corollary 2.16. Let A be a unital C*-algebra. If a € A is norml, i.e., a*a = aa®, then
lall = r(a).

Proof. Since
la®"I* = 1(@*)*a* || = [(a*a)*"|| = ll(a"a)* "||* = --- = [la*al|*" = [|a||*""",
we have ||al| = [|a®"||*/*" — r(a). O

Remark 2.17. If A is a unital C*-algebra, then ||a|| = ||a*a||*/? = r(a*a)'/?. Hence the
C*-norm is completely determined by its algebraic stracture and it is unique.

Definition 2.18. Let A be a unital (Banach) algebra. A subspace I of A is said to be
left (vesp. right) ideal of A if

acAandbel = abe I (resp. ba € I).

An ideal in A is a left and a right ideal in A.
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Example 2.19. Let Y be a closed subset of a compact Hausdorff space X. Then

Iy ={f e C(X) | fly =0}
is an ideal of C'(X). [Problem 6]
Example 2.20. The matrix algebra M, has no proper ideal. [Problem 7]

Proposition 2.21. Let A be a unital Banach algebra, I C A a closed ideal. Then the
quotient space A/I becomes a unital Banach algebra as follows:

(1) la] + [0] := [a +b],

(2) ala] := [aal,

(3) la][b] := [ab],

(4) [lalll := inf{[la +b[|: b € I},

where [a] :=a+1={a+b|be I} c A/l

Proof. O 0. 0

Remark 2.22. What is the quotient algebra C'(X)/Iy for a closed subset Y of X. [Prob-
lem 8]

Definition 2.23. A mazxiamlideal in a unital (Banach) algebra A is a proper ideal in A,
which is not contained in any other proper ideal in A.

Example 2.24. For any element z € X, then Iy, is a maximal ideal in C(X). [Problem
9]

Remark 2.25. For any ideal I of unital (Banach) algebra A, by Zorn’s lemma, there
exists a maximal ideal J of A such that I C J.

Proposition 2.26. Let I be an ideal of unital Banach algebra A. Then

(1) The closure I is an ideal of A.

(2) If I is maximal, then [ is closed.
Proof. O 0. O]

Theorem 2.27. Let [ be an ideal of unital abelian Banach algebra A. Then [ is maximal
if and only if A/I = C.

Proof. Anideal I is maximal if and only if A/ is a field. Use Gelfand-Mazur theorem. [

Definition 2.28. Let A, B be (unital) algebras. A homomorphism from A to B is a linear
map 7: A — B such that w(ab) = 7(a)m(b) for any a,b € A. If w(14) = 1, then we say
7 is unital. When A, B are x-algebras, we say 7 is x-homomorphism if w(a*) = 7(a)*.

A character on an abelian algebra A is a non-zero homomorphism y: A — C. We
denote by A the set of all characters on A.

Example 2.29. For x € X, we define a character x, on C(X) by x.(f) := f(z) for
f € C(X). Then ker x, = Iy, i.e., it is a maximal ideal.

Theorem 2.30. Let A be a unital abelian Banach algebra.
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(1) 1f x € A, then x(1) = 1 and [|x(a)|| < [|al.

(2) A # 0 and the map y — kery is a bijection from A onto the set of all maximal
ideals of A.

(3) o(a) = {x(a): x € A} for a € A.

Proof. (1) It is easy to see that x(1) = 1. Hence ||x|| > 1. Suppose that ||x|| > 1, i.e.,
there is 0 # a € A such that |la|| <1 = x(a). f weput b=} _a" € A, then a+ab = b.
Therefore we have

x(0) = x(a) +x(a)x(b) = 1 + x(b),

which is a contradiction.

(2) Tt is easy to show that ker x is a maximal ideal for any y € A. Conversely, if I C A is
a maximal ideal, then A/I = C. Hence we define a character x: A > aw~ [a] € A/I =C,
which satisfies ker y = I.

(3) If @ € o(a), then a — a1 is not invertible. Hence there is a maximal ideal I = ker
such that a — al € I. So x(a) = a. Conversely, if « = x(a), then x(a — al) = 0. Hence
a — al is not invertible. O

Theorem 2.31. Let A be a unital abelian Banach algebra. Then A C A* is a weak-*
compact Hausdorff space.

Proof. 1t is easy to see that A is weak-* closed. By Banach-Alaoglu theorem, it is weak-x
compact. O

Definition 2.32. Let A be a unital abelian Banach algebra. For a € A, we define

~ A

a € C(A) by a(x) = x(a). Then we define the Gelfand transform v: A — C(A) by
7(a) = a.

Theorem 2.33 (Gelfand-Naimark). Let A be a unital abelian Banach algebra. The
the Gelfand transform + is a norm-decreasing homomorphism and ||a||« = 7(a) for a € A.
If A is C*-algebra, then 7 is isometric *-isomorphism.

