BOUNDS FOR AN OPERATOR CONCAVE FUNCTION SEVER S. DRAGOMIR*, JUN ICHI FUJII[†], AND YUKI SEO[‡] **Abstract.** We shall provide new bounds for the difference of the Davis-Choi-Jensen inequality. Among others, we show that if Φ is a unital positive linear map and f is operator conveave on an interval [m, M], then $$f(\Phi(A)) - \Phi(f(A)) \le 2\left(f\left(\frac{m+M}{2}\right) - \frac{f(m) + f(M)}{2}\right)I$$ for every selfadjoint operator A such that $mI \leq A \leq MI$ for some scalars m < M. Moreover, we discuss an external version of the Davis-Choi-Jensen inequality. Key words. Operator concave function, Davis-Choi-Jensen inequality, Positive linear map AMS subject classifications. 47A63 1. Introduction. Let Φ be a unital positive linear map from $\mathcal{B}(H)$ to $\mathcal{B}(K)$, where $\mathcal{B}(H)$ is the C*-algebra of all bounded linear operators on a Hilbert space H. The Davis-Choi-Jensen inequality [1, 2] says that if a real-valued function f is operator concave on an interval J, then $$(1.1) \qquad \Phi(f(A)) < f(\Phi(A))$$ for every selfadjoint operator A with spectrum $\sigma(A) \subset J$. Though in the case of concave function the inequality (1.1) does not hold in general, we have the following estimate [7]: If f is concave and A is a selfadjoint operator on H such that $mI \leq A \leq MI$ for some scalars m < M, then $$(1.2) -\mu(m, M, f)I \le f(\Phi(A)) - \Phi(f(A)) \le \mu(m, M, f)I$$ for all unital positive linear maps Φ where the bound $\mu(m, M, f)$ of f is defined by $$(1.3) \quad \mu(m, M, f) = \max \left\{ f(t) - \frac{f(M) - f(m)}{M - m} (t - m) - f(m) : t \in [m, M] \right\}.$$ ^{*}Mathematics, School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia (sever.dragomir@vu.edu.au). School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits, 2050, South Africa (sever.dragomir@wits.ac.za). [†]Department of Art and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan (fujii@cc.osaka-kyoiku.ac.jp). [‡]Department of Mathematics Education, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan (yukis@cc.osaka-kyoiku.ac.jp). We note that bounds of (1.2) are sharp. In [3], the first author showed the following estimate for the normalized Jensen functional: If a real-valued function f is concave on a convex set C, then for each positive n-tuples (p_1, \dots, p_n) and (q_1, \dots, q_n) with $\sum_{i=1}^n p_i = 1$ and $\sum_{i=1}^n q_i = 1$ $$\min_{1 \le i \le n} \left\{ \frac{p_i}{q_i} \right\} \left(f\left(\sum_{i=1}^n q_i x_i\right) - \sum_{i=1}^n q_i f(x_i) \right) \le \left(f\left(\sum_{i=1}^n p_i x_i\right) - \sum_{i=1}^n p_i f(x_i) \right)$$ $$\le \max_{1 \le i \le n} \left\{ \frac{p_i}{q_i} \right\} \left(f\left(\sum_{i=1}^n q_i x_i\right) - \sum_{i=1}^n q_i f(x_i) \right)$$ for all $(x_1, \dots, x_n) \in C^n$. In this note, based on the idea of [3], we shall provide new bounds for the difference of the Davis-Choi-Jensen inequality. Among others, we show that if Φ is a unital positive linear map and f is operator concave on an interval [m, M], then $$f(\Phi(A)) - \Phi(f(A)) \le 2\left(f\left(\frac{m+M}{2}\right) - \frac{f(m) + f(M)}{2}\right)I$$ for every selfadjoint operator A such that $mI \leq A \leq MI$ for some scalars m < M. Moreover, we discuss an external version of the Davis-Choi-Jensen inequality. 