Ann. Funct. Anal. *ANNALS OF FUNCTIONAL ANALYSIS* ISSN: 2008-8752 (electronic) URL: www.emis.de/journals/AFA/

HÖLDER TYPE INEQUALITIES ON HILBERT C*-MODULES AND ITS REVERSES

YUKI SEO¹

This paper is dedicated to Professor Tsuyoshi Ando

ABSTRACT. In this paper, we show Hilbert C^{*}-module versions of Hölder-McCarthy inequality and its complementary inequality. As an application, we obtain Hölder type inequalities and its reverses on a Hilbert C^{*}-module.

1. INTRODUCTION

The Hölder inequality is one of the most important inequalities in functional analysis. If $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ are *n*-tuples of nonnegative numbers, and 1/p + 1/q = 1, then

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q} \qquad \text{for all } p > 1$$

and

$$\sum_{i=1}^{n} a_i b_i \ge \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q} \quad \text{for all } p < 0 \text{ or } 0 < p < 1.$$

Non-commutative versions of the Hölder inequality and its reverses have been studied by many authors. T. Ando [1] showed the Hadamard product version of a Hölder type. T. Ando and F. Hiai [2] discussed the norm Hölder inequality and the matrix Hölder inequality. B. Mond and O. Shisha [15], M. Fujii, S. Izumino, R. Nakamoto and Y. Seo [7], and S. Izumino and M. Tominaga [11] considered the vector state version of a Hölder type and its reverses. J.-C. Bourin, E.-Y. Lee, M. Fujii and Y. Seo [3] showed the geometric operator mean version, and so on.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L08; Secondary 47A63 and 47A64.

Key words and phrases. Hölder-McCarthy inequality, Hölder inequality, Hilbert C*-modules, geometric operator mean.

Y. SEO

In this paper, as a generalization of the vector state version due to [7], we show Hilbert C^{*}-module versions of Hölder-McCarthy inequality and its complementary inequality. As an application, we obtain Hölder type inequalities and its reverses on a Hilbert C^{*}-module.

2. PRELIMINARY

Let $\mathcal{B}(H)$ be the C^{*}-algebra of all bounded linear operators on a Hilbert space H, and \mathscr{A} be a unital C^{*}-algebra of $\mathcal{B}(H)$ with the unit element e. For $a \in \mathscr{A}$, we denote the *absolute value* of a by $|a| = (a^*a)^{\frac{1}{2}}$. For positive elements $a, b \in \mathscr{A}$ and $t \in [0, 1]$, the *t*-geometric mean of a and b in the sense of Kubo-Ando theory [12] is defined by

$$a \ \sharp_t \ b = a^{\frac{1}{2}} \left(a^{-\frac{1}{2}} b a^{-\frac{1}{2}} \right)^t a^{\frac{1}{2}}$$

for a > 0, i.e., a is invertible. In the case of non-invertible, since $a \sharp_t b$ satisfies the upper semicontinuity, we define $a \sharp_t b = \lim_{\varepsilon \to +0} (a + \varepsilon e) \sharp_t (b + \varepsilon e)$ in the strong operator topology. Hence $a \sharp_t b \in \mathscr{A}''$ in general, where \mathscr{A}'' is the bi-commutant of \mathscr{A} . In the case of t = 1/2, we denote $a \sharp_{1/2} b$ by $a \sharp b$ simply. The operator geometric mean has the symmetric property: $a \sharp_t b = b \sharp_{1-t} a$, and $a \sharp_t b = a^{1-t}b^t$ for commuting a and b.

A complex linear space \mathscr{X} is said to be an *inner product* \mathscr{A} *-module* (or a pre-Hilbert \mathscr{A} -module) if \mathscr{X} is a right \mathscr{A} -module together with a C*-valued map $(x, y) \mapsto \langle x, y \rangle : \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ such that

- (i) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$ $(x, y, z \in \mathscr{X}, \alpha, \beta \in \mathbb{C}),$
- (ii) $\langle x, ya \rangle = \langle x, y \rangle a \quad (x, y \in \mathscr{X}, a \in \mathscr{A}),$
- (iii) $\langle y, x \rangle = \langle x, y \rangle^* \quad (x, y \in \mathscr{X}),$
- (iv) $\langle x, x \rangle \ge 0$ ($x \in \mathscr{X}$) and if $\langle x, x \rangle = 0$, then x = 0.