Proof. 1t is easy to see that v is homomorphism. For any a € A, we have

7 (a)]] = llall = supla(x)| = r(a) < |la].
XEA

Now assume that A is a C*-algebra. Since A is abelian, any a € A is normal. Hence

|allco = 7(a) = [|a]| and so 7 is isometric.
It is easy to check that v(A) C C(A) is closed *-subalgebra. By Stone-Weierstrass
theorem, we have y(A) = C'(A). O

Definition 2.34. Let A be a unital C*-algebra and a € A. We say

(1) ais unitay if a*a = aa* =1,

(2) ais self-adjoint if a* = a.

We denote by U(A) the set of all unitaries in A, and by Ag, the set of all self-adjoint
elements in A.

Theorem 2.35. Let A be a unital C*-algebra and a € A. Then

(1) If a is unitary, then o(a) C T ={a € C: |a| = 1}.
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(2) If a is self-adjoint, then o(a) C [—||a, |al|]-
Proof. 00O . m

Theorem 2.36. Let B be a unital C*-subalgebra of a unital C*-algebra A with 15 = 14.
Then op(a) = 04(a) for a € B.

Proof. 1t is trivial that o4(a) C op(a). Conversely, let b = a — al € B. Then it suffices
to show that if 3b~! € A, then b=! € B. If b is self-adjoint, then o5(b) C R. Hence for
any € > 0, we have (b—icl)™t € B. Since ||(b—icl)™" —b7!|| = 0, we have b* € B. If b
is not self-adjoint, then (b*b)~! € A implies (b*b)~! € B. Hence b~! = (b*b)"1b* € B. O

Definition 2.37. Let A be a unital C*-algebra and a € A normal. We denote by C*(a)
a unital abelian C*-subalgebra of A, which is generated by a.

—

Theorem 2.38. Let A be a unital C*-algebra and a € A normal. The map a: C*(a) >
1

X — x(a) € o(a) is homeomorphic. Hence it induces the isometric x-isomorphism y~* o
at: C(o(a)) — C*(a) with z — a, where z is the inclusion map of o(a) in C.
Proof. 00O . m

Definition 2.39. For a normal element a in a unital C*-algebra A, we denote by ~, the
unique unital x-homomorphism from C(o(a)) to A, which is called the functional calculus
of a. If p is a polynomial, then v,(p) = p(a), so for f € C(o(a)) we write f(a) = v,(f).

Theorem 2.40 (Spectral Mapping). Let A be a unital C*-algebra and a € A normal.
Then o(f(a)) = f(o(a)) for f € C(o(a)).

Proof. O 0. O]

Definition 2.41. Let A be a unital C*-algebra. We say a € A is positive if a is self-adjoint
and o(a) C [0,00). In this case, we write a > 0. We also denote A, = {a € A: a > 0}.

Definition 2.42. For self-adjoint elements a, b in a unital C*-algebra A, we write a < b
ifb—a>0.

Example 2.43. If A = C(X), then f € C(X) is positive if and only if f(z) > 0 for any
reX.

Theorem 2.44. Let A be a unital C*-algebra and a € A. Then a > 0 if and only if
a = b*b for some b € A.

Proof. If a > 0, then there is b > 0 such that a = b?>. Conversely, if a = b*b, then a is

self-adjoint. Moreover there are a,,a_ > 0 such that a = a, —a_ and a;a_ = 0. Hence
it suffices to show that a_ = 0. If we set ¢ = ba_, then c*c = a_b*ba_ = —a> < 0.
Since o(c*c) U {0} = a(cc*) U {0}, cc* < 0. Since c*c = 2Re (¢)* + 2Im (¢)* — cc* > 0,
c'ce Ay N(—Ay) ={0}. Hence a_ = 0. O

Theorem 2.45. Let A be a unital C*-algebra and a, b, c € A.
(1) a=b>0= [af| = [[b]],
(2) a > b= c*ac > c*bc,
(3) a,b are invertibleand a > b > 0= 0<b"! <a L
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Proof. (1) Use the Gelfand transform.

(2) Use the previous theorem.

(3) First prove that if ¢ > 1, then ¢=! < 1, by using the Gelfand transform. Next put
c=a12ba"1% > 1. m

Theorem 2.46. Let A, B be unital C*-algebras and 7: A — B a unital x-homomorphism.
Then

(1) m(a) >0 for a € Ay,
(2) lIx(a)]l < lla]l for a € A,

(3) If 7 is injective, then 7 is isometric.

Proof. (1) Easy.
(2) Since o(w(a)) C o(a), we have

lall* = lla*all = r(a*a) > r(n(a*a)) = r(x(a) n(a)) = |7 (a)*n(a)]| = [I=(a)]*

(3) It suffices to show that |[7(a*a)|| = [|a*al|. Hence we may assume that A, B are
abelian. We define 7': B> x — yom € A. Then we have 7/(B) = A. Hence for a € A,

lal] =:Hde>==Su§|x(a)|==Suglx(ﬂ(a)ﬂ = [Im(a)]].

