BOUNDS FOR AN OPERATOR CONCAVE FUNCTION
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Abstract. We shall provide new bounds for the difference of the Davis-Choi-Jensen inequality.
Among others, we show that if ® is a unital positive linear map and f is operator convcave on an
interval [m, M], then

FD(A)) — B(f(A)) < 2 (f (m;M) _ fm) ; f(M)) s

for every selfadjoint operator A such that mI < A < M1 for some scalars m < M. Moreover, we
discuss an external version of the Davis-Choi-Jensen inequality.
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1. Introduction. Let ® be a unital positive linear map from B(H) to B(K),
where B(H) is the C*-algebra of all bounded linear operators on a Hilbert space
H. The Davis-Choi-Jensen inequality [1, 2] says that if a real-valued function f is
operator concave on an interval J, then

(L.1) (f(A4)) < f(2(4))

for every selfadjoint operator A with spectrum o(A) C J. Though in the case of
concave function the inequality (1.1) does not hold in general, we have the following
estimate [7]: If f is concave and A is a selfadjoint operator on H such that mI < A <
M for some scalars m < M, then

(1.2) —p(m, M, f)I < f(®(A)) — ©(f(A)) < p(m, M, f)I
for all unital positive linear maps ® where the bound p(m, M, f) of f is defined by

fM) = f(m)

(1.3) w(m, M, f) = max{f(t) - M-m

(t—m)—f(m):te [m,M]}.
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We note that bounds of (1.2) are sharp.

In [3], the first author showed the following estimate for the normalized Jensen
functional: If a real-valued function f is concave on a convex set C, then for each

positive n-tuples (p1,---,pyn) and (g1, ++,qn) with > p;=1and Y| ¢ =1
1) ) () £
AYAS 2 i=1 i=1 i=1 =1
< o {1} (f (Z q) o W)
== g i=1 i=1

for all (z1,---,z,) € C™.

In this note, based on the idea of [3], we shall provide new bounds for the difference
of the Davis-Choi-Jensen inequality. Among others, we show that if ® is a unital
positive linear map and f is operator concave on an interval [m, M], then

L) — B < 2 <f (m—;M> - f(m);f(M)) I

for every selfadjoint operator A such that mI < A < M for some scalars m < M.
Moreover, we discuss an external version of the Davis-Choi-Jensen inequality.

2. Davis-Choi-Jensen inequality. Let ® and ¥ be two positive linear maps
from B(H) to B(K). ® is said to be a-upper dominant by ¥ if there exists a > 0
such that a¥ > ®. Similarly @ is said to be S-lower dominant by W if there exists
B > 0 such that ® > g¥. Moreover, ® is (a, 3)-dominant by ¥ if ® is a-upper and
[-lower dominant by . The vector (p1, -+ -, py) is said to be a weight vector if p; > 0
foralli=1,---,nand ), , p; = 1. For example, we put two positive linear maps ®
and ¥ : B(H)&--- @ B(H) — B(H) as follows:

PAr@- @A) =) pA and  U(Ai@--8A) =) g,
i=1 i=1
where (p1,---,pn) and (q1,---,q,) are weight vectors. If we put o = maxlgign{%}
and 3 = minlgign{%}, then it follows that ® is (a, §)-dominant by ¥. In fact, we
have
(¥~ B)(A; BB A,) = (a— D)gA,

i=1 ’

and

(2= BV (A1 © - ® An) = D7(c* — Basds
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Therefore a¥ — ® and ® — ¥ are positive linear maps.
Firstly, we provide bounds for the difference of the Davis-Choi-Jensen inequality:

THEOREM 2.1. Let ® and ¥ be two unital positive linear maps from B(H) to
B(K) such that ® is (a, 3)-dominant by V. If f is operator concave on an interval
J, then

(2.1) B(f(¥(A) = ¥(f(A))) < f(2(4) — 2(f(4)) < a(f(T(A)) - T(f(4)))

for every selfadjoint operator A with spectrum o(A) C J.