The linear structures of \mathscr{A} and \mathscr{X} are assumed to be compatible. If \mathscr{X} satisfies all conditions for an inner-product \mathscr{A} -module except for the second part of (iv), then we call \mathscr{X} a *semi-inner product* \mathscr{A} -module.

Let \mathscr{X} be an inner product \mathscr{A} -module over a unital C*-algebra \mathscr{A} . We define the norm of \mathscr{X} by $||x|| := \sqrt{||\langle x, x \rangle||}$ for $x \in \mathscr{X}$, where the latter norm denotes the C*-norm of \mathscr{A} . If \mathscr{X} is complete with respect to this norm, then \mathscr{X} is called a *Hilbert* \mathscr{A} -module. An element x of the Hilbert \mathscr{A} -module is called *nonsingular* if the element $\langle x, x \rangle \in \mathscr{A}$ is invertible. For more details on Hilbert C*-modules, see [13, 14].

In [6], from a viewpoint of operator geometric mean, we showed the following new Cauchy-Schwarz inequality:

Theorem 2.1 (Cauchy-Schwarz inequality). Let \mathscr{X} be a semi-inner product \mathscr{A} -module over a unital C^* -algebra \mathscr{A} . If $x, y \in \mathscr{X}$ such that the inner product $\langle x, y \rangle$ has a polar decomposition $\langle x, y \rangle = u |\langle x, y \rangle|$ with a partial isometry $u \in \mathscr{A}$, then

$$|\langle x, y \rangle| \leq u^* \langle x, x \rangle u \ \sharp \ \langle y, y \rangle. \tag{2.1}$$

Under the assumption that \mathscr{X} is an inner product \mathscr{A} -module and y is nonsingular, the equality in (2.1) holds if and only if xu = yb for some $b \in \mathscr{A}$.

Next we review the basic concepts of adjointable operators on a Hilbert C^{*}module. Let \mathscr{X} be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathscr{A} . Let $End_{\mathscr{A}}(\mathscr{X})$ denote the set of all bounded C-linear \mathscr{A} -homomorphism from \mathscr{X} to \mathscr{X} . Let $T \in End_{\mathscr{A}}(\mathscr{X})$. We say that T is *adjointable* if there exists a $T^* \in End_{\mathscr{A}}(\mathscr{X})$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in \mathscr{X}$. Let $\mathcal{L}(\mathscr{X})$ denote the set of all adjointable operators from \mathscr{X} to \mathscr{X} . Moreover, we define its norm by

$$|| T || = \sup\{|| \langle Tx, Tx \rangle ||^{\frac{1}{2}} : || x || \le 1\}.$$

Then $\mathcal{L}(\mathscr{X})$ is a C*-algebra. The symbol *I* stands for the identity operator in $\mathcal{L}(\mathscr{X})$. The following lemma due to Pashke [16] is very important:

Lemma 2.2. Let \mathscr{X} be a Hilbert C^* -module and let T be a bounded \mathscr{A} -linear operator on \mathscr{X} . The following conditions are equivalent:

- (1) T is a positive element of $\mathcal{L}(\mathscr{X})$;
- (2) $\langle x, Tx \rangle \ge 0$ for all x in \mathscr{X} .

In [8], we showed the following generalized Cauchy–Schwarz inequality on a Hilbert C^{*}-module by virtue of (2.1) and Lemma 2.2:

Theorem 2.3 (generalized Cauchy-Schwarz inequality). Let T be a positive operator in $\mathcal{L}(\mathscr{X})$. If $x, y \in \mathscr{X}$ such that $\langle x, Ty \rangle$ has a polar decomposition $\langle x, Ty \rangle = u |\langle x, Ty \rangle|$ with a partial isometry $u \in \mathscr{A}$, then

$$|\langle x, Ty \rangle| \le u^* \langle x, Tx \rangle u \ \sharp \ \langle y, Ty \rangle. \tag{2.2}$$

Under the assumption that $\langle y, Ty \rangle$ is invertible, the equality in (2.2) holds if and only if $T^{\frac{1}{2}}(xu) = T^{\frac{1}{2}}(yb)$ for some $b \in \mathscr{A}$.