]

Definition 2.47. Let A be a unital C*-algebra. A linear functional w: A — C is positive
if w(a) >0 fora € Ay.

Example 2.48. Any positive linear functional w on C'(X) is given by u € M(X), via

w(f) = /X f(@)dp(z).

(Riesz-Markov-Kakutani representation theorem.)

Example 2.49. Any positive linear functional w on M, is given by h € M, ; such that
w(a) = Tr(ah),

where Tr is the canonical trace on M,.

Proposition 2.50 (Schwarz inequality). If w is a positive linear functional on a unital
C*-algebra A, then
lw(b*a)|* < w(b*b)w(a*a)

for any a,b € A.
Proof. Notice that (a,b) = w(b*a) is a semi-inner product on A. O

Theorem 2.51. Let A be a unital C*-algebra. If w is a positive linear functional on a
unital C*-algebra, then w is bounded with |lw|| = w(1).

Proof. 1f |ja|]| < 1, then 0 < a*a < 1. Hence by Schwarz inequality,

w(a)* = lw(la)* < w(lw(a’a) < w(1)*.
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Theorem 2.52. Let A be a unital C*-algebra and w € A*. Then w is positive if and only
if w(l) = ||lw]l-

Proof. Suppose that w(1) = |lw|| = 1. First show that w(a) € R for a € Ag,. Next if
a>0with |ja]| =1, then 1 —a € A, and ||[1 —a| < 1. Sol —w(a) =w(l—a) <1. O

Definition 2.53. Let A be a unital C*-algebra. We denote by A7 the set of all positive
linear functionals on A. If w € A% with ||w| = w(1) = 1, then we call it a state. We
denote by S(A) the set of all states on A.

Theorem 2.54. Let A be a unital C*-algebra. Then S(A) is a weak-* compact convex
subset of A*.

Proof. Since S(A) = {w € A% : w(1) = 1}, it is weak-* closed convex. By Bnach-Alaoglu
theorem, S(A) is weak-* compact. O

Theorem 2.55. Let A be a non-zero unital C*-algebra and a € A normal. Then there
is w € S(A) such that w(a) = ||a]|.
Proof. We may assume that a # 0. Since B = C*(a) is abelian, there is y € B such that
lal| = ||a||c = |x(a)|. By Hahn-Banach extension theorem, there is an extension w such
that [|w|| = 1. Since w(1) = x(1) = 1, w is positive with [jw|| = 1. O
Definition 2.56. Let A be a unital C*-algebra and w € S(A). Then

N, :={a € A: w(a*a) =0}

is a closed left ideal of A. (Use Schwarz inequality.) Next we define a inner product on

A/N, by
(la], [b]) == w(b"a),
and denote by H,, the completion of A/N,. Now we define a x-homomorphism 7,: A —
B(H.) by
mw(a)[b] := [ab].
If we set &, = [1] € Hy, then &, is cyclic for 7, i.e., m,(A), is dense in H,. We say
(T, Hu, £u) 18 the GNS repersentation associated with w.

Theorem 2.57 (Gelfand-Naimark). If A is a unital C*-algebra, then it has a faithful
representation.

Proof. We define the universal representation m, = €, cga) M- If mu(a) = 0, then
m,(a*a) = 0 for any w € S(A). If we put b = (a*a)"/*, then ||, (D)||* = ||7u(b)?] =
|mu(a*a)|| = 0 and so m,(b) = 0. Therefore there is w € S(A) such that ||a*a| = w(a*a) =
w(bt) = |7, (b)[b]]|>=0. Hence a = 0. O

3 “Classical” group (C*-algebras

Definition 3.1. Let I" be a countable discrete group. Then c.I" becomes a unital x-algebra
with the multiplication
frgls) =) ft)g(t"s)
ter
and the involution

fr(s) = f(s7h)
with the unit .. The above operations can be also defined on ¢;I", which becomes a unital
x-algebra.
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Definition 3.2. A unitay representation of I' is a homomorphism of I' into the unitary
group of B(¢I"). We denote by A the left reqular representation:

SN = F(570) (5,6 €T),
Remark 3.3. Let {J;}icr be the canonical ONB for ¢,I". Then
A(s)oy = dg (s,t €T).
[Problem 10]

Lemma 3.4. There is a one-to-one correspondence between the set of all unitary repre-
sentation of I' and the set of all representations of c¢.I" (or ¢,1"):

7= 7 (f) =Y f(s)m(s), (f €cl)

and

17COIF < [1f 1]
Proof. O 0. O

Remark 3.5. For f € ¢.I', we have

Aflg=[fxg (g€bD).
[Problem 11]
We also simply write 7 for the extened representation 7 of c.I'.
Lemma 3.6. The extended representation A of c¢.I' (or ¢1I") is injective.
Proof. 00O .

Definition 3.7. The reduced group C*-algebra is defined to be CiI" := A(e.I') = A1) C
B(4,1).
The full group C*-algebra it the completion of c.I' with respect to the C*-norm

| |l := sup{||7(f)||: 7 is a unitary representation of I'}.