2. Davis-Choi-Jensen inequality. Let Φ and Ψ be two positive linear maps from $\mathcal{B}(H)$ to $\mathcal{B}(K)$. Φ is said to be α -upper dominant by Ψ if there exists $\alpha > 0$ such that $\alpha \Psi \geq \Phi$. Similarly Φ is said to be β -lower dominant by Ψ if there exists $\beta > 0$ such that $\Phi \geq \beta \Psi$. Moreover, Φ is (α, β) -dominant by Ψ if Φ is α -upper and β -lower dominant by Ψ . The vector (p_1, \dots, p_n) is said to be a weight vector if $p_i > 0$ for all $i = 1, \dots, n$ and $\sum_{i=1}^n p_i = 1$. For example, we put two positive linear maps Φ and $\Psi : \mathcal{B}(H) \oplus \dots \oplus \mathcal{B}(H) \mapsto \mathcal{B}(H)$ as follows: $$\Phi(A_1 \oplus \cdots \oplus A_n) = \sum_{i=1}^n p_i A_i$$ and $\Psi(A_1 \oplus \cdots \oplus A_n) = \sum_{i=1}^n q_i A_i$, where (p_1, \dots, p_n) and (q_1, \dots, q_n) are weight vectors. If we put $\alpha = \max_{1 \leq i \leq n} \{\frac{p_i}{q_i}\}$ and $\beta = \min_{1 \leq i \leq n} \{\frac{p_i}{q_i}\}$, then it follows that Φ is (α, β) -dominant by Ψ . In fact, we have $$(\alpha \Psi - \Phi)(A_1 \oplus \cdots \oplus A_n) = \sum_{i=1}^n (\alpha - \frac{p_i}{q_i})q_i A_i$$ and $$(\Phi - \beta \Psi)(A_1 \oplus \cdots \oplus A_n) = \sum_{i=1}^n (\frac{p_i}{q_i} - \beta)q_iA_i.$$ Therefore $\alpha \Psi - \Phi$ and $\Phi - \beta \Psi$ are positive linear maps. Firstly, we provide bounds for the difference of the Davis-Choi-Jensen inequality: THEOREM 2.1. Let Φ and Ψ be two unital positive linear maps from $\mathcal{B}(H)$ to $\mathcal{B}(K)$ such that Φ is (α, β) -dominant by Ψ . If f is operator concave on an interval J, then (2.1) $$\beta(f(\Psi(A)) - \Psi(f(A))) \le f(\Phi(A)) - \Phi(f(A)) \le \alpha(f(\Psi(A)) - \Psi(f(A)))$$ for every selfadjoint operator A with spectrum $\sigma(A) \subset J$. *Proof.* If we put $\Phi_0(X) = \frac{1}{\alpha}X$, then Φ_0 is a positive linear map. Since Φ is α -upper dominant by Ψ , we have $\Psi - \frac{1}{\alpha}\Phi$ is positive and $(\Psi - \frac{1}{\alpha}\Phi)(I) + \Phi_0(I) = I$. Therefore, by the Jensen operator inequality (1.1) we have $$f(\Psi(A)) = f(\Psi(A) - \frac{1}{\alpha}\Phi(A) + \frac{1}{\alpha}\Phi(A)) = f\left((\Psi - \frac{1}{\alpha}\Phi)(A) + \Phi_0(\Phi(A))\right)$$ $$\geq (\Psi - \frac{1}{\alpha}\Phi)(f(A)) + \Phi_0(f(\Phi(A)))$$ $$= \Psi(f(A)) - \frac{1}{\alpha}\Phi(f(A)) + \frac{1}{\alpha}f(\Phi(A))$$ and this implies the second inequality of (2.1). Similarly, if we put $\Phi_1(X) = \beta X$, then it follows that $$f(\Phi(A)) = f(\Phi(A) - \beta \Psi(A) + \beta \Psi(A)) = f((\Phi - \beta \Psi)(A) + \Phi_1(\Psi(A)))$$ > $(\Phi - \beta \Psi)(f(A)) + \Phi_1(f(\Psi(A))) = \Phi(f(A)) - \beta \Psi(f(A)) + \beta f(\Psi(A)).