Proof. If we put ®5(X) = LX, then ® is a positive linear map. Since ® is

a-upper dominant by ¥, we have ¥ — L& is positive and (¥ — 2®)(I) + ®o(I) = I.
Therefore, by the Jensen operator inequality (1.1) we have

F(A)) = F(V(A) = 20(4) + 0(4) = 1 (¥ - L0)(4) + Bo(a() )
> (0~ 2 @)(f(4)) + Do(/(B(4)))
= W(F(4) ~ ~B(F(4)) + = F(B(A))

and this implies the second inequality of (2.1).
Similarly, if we put ®;(X) = X, then it follows that

f(@(A)) = [(B(A) = BY(A) + fU(A)) = [ (¢ = BY)(A) + @1 (¥(A)))
> (@ = BU)(f(A)) + 21(F(¥(A))) = B(f(A)) = BU(F(A)) + Bf(T(A)).

By Theorem 2.1, we have the following corollary as an operator concave version
of [3, Theorem 1], see also [4].

COROLLARY 2.2. Let (p1,--+,pn) and (q1,- -, qn) be two weight vectors. If f is
operator concave on an interval J, then

B (f (Z ini> - Z%‘f(z‘h))
<f (szAz> - ZPif(Ai) <a <f (Z QiAi) - Z%‘f(&))

for all selfadjoint operators Ay, - -, Ay, such that o(A4;) C J foralli=1,---,n, where
o= maxlSiSn{%} and 3 = minlgign{%}.
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In particular,

nlgliign{pi} <f (Z if‘h‘) - Z :Lf(Az)>

i=1

<f (ZM) = 3" pif (A0 < 0 mas {pi} (f (Z ;A> -y if(A») .
i=1 i=1 == i=1 i=1

The following corollary is a two variable version of Theorem 2.1.

COROLLARY 2.3. Let ®, U, ® and V' be positive linear maps from B(H) to
B(K) such that ®(I) + U(I) =1 and ®'(I) + ¥'(I) =1 and @ is («, 3)-dominant by
O and ¥ is («, B)-dominant by V. If a real-valued function f is operator concave on
an interval J, then

B(f(@(A)+ T (B)) — (2'(f(A)) + ¥'(f(B)))
< f((A) +¥(B)) — (2(f(4) + ¥(f(B)))
< a(f(2'(A) + ¥'(B)) — (¥'(f(A) + ¥'(f(B)))
for all selfadjoint operators A and B with o(A), o(B), c(P(A)+¥(B)) and o(P'(A)+
U'(B)) C J.
REMARK 2.4. Similarly we have the following n-variable version of Corollary 3.
Let {®;} and {®}} be positive linear maps from B(H) to B(K) such that Y | ®;(I) =
Sor ®iI) =1 and ®; is («, 3)-dominant by @ for i = 1,---,n. If a real-valued
function f is operator concave on an interval J, then

n

p <f (Z <I>2(Ai)> - Z‘I%(f(Ai))) <f <Z <I>Z~(Ai)> - Z(I),»(f(Ai))
<a (f (Z <I>;<Az->> - Z@ﬂf(A»))

for all selfadjoint operators A and B with o(A), o(B), o(>_ 1, ®i(A)) and
o(Xim ®i(4)) C T

In the case of a concave function, we have no relation between ®(f(A)) and
f(®(A)). Though we have the estimate of (1.2), we provide new bounds for the
difference of the Davis-Choi-Jensen inequality by means of the difference of concavity.

THEOREM 2.5. Let ® be a unital positive linear map from B(H) to B(K). If a
real-valued function f(t) is concave on [m, M|, then

i (1 (M) - H e ey
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< ey - o) < oo (1 (M5 ) - LD raay)

<
~—M-m 2

for every selfadjoint operator A such that mI < A < MI for some scalars m < M,
where a real-valued function F(t) on [m,M] is defined by