Example 3.8. Let I' = Z = (a) be the integer group. The Fourier transform induces the
unitary u: €,Z — L*(T), f — F(f) = f, which is defined by

z) =3 Fm)m,

neE”L

Then for any f € c.Z and g € (57, we have
uA(f)ug = u(f)g = F(f +g) = f§ = M;g,

where M; € B(L?*(T)) is defined by Mg := fg for f € C(T) and g € L*(T), which gives
an isometric *-homomorphism C(T) — B(L*(T)). Hence the map A(f) = ul(f)u* = M;
gives a isometric *-isomorphism between C5Z and C(T).

Since Z is abelian, C*Z is a unital abelian C*-algebra. By the Gelfand transform, we
have C*Z = C(C*Z). For each chracter x on C*Z, we have a scalar z = x(d,) € T and
this gives a homeomorphism. Therefore C*Z = C;Z = C(T).

More generally, for every abelian group I', the Pontryagin duality gives C*I' = C{I' =
c(T).
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Proposition 3.9. Let 7: I' — B(#) be a unitary representation. Then there is a unique
s-homomorphism 7: C*(I') — B(H) such that 7(f) = n(f) for f € c.I'.

Proof. 1t follows from ||7(f)|| < || f]l. for f € c.I. O

Definition 3.10. A function ¢: I' — C is said to be positive definite if the matrix

[‘P(Silt)]s,teF € Mp
is positive for any finite subset F' C I, i.e.,
> @l tsj)a; > 0
ij=1

foranyn € N, s1,...,s, € I'and aq,...,a, € C.
We denote by P(I') the set of all positive definite functions on I

Example 3.11. For f € c.I', the function f* * f is positive definite. [Problem 12]

Remark 3.12. Let m: I' — B(H) be a unitary representation and & € H. If we define

p(s) = (m(s)¢,€),
then ¢ is positive definite. [Problem 13]
Proposition 3.13. Let f € c.I'. Then the following are equivalent:
(1) f is positive definite,
(2) A(f) is positive.

Proof. For a finite subset F C T', set £ = > __, asds € oI, Then

seF

ANEE = D Y fnadm\r)d,0) = > @f(tsHas.

resupp(f) s,tel’ s,teF
[

Definition 3.14. For a function ¢: I' — C, we define a correspoinding functional
wy: cl' = C by

wo(f) =) f(s)p(s).

sel’
Theorem 3.15. Let ¢ be function with ¢(e) = 1. The following are equivalent:

(1) ¢ is positive definite.

(2) there exists a unitary representation A, of I' on a Hilbert space H, and a cyclic
vector &, such that

P(s) = (Ap(8)€p Ep)-

(3) w, extends to a state on C*T".
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Proof. (1)==(2): Let ¢ be a positive definite function. Define a semi-inner product on
c.I' by

(f.9)e =D w(s7't) f(t)g(s).

s,tel’

By the separation and the completion, we get a Hilbert space 5. Then we define
Ao(8)[f] = [sf] for f € c.I' and &, = [0, which satisfy desired properties, where (sf)(t) =

f(s71).
(2)==(3): Trivial.
(3)=(1): If we write

f = zn: O-/i(ssi € CcFa
i=1

then .
> @e(s; tsi)a; = we(f** f) > 0.

,j=1

Corollary 3.16. The map P(I') 3 ¢ — w, € (C*I')% gives a bijection.

Proposition 3.17. Let @1, 5 be positive definite functions on I'. Then the product ¢;po
is also positive definite.

Proof. Let aj, = [ag?)], ag?) = pr(s;'s;) for k = 1,2, Then ay,a, are positive matrices.
Then a = a; 0 ay = [agjl-)ag-)] (Schur product) is also positive. Hence if £ = [aq,...,q,] €

C™, then

ipr (57 ts)a(s; tsy)ay = (a€, &) > 0.

n

i,7=1

]

Definition 3.18. A group I is amenable if there exists a state u € ¢,,I" which is invariant
under left translation: for any s € I' and f € (. ', u(sf) = p(f).

Definition 3.19. Let Prob(I") be the space of all probability measures on I':
Prob(l') = {p € (11: p >0, Z,u(s) =1}.
sel

Definition 3.20. We say I' has an approximate invariant mean if for any finite subset
F C T and € > 0, there exists u € Prob(I") such that

max [[sp — plh <,

where sp(F) = p(s™'F) for F CT.

Definition 3.21. We say I' satisfies the Folner condition if for any finite subset £ C I’
and € > 0, there exists a finite subset F' C I' such that

|sFAF
max

seE ‘F| < &

where sF' = {st: t € F'}.
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Example 3.22. All abelian groups are amenable by the Markov-Kakutani fixed point
theorem.

Example 3.23. The free group F, is not amenable for d > 2. Let d = 2 and a, b be the
free generators. Set

A* = {all reduced words starting with a} C Fy,
similarly let A=, BT, B~. Then for C = {e,b,b%,...,} C Fy, we have

Fg = ATUA U(BT\C)u(B~ UO)
= At UaA”
by (BT\C)U (B~ LCQ).