$ By Theorem 2.1, we have the following corollary as an operator concave version of [3, Theorem 1], see also [4]. COROLLARY 2.2. Let (p_1, \dots, p_n) and (q_1, \dots, q_n) be two weight vectors. If f is operator concave on an interval J, then $$\beta \left(f \left(\sum_{i=1}^{n} q_i A_i \right) - \sum_{i=1}^{n} q_i f(A_i) \right)$$ $$\leq f \left(\sum_{i=1}^{n} p_i A_i \right) - \sum_{i=1}^{n} p_i f(A_i) \leq \alpha \left(f \left(\sum_{i=1}^{n} q_i A_i \right) - \sum_{i=1}^{n} q_i f(A_i) \right)$$ for all selfadjoint operators A_1, \dots, A_n such that $\sigma(A_i) \subset J$ for all $i = 1, \dots, n$, where $\alpha = \max_{1 \leq i \leq n} \{ \frac{p_i}{q_i} \}$ and $\beta = \min_{1 \leq i \leq n} \{ \frac{p_i}{q_i} \}$. In particular, $$\begin{split} n \min_{1 \leq i \leq n} \{p_i\} \left(f\left(\sum_{i=1}^n \frac{1}{n} A_i\right) - \sum_{i=1}^n \frac{1}{n} f(A_i) \right) \\ \leq f\left(\sum_{i=1}^n p_i A_i\right) - \sum_{i=1}^n p_i f(A_i) \leq n \max_{1 \leq i \leq n} \{p_i\} \left(f\left(\sum_{i=1}^n \frac{1}{n} A_i\right) - \sum_{i=1}^n \frac{1}{n} f(A_i) \right). \end{split}$$ The following corollary is a two variable version of Theorem 2.1. COROLLARY 2.3. Let Φ , Ψ , Φ' and Ψ' be positive linear maps from $\mathcal{B}(H)$ to $\mathcal{B}(K)$ such that $\Phi(I) + \Psi(I) = I$ and $\Phi'(I) + \Psi'(I) = I$ and Φ is (α, β) -dominant by Φ' and Ψ is (α, β) -dominant by Ψ' . If a real-valued function f is operator concave on an interval J, then $$\beta (f(\Phi'(A) + \Psi'(B)) - (\Phi'(f(A)) + \Psi'(f(B)))$$ $$\leq f(\Phi(A) + \Psi(B)) - (\Phi(f(A)) + \Psi(f(B)))$$ $$\leq \alpha (f(\Phi'(A) + \Psi'(B)) - (\Phi'(f(A)) + \Psi'(f(B)))$$ for all selfadjoint operators A and B with $\sigma(A)$, $\sigma(B)$, $\sigma(\Phi(A) + \Psi(B))$ and $\sigma(\Phi'(A) + \Psi'(B)) \subset J$. REMARK 2.4. Similarly we have the following n-variable version of Corollary 3. Let $\{\Phi_i\}$ and $\{\Phi'_i\}$ be positive linear maps from $\mathcal{B}(H)$ to $\mathcal{B}(K)$ such that $\sum_{i=1}^n \Phi_i(I) = \sum_{i=1}^n \Phi'_i(I) = I$ and Φ_i is (α, β) -dominant by Φ'_i for $i = 1, \dots, n$. If a real-valued function f is operator concave on an interval J, then $$\beta \left(f\left(\sum_{i=1}^n \Phi_i'(A_i)\right) - \sum_{i=1}^n \Phi_i'(f(A_i)) \right) \le f\left(\sum_{i=1}^n \Phi_i(A_i)\right) - \sum_{i=1}^n \Phi_i(f(A_i))$$ $$\le \alpha \left(f\left(\sum_{i=1}^n \Phi_i'(A_i)\right) - \sum_{i=1}^n \Phi_i'(f(A_i)) \right)$$ for all selfadjoint operators A and B with $\sigma(A)$, $\sigma(B)$, $\sigma(\sum_{i=1}^n \Phi_i(A))$ and $\sigma(\sum_{i=1}^n \Phi_i'(A)) \subset J$. In the case of a concave function, we have no