M—-—m M+m
A SR P

2

Proof. Since ® is a unital positive linear map and f is concave on [m, M], we

have
o(siy > o (LS Moo =i
fM) = f(m) Mf(m) — mf(M)
== "m O(A) + W —m I
On the other hand, it follows from (1.4) that
piy - 100 =Sl | M)~
= 1 (S M)~ R ) D
2 m+ M f(m)+ f(M)
SM— maX{M—t,t—m}(f 5 )— 5 >
2 (flm)+ f(M) m+ M
:M—m< 2 _f< 2 ) F(t)

and this implies

() - o) < 3 (LS00 g (M) pagay),

For the first half of Theorem 2.5, we have

f(@(A)) = @(f(4)) =

sy (s _f<Z;M)> BEL)

Since Ml_mF (®(A)) < I in Theorem 2.5, we have the following upper bound for

the difference of the Davis-Choi-Jensen inequality:
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COROLLARY 2.6. Let @, f and A be as in Theorem 2.5. Then

o) - oy <2 (£ (M) - p D) g

The following corollary is another expression of (1.2).

COROLLARY 2.7. Let ®, f and A be as in Theorem 2.5. Then

~ (Fowe = L IEDY 1 < @) = (7)) < (o - L EIODY 1

where f(t) = f(t)— f(]\fv}:fn(m)t—f— (M+m2)((1{/ﬂ2;f(m)) and fuax = max{f(t) :m <t <

Proof. Since

fM) = f(m),  Mf(m)—mf(M) ;. f(m)+ f(M)
ploy - A2 = tm), IO = mIE) _ gy - L
< o L E10D)

it follows from the concavity of f that

F@(4) — a(7(4) < f(a(a) ~ LA g ) MTm) = (OD)

; f(m) + f(M)
S <fmax - 2> I

On the other hand, by Stinespring decomposition theorem [10], ® restricted to a C*-
algebra C*(A) generated by A and I admits a decomposition ®(X) = C*¢(X)C for
all X € C*(A), where ¢ is a *-representation of C*(A) C B(H) and C is a bounded
linear operator from K to a Hilbert space K’. Since ® is unital, we have C*C = I.
For every unit vector x € K,

(f(®(A))z,z) — (®(f(A))z, ) = (f(C"H(A)C)z,2) — (C"o(f(A))Cx, x)
(f(#(A)C, Cx) — (F(C*P(A)C)z, x)

F (@A), C)) ~ (oA )
< S0 o A)Cr,a)) ~ LED =IO )y - MIEW Z 0T
< o~ L+ 100
Therefore, we have
B - 1) = (Fowe — L ELED) 1

and this implies the first half part of the desired inequality. O
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3. External version of Davis-Choi-Jensen inequality. In this section, we
consider bounds of operator concavity in terms of an external formula. A real-valued
continuous function f on J is operator concave if and only if

(3.1) f(1+p)A=pB) < (1+p)f(A) —pf(B)

for all p > 0 and all selfadjoint operators A and B with o(A),o(B) and o((1 +
p)A — pB) C J. Then we have the following external version of the Jensen operator
inequality: If f is operator concave, then

(32) f <(1 + ZPi)A - ZPi&) <(1+ Zpi)f(A) - Zpif(Bi)
i=1 i=1 i=1 i=1
for all selfadjoint operators A and B; (i = 1,---,n) with o(A4),0(B;) and o((1 +
S pi)A—>"  piB;) C J, also see [5, 9].
For a real-valued continuous function f, we define the following notation
Aoy B=A:f(A2BA3)A?
for positive invertible A and selfadjoint B, also see [8].

Let ® be a positive linear map from B(H) to B(K). In [6], we show the fol-
lowing external version of the Davis-Choi-Jensen inequality: Let f be a real-valued
continuous function on an interval J. Then f is operator convcave if and only if

(3-3) f(@(A) = ¥(B)) < ®(I) o7 B(A) = ¥(f(B))

for all positive linear maps ®, ¥ such that ®(I) — ¥(I) = I and for all selfadjoint
operators A and B with o(A),0(B) and o(®(A) — ¥(B)) C J. The invertibility of
®(I) guarantees the formulation of (3.3). In this case, we have

(f(A)) < @(I) o B(A).