Suppose that there is an invariant state p on ¢ F;. Then

L=pu(l) = plxa+) +plxa-) +ulxsne) + 1lxs-ue)
M(XA+) + H(GXAf) + M(b_IXBﬂC) + H(XB*IJC)
= 2u(1) =2,

which is a contradiction.
More generally, if [ contains F4, then I' is non-amenable.

Theorem 3.24. Let I" be a contable discrete group. Then the following are equivalent:

1
2

(1) T is amenable,

(2)

(3) I satisfies the Fglner condition,
(4)

()

I' has an approximate invariant mean,

4) there is unit vectors & € £5I" such that [|A(s)& — &l — 0 for s € T,

5) there is a sequence (p;) of finitly supported positive definite functions on I" such
that p;(s) = 1 for s € T,

(6) C*T' = C}T,

(7) C5I" has a character, i.e., one-dimenssional representation.

Proof. (1)==(2): Let p be an invariant mean on (,I'. Since /;I" is weak-* dence in
()", there is a sequence p; € Prob(I') such that p; — p in ({I')* in the weak-x
topology. Since (/1I)* = (. I', we have sp; — u; — 0 in 411 in the weak topology. Hence
for any s1,...,s, € I, since the weak and norm closed doincide on a convex subset, we
have

0 € conv @{siu — p: € Prob(I')} C (¢,1)".

i=1
(2)=(3): Let E C I" be a finite subset and € > 0. Choose u € Prob(I") such that

> s = plh < e

sek

For f € ¢;T with f > 0 and r > 0, we define

F(f,r)={teT: f(t)>r}.
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Observe that if f(t) > g(t), then

IXF(rr) () = XP@er ()| =1 <= f(t) >r >t

Hence
Isp—plle = > |su(t) — p(t)]
tel
1
- Z/ |XF(SM,7") (t> - XF(M,T) (t)‘d?”
ter 70
1
- / Z |XF(su,r)<t> — XF(u,r) (t)‘dr
0 4er
1
~ [ sFn A
0
Therefore

[ 1Rl = > Y sl = [ s AP

seE selR

Thus for some 7, we must have

D sF () AF (u,r)| < | Fp, 7).

seE

(3)==(4): Take a Fglner sequence (F;), i.e., (F;) is a sequence of finite subsets of T’

such that

| F]
for any s € I'. Set & = |F;|~/?xr, € £,I. Observe that for finite subsets E, F C T,

—0

Ixe = xrll3 = [EAF].

Hence
1 2 _ |sEAF

| L
(4)=(5): Take unit vectors &; € f>I" with condition (4). We may assume that each &;
is finitely suppoted. Then ¢;(s) = (A\(s)&;,&;) is positive definite and p;(s) — [|&]]3 = 1.
(5)==-(6): We will prove it in the next section.
(6)=>(7): The trivial representation 79: I' 3 s — 1 € C extends to C*T" = C}T.
(7)=(1): Let 7: C{I" — C be any unital *-homomorphism, which regard it as a state.
By Hahn-Banach theorem, we can extend it to B(/sI'). Since (o, I' 3 f +— My € B(4,1),
7 is also defined on ¢, I'. Since Mgy = A(s)MA(s™1) € €5 T, we have

IA(s)&: — &ll3 = — 0.

X — XF,

T(Msg) = T(A(8)MpA(s)") = 7(A(s))7 (M) T(A(s)) = 7(Mj)
for any s € I" and f € £, I', (because A(s) belongs to the multiplicative domain of 7). [

Remark 3.25. Let p > 1 be fixed. The condition (5) in the above can be replaced by
the following:
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(5), there is a sequence (y;) of positive definite functions in ¢,I" such that ¢;(s) — 1 for
sel,

Indeed, it is easy that (5) = (5),. Conversely, take k € N with k& > p. Then ¥ are
positive definite such that ¢¥(s) — 1 and ¢F € (,T C C;T. Fixi > 1. Let || A(¢F)Y?|| =
¢; > 0. By taking f; € c.I'" such that

12 , 1
N A0 < g

Then we have )
NG = M7 = Sl < 5
Hence for any s € T,
|05 (5) = [ * fi(s)] = [(IM@F) = A * fi)lde, 8s)| < IIN(@F) = A(f; * fi)ll = 0.

It follows that f; * fi(s) — 1.

4 “New” group (*-algebras

Definition 4.1. Let 7 be a unitary representation of a contable discrete group I' on a
Hilbert space H. For &,n € H, we denote the matrixz coefficient of ™ by

Ten(s) = (m(5)&, 7).
Note that 7¢, € (I

Definition 4.2. Let D be a non-zero ideal of ¢, I'. If there exists a dense subspace Hg of
H such that 7, € D for all £, € Hy, then 7 is called D-representation. If D is invariant
under the left and right translation of I' on /,.I', then it is said to be translation invariant.
In this case, D contains c.I'

Example 4.3. c.I', {,I', ¢ol' are translation invariant ideals of £, I".