relation between $\Phi(f(A))$ and $f(\Phi(A))$. Though we have the estimate of (1.2), we provide new bounds for the difference of the Davis-Choi-Jensen inequality by means of the difference of concavity. THEOREM 2.5. Let Φ be a unital positive linear map from $\mathcal{B}(H)$ to $\mathcal{B}(K)$. If a real-valued function f(t) is concave on [m, M], then $$-\frac{2}{M-m}\left(f\left(\frac{m+M}{2}\right)-\frac{f(m)+f(M)}{2}\right)\Phi(F(A))$$ $$\leq f(\Phi(A)) - \Phi(f(A)) \leq \frac{2}{M-m} \left(f\left(\frac{m+M}{2}\right) - \frac{f(m) + f(M)}{2} \right) F(\Phi(A))$$ for every selfadjoint operator A such that $mI \leq A \leq MI$ for some scalars m < M, where a real-valued function F(t) on [m, M] is defined by $$F(t) = \frac{M-m}{2} + \left| t - \frac{M+m}{2} \right|.$$ *Proof.* Since Φ is a unital positive linear map and f is concave on [m,M], we have $$\begin{split} \Phi(f(A)) &\geq \Phi\left(\frac{f(M) - f(m)}{M - m}A + \frac{Mf(m) - mf(M)}{M - m}I\right) \\ &= \frac{f(M) - f(m)}{M - m}\Phi(A) + \frac{Mf(m) - mf(M)}{M - m}I. \end{split}$$ On the other hand, it follows from (1.4) that $$\begin{split} f(t) &- \frac{f(M) - f(m)}{M - m}t + \frac{Mf(m) - mf(M)}{M - m} \\ &= f\left(\frac{M - t}{M - m}m + \frac{t - m}{M - m}M\right) - \frac{M - t}{M - m}f(m) + \frac{t - m}{M - m}f(M) \\ &\leq \frac{2}{M - m}\max\left\{M - t, t - m\right\}\left(f\left(\frac{m + M}{2}\right) - \frac{f(m) + f(M)}{2}\right) \\ &= \frac{2}{M - m}\left(\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2}\right)\right)F(t) \end{split}$$ and this implies $$f(\Phi(A)) - \Phi(f(A)) \le \frac{2}{M-m} \left(\frac{f(m) + f(M)}{2} - f\left(\frac{m+M}{2}\right) \right) F(\Phi(A)).$$ For the first half of Theorem 2.5, we have $$\begin{split} f(\Phi(A)) - \Phi(f(A)) &\geq \frac{f(M) - f(m)}{M - m} \Phi(A) + \frac{Mf(m) - mf(M)}{M - m} I - \Phi(f(A)) \\ &= \Phi(\frac{f(M) - f(m)}{M - m} A + \frac{Mf(m) - mf(M)}{M - m} I - f(A)) \\ &\geq -\frac{2}{M - m} \left(\frac{f(m) + f(M)}{2} - f\left(\frac{m + M}{2}\right)\right) \Phi(F(A)). \end{split}$$ Since $\frac{1}{M-m}F(\Phi(A)) \leq I$ in Theorem 2.5, we have the following upper bound for the difference of the Davis-Choi-Jensen inequality: COROLLARY 2.6. Let Φ , f and A be as in Theorem 2.5. Then $$f(\Phi(A)) - \Phi(f(A)) \le 2\left(f\left(\frac{m+M}{2}\right) - \frac{f(m) + f(M)}{2}\right)I.$$ The following corollary is another expression of (1.2). COROLLARY 2.7. Let Φ , f and A be as in Theorem 2.5. Then $$-\left(\tilde{f}_{\max} - \frac{f(m) + f(M)}{2}\right)I \leq f(\Phi(A)) - \Phi(f(A)) \leq \left(\tilde{f}_{\max} - \frac{f(m) + f(M)}{2}\right)I,$$ where $\tilde{f}(t) = f(t) - \frac{f(M) - f(m)}{M - m}t + \frac{(M + m)(f(M) - f(m))}{2(M - m)}$ and $\tilde{f}_{\max} = \max\{\tilde{f}(t) : m \leq t \leq M\}.