In fact, in Stinespring decomposition theorem ®(X) = C*¢(X)C, we have the polar
decomposition C' = V|C| such that |C| is invertible, because C*C = ®(I) = I+¥(I) >
0. Since V*V = I, it follows that

(f(A)) = [CIVTf(p(A)VIC] < [CIF (VT o(A)V)|C]
=[CIf(ICI7 C(A)CICITHIC] = (1) of B(A).

If moreover C' is invertible, then we have ®(f(A)) = ®(I) o5 ®(A) and hence
(3-4) f(@(A) —¥(B)) < (f(4)) — ¥(f(B)),
see [6].
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Based on the external version (3.4) of the Davis-Choi-Jensen inequality, we have
the following bounds for the difference of the operator concavity.

THEOREM 3.1. Let ®, U, ® and U’ be positive linear maps from B(H) to B(K)
such that ®(I) — W(I) = I and ®'(I) — V'(I) = I and ® is (B, a)-dominant by P’
and W is (a, B)-dominant by V. If a real-valued function f is operator concave on an
interval J, then

B(2'(f(A) = ¥'(f(B)) - f(2'(4) - ¥'(B)))
< O(f(4) - ¥(f(B)) - f(®(A) - ¥(B))
< a(®(f(A) - W(f(B)) - f(2'(A) - ¥'(B)))
for all selfadjoint operators A and B with o(A), o(B), o(®(A)—¥(B)) and o(D’'(A)—
U'(B)) C J.
Proof. Put ®1(X) = aX. Since @ is a-lower dominant by ®' and ¥ is a-upper

dominant by ¥/, and (& — a®’)(I) + (a¥’ — U)(I) + ®1(I) = I, it follows from the
operator concavity of f that

f(@(A) = ¥(B)) = [((® — a®')(A) + (a¥’ — ¥)(B) + ©1(¥'(4) — ¥'(B)))
> (® = a®)(f(A)) + (¥ = ¥)(f(B)) + 21(f(P'(4) - ¥'(B)))
= O(f(A4)) = B(f(B)) — a(f(2'(4) - ¥'(B)) - (¥'(f(A4)) - ¥(f(B))))

for all selfadjoint operators A and B with o(A), o(B), o(®(A)—¥(B)) and o(D’'(A) —
U’(B)) C J. This fact implies the second half of Theorem 3.1. Similarly we have the
first half of Theorem 3.1. O

Finally we show an application of Theorem 3.1. Put positive linear maps ®, W,
& and V' : B(H)®--- @ B(H) — B(H) as follows:

@(Al@...@An):ZwAi and  U(A S @A) =Y pid;

£ n
=1

@/(Al@"'@An):Z#Ai and \III(AI@"'EBAR):Zini7
i=1 3

where p;,q; > 0 for ¢ = 1,---,n. Then it follows that ®(I) — ¥(I) = I and ®'() —

1 Pi

U'(I)=1I. If we put a = max{ i} and # > «, then ® is a-lower dominant of

@’ and W is a-upper dominant of V. If we put 3 = min{% } and J%‘n 1P < 3 then
® is S-upper dominant of ' and ¥ is S-lower dominant of ¥’. Hence by Theorem 3.1,

we obtain the following external version of Corollary 2.2:

COROLLARY 3.2. Let f be operator convex on an interval J and A and B; (i =
1,---,n) selfadjoint operators with o(A),o(B;) and o((1+Y i pi)A—> 1 piB;) C
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J. Let o = max{2%} and § = min{2:}. If B > ii%g‘, then

BlLAA+Da)A=D aBi | = ((1+>_a)f(A) = af(B))
i=1 i=1 i=1 i=1

<fla+ ZPi)A - ZPiBz' —((1+ Zpi)f(A) - ZPif(Bi))

and if ii%g > q«, then

FLA+Dp)A=D "piBi | = (1+ ) _pi)f(A) =D pif(B)
i=1 i=1 i=1 i=1

<alf (1+ZQ¢)A*Z%’Bi *((1+ZQ¢)f(A)*Zqz’f(Bi))
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