Lemma 4.4. If 7 has a cyclic vector ¢ such that 7, € D, then 7 is a D-representation
with respect to a dense subspace

Ho = span{r(s)¢: s € T}.
Proof. Let € = 7(s)¢, 7 = 7(£)¢. Then
Ten(r) = (m(r)&,n) = (x(t"'rs)(, ¢) = mec(t'rs).
Hence e, € D. O

Remark 4.5. It is easy to see that \ is a c.-representation, or a D-representation for any
D.

Definition 4.6. The C*-algebra C}I" is the C*-completion of the group ring CI" by ||-||p,
where
I f|lp = sup{||=(f)||: 7 is a D-representation} for f € c.I'.
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Remark 4.7. Note that if D; and D, are ideals of ¢, I" with D; D D, then there exists
the canonical quotient map from C7, T" onto CF, T'.

Remark 4.8. Let (m;, H;) be a family of all D-representations of I' with a dense sub-
space H;o. Then m, = @, m; is a D-representation of I' with a dense subspace H, o =
Diiiie Hio, which gives a faithful D-representation of C}I'. Indeed, suppose that there
is 0 # x € CHI" such that m,(z) = 0. Take f, € c.I' such that || f, — z||p — 0. Then
Tu(fn) = mu(x) = 0. However ||m.(f.)|l = | fallp = ||z|lp # 0, which is a contradiction.

Remark 4.9. It easily follows from the definition that Cj I" = C*T..

Lemma 4.10 (Cowling-Haagerup-Howe theorem). Let 7: I' — B(#) be a unitary
representation with a cyclic vector ( € H such that m € lI'. Then ||7(f)| < [|A(f)]|
for f €¢I

Proof. O 0O. O]
Theorem 4.11. (7 I'= CiI" for 1 <p < 2.

Proof. There is a canonical quotient ®: C7 I' — C3I'. Suppose that 0 # x € ker ®. Take
a ,-representation m: I' — B(#H) such that ||w(x)| # 0. Hence there is { € H, such that

m(x)¢ # 0. Set o
Hy =span {m(s): se T} CH =H) CH,

and 7'(s) = w(s)|3 for s € I'. Then

WZ»C(S) = <7T(8)C7C> € gpl—‘,

and ( is cyclic for 7. Therefore 7’ is ,-representation with 7'(z) # 0. Since 7 . € (5T,
by CHH theorem, we have ||7'(f)|| < [[A(f)| for f € c.I'. Take f, € ¢! such that
| fn — 2lle, = 0. Then 7'(f,) — «'(x) and ®(f,) = A(fn) = ®(x) = 0, which is a
contradiction. O

Lemma 4.12. Let ¢ € P(I'). If ¢ € D, then GNS-representation of w,, is D-representation.

Proof. Let &, be a corresponding cyclic vector. Then ¢ = ¢ ¢, € D.
]

Lemma 4.13 (Glimm’s lemma). Let A C B(#) be a separable C*-algebra such that
ANK(H) = {0}. If w € S(A), then there exist orthonormal vectors (§,) such that
(a,, &) — @(a) for all a € A.

Proof. 00O . m

Theorem 4.14. C*I" = C}I' <= there is positive definite ¢, € D such that ¢, — 1
pointwise.

Proof. (<=) It suffices to show that the set of vector states with respect to D-representations
is weak-* dense in S(C*T"). For ¢ € P(I'), we define ¢,, = ¢, € P(I'). Note that ¢,, — ¢
pointwise. Since 1, € D, the GNS-representation of 1, is D-representation.

(=) Assume that C*T" = C};I". Then there is a faithful D-representation of C*I" with
a dense subspace Hy C H such that 7(C*I") N K(H) = {0}. Set A = n(C*I") C B(H).
Define 7 € S(A) by 7(n(f)) = >, f(s) for f € ¢I". By Glimm’s lemma, we have
(m(05)&ns &n) — 1. Take Hgy > &, such that ||, — &,|| < 1/n. Then mg ¢ € D is positive
definite and 7¢ o — 1 pointwise. O
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Corollary 4.15. (1) I' is amenable if and only if C*I" = C3 I" = C5T,

(2) T has the Haagerup property, i.e., there exists a sequence (¢,) of positive definite
functions in ¢oI" such that ¢, — 1 pointwise, if and only if C*I' = C} T,

Remark 4.16. For 2 < p < 00, the following holds:

77

S C) PSR C A 1 3)
C*(Fa) = C (Fa) # C} (Fa) # Cp, (Fa) = Ci(Fa),
where

(1) by the Haagerup property,
(2) by non-amenablity,
(3) by CHH theorem.