$ Proof. Since $$f(t) - \frac{f(M) - f(m)}{M - m}t - \frac{Mf(m) - mf(M)}{M - m} = \tilde{f}(t) - \frac{f(m) + f(M)}{2}$$ $$\leq \tilde{f}_{\text{max}} - \frac{f(m) + f(M)}{2}$$ it follows from the concavity of f that $$\begin{split} f(\Phi(A)) - \Phi(f(A)) &\leq f(\Phi(A)) - \frac{f(M) - f(m)}{M - m} \Phi(A) - \frac{Mf(m) - mf(M)}{M - m} I \\ &\leq \left(\tilde{f}_{\text{max}} - \frac{f(m) + f(M)}{2} \right) I. \end{split}$$ On the other hand, by Stinespring decomposition theorem [10], Φ restricted to a C^* -algebra $C^*(A)$ generated by A and I admits a decomposition $\Phi(X) = C^*\phi(X)C$ for all $X \in C^*(A)$, where ϕ is a *-representation of $C^*(A) \subset B(H)$ and C is a bounded linear operator from K to a Hilbert space K'. Since Φ is unital, we have $C^*C = I$. For every unit vector $x \in K$, $$\begin{split} & \langle f(\Phi(A))x,x\rangle - \langle \Phi(f(A))x,x\rangle = \langle f(C^*\phi(A)C)x,x\rangle - \langle C^*\phi(f(A))Cx,x\rangle \\ & = \langle f(\phi(A))Cx,Cx\rangle - \langle f(C^*\phi(A)C)x,x\rangle \\ & \leq f\left(\langle \phi(A)Cx,Cx\rangle\right) - \langle f(C^*\phi(A)C)x,x\rangle \\ & \leq f(\langle C^*\phi(A)Cx,x\rangle) - \frac{f(M)-f(m)}{M-m} \left\langle C^*\phi(A)Cx,x\rangle - \frac{Mf(m)-mf(M)}{M-m} \right. \\ & \leq \tilde{f}_{\max} - \frac{f(m)+f(M)}{2}. \end{split}$$ Therefore, we have $$\Phi(f(A)) - f(\Phi(A)) \le \left(\tilde{f}_{\max} - \frac{f(m) + f(M)}{2}\right)I$$ and this implies the first half part of the desired inequality. \square 3. External version of Davis-Choi-Jensen inequality. In this section, we consider bounds of operator concavity in terms of an external formula. A real-valued continuous function f on J is operator concave if and only if (3.1) $$f((1+p)A - pB) \le (1+p)f(A) - pf(B)$$ for all p > 0 and all selfadjoint operators A and B with $\sigma(A), \sigma(B)$ and $\sigma((1 + p)A - pB) \subset J$. Then we have the following external version of the Jensen operator inequality: If f is operator concave, then (3.2) $$f\left((1+\sum_{i=1}^{n}p_{i})A-\sum_{i=1}^{n}p_{i}B_{i}\right) \leq (1+\sum_{i=1}^{n}p_{i})f(A)-\sum_{i=1}^{n}p_{i}f(B_{i})$$ for all selfadjoint operators A and B_i $(i=1,\dots,n)$ with $\sigma(A),\sigma(B_i)$ and $\sigma((1+\sum_{i=1}^n p_i)A-\sum_{i=1}^n p_iB_i)\subset J$, also see [5, 9]. For a real-valued continuous function f, we define the following notation $$A \sigma_f B = A^{\frac{1}{2}} f(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^{\frac{1}{2}}$$ for positive invertible A and selfadjoint B, also see [8]. Let Φ be a positive linear map from $\mathcal{B}(H)$ to $\mathcal{B}(K)$. In [6], we show the following external version of the Davis-Choi-Jensen inequality: Let f be a real-valued continuous function on an interval J. Then f is operator convexe if and only if $$(3.3) f(\Phi(A) - \Psi(B)) \le \Phi(I) \ \sigma_f \ \Phi(A) - \Psi(f(B))$$ for all positive linear maps Φ, Ψ such that $\Phi(I) - \Psi(I) = I$ and for all selfadjoint operators A and B with $\sigma(A), \sigma(B)$ and $\sigma(\Phi(A) - \Psi(B)) \subset J$. The invertibility of $\Phi(I)$ guarantees the formulation of (3.3). In this case, we have $$\Phi(f(A)) \le \Phi(I) \ \sigma_f \ \Phi(A).