5 Positive definite functions on [,

Definition 5.1. Let F; be the free group on finitely many generators aq, . . ., ag with d > 2.
We denote by |s| the word length of s € Fy with respect to the canonical generating set
{ay, a7, ... a4,a;'}. For k >0, we put

Wk:{SGFd‘ |S’:]€}
We denote by x; the characteristic function for W.

Lemma 5.2. Let ¢ € [1,2]. Let k,¢ and m be non negative integers. Let f and g be
functions on Fy such that supp(f) C Wy and supp(g) C Wy, respectively. If |k — ¢| <
m < k+ /¢ and k 4+ ¢ — m is even, then

I+ )xmllg < ([ fllallglly,

and if m is any other value, then

I(f * 9)xmllq = 0.

Proof. Note that
(fxg)r) =D fls)gt) =D f(s)g(t).
|

s,tefy s|=k
r=st [t|=¢
r=st

Since the possible values of |st| are |k — £, |k — €| +2,...,k + £, we have

1S g)xmllg =0

for any other values of m.

The case where ¢ = 1 is trivial. So let g # 1.

First we assume that m = k + ¢. If |[r| = m, then r can be uniquely written as a
product st with |s| = k and |t| = ¢. Hence

(f x9)(r) = f(s)g(t).
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Therefore

I gxmllg =D [F&1lg@)T < D 1) 9@ = 1 £1ENgls.

|st|=k~+¢ |s|=Fk
\Is\lzlg It=¢
t|=

Next we assume that m = |k—¢|, |k—£¢|+2,...,k+¢—2. Then, we have m = k+{—2j
for 1 < j < min{k,¢}. Let r = st with |r| = m, |s| = k and |t| = ¢. Then r can be
uniquely written as a product s't’ such that s = s'u, t = w~ ' with |s'| = k-7, |t/| =(—7
and |u| = |u™!| = j. We define

f'(s) = Z |f(su)|? | if |s| =k —j, and f'(s) = 0 otherwise.

|ul=j

We also define

S

qgt) = Z lg(u™'t)|7 | if [t| = ¢ — j, and ¢'(t) = 0 otherwise.

ul=7

Note that supp(f’) C Wj_; and supp(g’) C Wy—,;. Moreover

1A1E= > (D 1)l ) = 1£11%

[tI=k—3 \|v|=J

and similarly ||¢'||, = [lg]l,- Take 2 < p < oo with 1/p+ 1/¢ = 1. By Hélder’s inequality,

((Fxa)() =D f(s)g®)| = | D f(su)g(u™"t)

|s/=k Jul=j
[t|=¢
r=st
1 1
q P
<[ Do 1f(w)) > lgw )P
[ul=3 lul=j
1 1
q q
< DD If(sw) > lg(u™e))
|u|=3 |ul=j

= ['(s)g' (") = (f"+ g")(r).

Hence |(f * g)xm| < (f'*¢')Xm. Since (k—j)+ (£ — j) = m, it follows from the first part
of the proof that

1CF o 9)xmlla < N % 9)Xmlla < NS Mallg e = 1 Nallgllo-
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Lemma 5.3. Let 1 < ¢ <p <oowith1/p+1/g=1. Let 7: I' — B(H) be a unitary
representation with a cyclic vector ¢ such that ¢ € £,I". Then

lm(f)II < limin [|(f* f)(ﬂn)H;%

for f € c.I.

Proof. For f € c.I', we set ¢ = f*x f. Then m(g) is self-adjoint. By the spectral
decomposition, for & € H there is a regular Borel complex measure p on R such that

(n(9)€.€) = / tdu(t).

Then
Im(o)¢IP = (rlo€.€) = [ #autt
< ( / tQ"dM(t))l/n ( / 1du(t))1_1/n
— (n(g)™¢, &)V €]V
Hence

Im(g)€]| < lim inf (r(g)*"¢, €)"/*"|¢]|-

If we put £ = w(h)(, @(r) = m¢c(r) with h € eI and ¢(r) = me¢(r), then

V(1) = (x(r)m(h)¢,m(h)G) =Y h(s)h(B)p(t'rs).

Hence, 9 € ¢,I". By Holder’s inequality,

[(m ()& ) =D g“(r)e(r)

rel’

< 9|, 1l

Since Ho = {m(h)(: h € ¢.I'} is dense in H, we have

1
*Qn)H%
g

I7(g)I| < lim inf ||g"
n—oo
0

Lemma 5.4. Let k£ be a non negative integer. Let 1 < ¢ < p < oo with 1/p+1/¢q = 1.
If a unitary representation m of F; on a Hilbert space H has a cyclic vector ¢ such that
e € Kde, then

e (A < KR+ DI flo-
for f € c.Fq with supp(f) C Wy.

Proof. The case where ¢ = 1 and p = oo is trivial. So we may assume that 1 < ¢ < 2 and
2<p<oowithl/p+1/¢=1.
Consider H(f* * f)(*Z”)Hq. Write fo;_1 = f* and fo; = f for j =1,2,...,2n. Then

(f**f)(*Qn):fl*fQ*"'*f4n-
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We also denote g = fo % -+« % f4,. So we have

(S5 )2 = fixg.

Note that supp(f;) € Wy for j = 1,2,...,4n and g € cFq. Put g¢» = gxe.

supp(ge) C Wy and

lgllg = Ngell?.
=0

Here, remark that ||gs||, = 0 for all but finitely many ¢. Moreover set

h:fl*QZZfl*ge
=0

and h,, = hx,,. Then h € ¢ F; and

1Rlg =D Il
m=0
Here, notice that ||h,,||, = 0 for all but finitely many m. By Lemma 5.2,

[(f1 % ge)Xmllq < [ fillqllgellg
in the case where |k — (| <m < k+ ¢ and k + ¢ —m is even. Hence

[e'S) ) m+k
[ mllg = Z freg)xm|| <D N =g)xmll, < Ale D lgells.
=0 q £=0 {=|m—k|

m—+k—~{ even

By writing £ = m + k — 27,

min{m,k}
mlle < WAl D Ngmern—sllg

=0

min{m,k} ¢ (min{m,k} p
Ul | D gyl >

=0 =0

. min{m,k} q

SEFD AN | DD Ngmen—2ill
=0

Then

oo min{m,k}

1hll§ = Z [hmal§ < (K +1)» ||f1||qz Z | gm+k-25lq
= (k+)x[ Al Z Z | Gm k24 |2

J=0 m=j

k 0
= E+D2A12Y > lgell?

§=0 t=k—j

k
< (k+Dr | A1 lgl
§=0

= (k+ 1" A2l g]l2.

22

Then
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Hence || f1 * g|l; < (kK + 1) fill4llg]l4- Therefore we inductively get,

v (frt oo fan)llg < (b + Dllfallall fo 5 fanllg < o < (b + D™ f1lG™

Thus it follows from Lemma 5.3 that
()] < liminf [|(£* % )3 < (k+ 1) 7],

]

Remark 5.5. For 0 < a < 1, we set ,(s) = al®l, and it is positive definite on F, by [Ha,
Lemma 1.2].

Theorem 5.6. Let 2 < p < co. Let ¢ be a positive definite function on Fy. Then the
following conditions are equivalent:

1) ¢ can be extended to the positive linear functional on Cj Fy.

(1)

(2) supy, [oxulp(k +1)7" < oo.

(3) The function s — ¢(s)(1 + |s|)_1_% belongs to (,[Fq.
(4)

4) For any a € (0, 1), the function s + ¢(s)al®l belongs to £,F,.

Proof. We may assume that p(e) = 1.
1)=—(2): It follows from (1) that w, extends to the state on C} F,;. Hence for
( . .

f € cJFy, we have

jwo ()< 11 f ey
If we put f = |¢|P"%®xs, then
|we (F)] = loxl}-

Let 7 be an £,-representation of [F; on a Hilbert space H with a dense subspace Hy. Then

I7(F)I* = sup (x(f* * £)E E.

E€Ho
llgl=1

Fix ¢ € Ho with ||¢]| = 1. We denote by ¢ the restriction of 7 onto the subspace
H, =span{n(s)(: s € Fy} C H.

Then

H
Since ( is cyclic for o such that o¢¢ € £,(F4), by Lemma 5.4,

lo (NI < (& + D[ fllg-

Hence
lo(f* = )l = [lo(HII < (k+1)%f]2.
Therefore we obtain

IF1IZ, = sup{||w(f)|[*: 7 is an £,-representation} < (k + 1)[|f[I7 = (k + 1)l xal;# Y,

namely,
1£lle, < (b + Dllexell;™
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Consequently,
lxnlly < K+ 1.

(2)=(3)=(4): Easy.
(4)=(1): Note that 1), = py, is also positive definite. By the GNS construction, we
obtain the unitary representation 7, of F; with the cyclic vector &, such that for f € c.Fy,

Wi (f) = (Talf)Ear €a)-

Since 7, is an {,-representation, wy, can be seen as a state on CZ,]Fd- By taking the
weak-* limit of wy, as a /" 1, we conclude that w, can be extended to the state on
Cy Fa. O

Corollary 5.7. Let p € [2,00) and a € (0,1). The positive definite function ¢, can be
extended to the state on C7 Fy if and only if

a<(2d—1)r.

Proof. 1t follows from the fact ¢, € (,Fy <= a < (2d — 1)_%. [Problem 14] O

Corollary 5.8. For 2 < g < p < oo, the canonical quotient map from C’g‘pIFd onto CZIFd
is not injective.

Proof. Tt suffices to consider the case where p # oo, because Fy is not amenable.
Suppose that the canonical quotient map from Cgde onto C’;qIFd is injective for some
q < p. Take a real number o with

(2d—1)"5 <a < (2d—1)7».
By using Corollary 5.7,

(wWoo (N < [ flle, = [I.flle, for f € cFa.

Therefore it follows that w,,, can be also extended to the state on Cj Fq, but it contradicts
to the choice of a. O
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