$$ In fact, in Stinespring decomposition theorem $\Phi(X)=C^*\phi(X)C$, we have the polar decomposition C=V|C| such that |C| is invertible, because $C^*C=\Phi(I)=I+\Psi(I)>0$. Since $V^*V=I$, it follows that $$\Phi(f(A)) = |C|V^*f(\phi(A))V|C| \le |C|f(V^*\phi(A)V)|C|$$ = |C|f(|C|^{-1}C^*\phi(A)C|C|^{-1})|C| = \Phi(I) \sigma_f \Phi(A). If moreover C is invertible, then we have $\Phi(f(A)) = \Phi(I) \sigma_f \Phi(A)$ and hence $$(3.4) f(\Phi(A) - \Psi(B)) \le \Phi(f(A)) - \Psi(f(B)),$$ see [6]. Based on the external version (3.4) of the Davis-Choi-Jensen inequality, we have the following bounds for the difference of the operator concavity. THEOREM 3.1. Let Φ , Ψ , Φ' and Ψ' be positive linear maps from $\mathcal{B}(H)$ to $\mathcal{B}(K)$ such that $\Phi(I) - \Psi(I) = I$ and $\Phi'(I) - \Psi'(I) = I$ and Φ is (β, α) -dominant by Φ' and Ψ is (α, β) -dominant by Ψ' . If a real-valued function f is operator concave on an interval J, then $$\beta \left(\Phi'(f(A)) - \Psi'(f(B)) - f(\Phi'(A) - \Psi'(B)) \right)$$ $$\leq \Phi(f(A)) - \Psi(f(B)) - f(\Phi(A) - \Psi(B))$$ $$\leq \alpha \left(\Phi'(f(A)) - \Psi'(f(B)) - f(\Phi'(A) - \Psi'(B)) \right)$$ for all selfadjoint operators A and B with $\sigma(A)$, $\sigma(B)$, $\sigma(\Phi(A) - \Psi(B))$ and $\sigma(\Phi'(A) - \Psi'(B)) \subset J$. *Proof.* Put $\Phi_1(X) = \alpha X$. Since Φ is α -lower dominant by Φ' and Ψ is α -upper dominant by Ψ' , and $(\Phi - \alpha \Phi')(I) + (\alpha \Psi' - \Psi)(I) + \Phi_1(I) = I$, it follows from the operator concavity of f that $$f(\Phi(A) - \Psi(B)) = f((\Phi - \alpha \Phi')(A) + (\alpha \Psi' - \Psi)(B) + \Phi_1(\Phi'(A) - \Psi'(B)))$$ $$\geq (\Phi - \alpha \Phi')(f(A)) + (\alpha \Psi' - \Psi)(f(B)) + \Phi_1(f(\Phi'(A) - \Psi'(B)))$$ $$= \Phi(f(A)) - \Psi(f(B)) - \alpha (f(\Phi'(A) - \Psi'(B)) - (\Phi'(f(A)) - \Psi'(f(B))))$$ for all selfadjoint operators A and B with $\sigma(A)$, $\sigma(B)$, $\sigma(\Phi(A) - \Psi(B))$ and $\sigma(\Phi'(A) - \Psi'(B)) \subset J$. This fact implies the second half of Theorem 3.1. Similarly we have the first half of Theorem 3.1. \square Finally we show an application of Theorem 3.1. Put positive linear maps Φ , Ψ , Φ' and $\Psi' : \mathcal{B}(H) \oplus \cdots \oplus \mathcal{B}(H) \mapsto \mathcal{B}(H)$ as follows: $$\Phi(A_1 \oplus \cdots \oplus A_n) = \sum_{i=1}^n \frac{1 + \sum_{i=1}^n p_i}{n} A_i \quad \text{and} \quad \Psi(A_1 \oplus \cdots \oplus A_n) = \sum_{i=1}^n p_i A_i.$$ $$\Phi'(A_1 \oplus \cdots \oplus A_n) = \sum_{i=1}^n \frac{1 + \sum_{i=1}^n q_i}{n} A_i \quad \text{and} \quad \Psi'(A_1 \oplus \cdots \oplus A_n) = \sum_{i=1}^n q_i A_i,$$ where $p_i, q_i > 0$ for $i = 1, \dots, n$. Then it follows that $\Phi(I) - \Psi(I) = I$ and $\Phi'(I) - \Psi'(I) = I$. If we put $\alpha = \max\{\frac{p_i}{q_i}\}$ and $\frac{1+\sum_{i=1}^n p_i}{1+\sum_{i=1}^n q_i} > \alpha$, then Φ is α -lower dominant of Φ' and Ψ is α -upper dominant of Ψ' . If we put $\beta = \min\{\frac{p_i}{q_i}\}$ and $\frac{1+\sum_{i=1}^n p_i}{1+\sum_{i=1}^n q_i} < \beta$, then Φ is β -upper dominant of Φ' and Ψ is β -lower dominant of Ψ' . Hence by Theorem 3.1, we obtain the following external version of Corollary 2.2: COROLLARY 3.2. Let f be operator convex on an interval J and A and B_i $(i = 1, \dots, n)$ selfadjoint operators with $\sigma(A), \sigma(B_i)$ and $\sigma((1 + \sum_{i=1}^n p_i)A - \sum_{i=1}^n p_iB_i) \subset A$ J. Let $\alpha = \max\{\frac{p_i}{q_i}\}$ and $\beta = \min\{\frac{p_i}{q_i}\}$. If $\beta > \frac{1+\sum p_i}{1+\sum q_i}$, then $$\beta \left(f \left((1 + \sum_{i=1}^{n} q_i) A - \sum_{i=1}^{n} q_i B_i \right) - ((1 + \sum_{i=1}^{n} q_i) f(A) - \sum_{i=1}^{n} q_i f(B_i)) \right)$$ $$\leq f \left((1 + \sum_{i=1}^{n} p_i) A - \sum_{i=1}^{n} p_i B_i \right) - ((1 + \sum_{i=1}^{n} p_i) f(A) - \sum_{i=1}^{n} p_i f(B_i))$$ and if $\frac{1+\sum p_i}{1+\sum q_i} > \alpha$, then $$f\left((1+\sum_{i=1}^{n}p_{i})A-\sum_{i=1}^{n}p_{i}B_{i}\right)-\left((1+\sum_{i=1}^{n}p_{i})f(A)-\sum_{i=1}^{n}p_{i}f(B_{i})\right)$$ $$\leq \alpha\left(f\left((1+\sum_{i=1}^{n}q_{i})A-\sum_{i=1}^{n}q_{i}B_{i}\right)-\left((1+\sum_{i=1}^{n}q_{i})f(A)-\sum_{i=1}^{n}q_{i}f(B_{i})\right)\right).$$ ## REFERENCES - M.D. Choi, A Schwarz inequality for positive linear maps on C*-algebras. Illinois Journal of Mathematics, 18:565–574, 1974. - [2] C. Davis, A Schwartz inequality for convex operator functions. Proceedings of the American Mathematical Society, 8:42-44, 1957. - [3] S.S. Dragomir, Bounds for the normalised Jensen functional. Bulletin of the Australian Mathematical Society, 74:471–478, 2006. - [4] S.S. Dragomir, Some inequalities of Jensen type for operator convex functions in Hilbert spaces. Preprint, Reseach Group in Mathematical Inequalities and Applications, Reseach Report Collection, 15:Article 40, 2012. - [5] J.I. Fujii, An external version of the Jensen operator inequality. Scientiae Mathematicae Japonicae, 73:125–128, 2011. - [6] J.I. Fujii, J. Pečarić and Y. Seo, The Jensen inequality in an external formula. *Journal of Mathematical Inequalities*, 6:473–480, 2012. - [7] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Monographs in Inequalities, 1, Element, Zagreb, 2005. - [8] F. Kubo and T. Ando, Means of positive linear operators. *Mathematische Annalen*, 246:205–224, - [9] B. Mond and J. Pečarić, Remarks on Jensen's inequality for operator convex functions. Annales Universitatis Mariae Curie-Sklodowska. Sectio A. Mathematica, 47:96–103, 1993. - [10] W.F. Stinespring, Positive functions on C*-algebras. Proceedings of the American Mathematical Society, 6:211–216, 1955.