3. Hölder-McCarthy inequality

In this section, we show two Hilbert C*-module versions of Hölder-McCarthy inequality and its complementary inequality. For convenience, we use the notation \natural_t for the binary operation

$$a
angle_t b = a^{\frac{1}{2}} \left(a^{-\frac{1}{2}} b a^{-\frac{1}{2}} \right)^t a^{\frac{1}{2}} \quad \text{for } t \notin [0, 1],$$

whose formula is the same as \sharp_t .

Theorem 3.1. Let T be a positive operator in $\mathcal{L}(\mathscr{X})$ and x a nonsingular element of \mathscr{X} .

(1) If $p \ge 1$, then $\langle x, Tx \rangle \le \langle x, x \rangle \ \sharp_{1/p} \ \langle x, T^p x \rangle$. (2) If $p \le -1$ or $1/2 \le p \le 1$, then $\langle x, x \rangle \ \natural_{1/p} \ \langle x, T^p x \rangle \le \langle x, Tx \rangle$.

Proof. For a nonsingular element x of \mathscr{X} , Put

$$\Phi_x(X) = \langle x \langle x, x \rangle^{-\frac{1}{2}}, Xx \langle x, x \rangle^{-\frac{1}{2}} \rangle \quad \text{for} \quad X \in \mathcal{L}(\mathscr{X}).$$

Then Φ_x is a unital positive linear map from $\mathcal{L}(\mathscr{X})$ to \mathscr{A} .

Suppose that $p \ge 1$. Since $t^{1/p}$ is operator concave, it follows from [4, 5] that $\Phi_x(T^{1/p}) \le \Phi_x(T)^{1/p}$ and this implies

$$\langle x, x \rangle^{-\frac{1}{2}} \langle x, T^{1/p} x \rangle \langle x, x \rangle^{-\frac{1}{2}} \le \left(\langle x, x \rangle^{-\frac{1}{2}} \langle x, Tx \rangle \langle x, x \rangle^{-\frac{1}{2}} \right)^{1/p}$$

and

$$\langle x, T^{1/p} x \rangle \leq \langle x, x \rangle^{\frac{1}{2}} \left(\langle x, x \rangle^{-\frac{1}{2}} \langle x, Tx \rangle \langle x, x \rangle^{-\frac{1}{2}} \right)^{1/p} \langle x, x \rangle^{\frac{1}{2}}$$

$$= \langle x, x \rangle \ \sharp_{1/p} \ \langle x, Tx \rangle.$$

$$(3.1)$$

Replacing T by T^p in (3.1), we have (1).

Suppose that $p \leq -1$ or $1/2 \leq p \leq 1$. Since $-1 \leq 1/p < 0$ or $1 \leq 1/p \leq 2$, we have $\Phi_x(T)^{\frac{1}{p}} \leq \Phi_x(T^{\frac{1}{p}})$ by the operator convexity of $t^{1/p}$ and this implies

$$\left(\langle x,x\rangle^{-\frac{1}{2}}\langle x,Tx\rangle\langle x,x\rangle^{-\frac{1}{2}}\right)^{\frac{1}{p}} \leq \langle x,x\rangle^{-\frac{1}{2}}\langle x,T^{\frac{1}{p}}x\rangle\langle x,x\rangle^{-\frac{1}{2}}.$$

Hence it follows that

$$\langle x, x \rangle |_{1/p} \langle x, Tx \rangle \leq \langle x, T^{\frac{1}{p}}x \rangle$$
 (3.2)

and replacing T by T^p in (3.2) we have (2).

Remark 3.2. The inequality (2) of Theorem 3.1 does not hold for 0 in general. In fact, we give a simple counterexample to the case of <math>p = 1/3 as follows: Put

$$\mathscr{X} = M_4(\mathbb{C}) = M_2(M_2(\mathbb{C}))$$
 and $\mathscr{A} = M_2(\mathbb{C}) \oplus M_2(\mathbb{C})$

and

$$\Phi(\begin{pmatrix} X & Y \\ Z & W \end{pmatrix}) = \begin{pmatrix} X & 0 \\ 0 & W \end{pmatrix}$$

for $X, Y, Z, W \in M_2(\mathbb{C})$. Then \mathscr{X} is a Hilbert \mathscr{A} -module with an inner product $\langle x, y \rangle = \Phi(x^*y)$ for $x, y \in \mathscr{X}$. Let

If $T = T_z$ is defined by $T_z y = zy$ for all $y \in \mathscr{X}$, then T is a positive operator in $\mathcal{L}(\mathscr{X})$ and

$$\left(\langle x, x \rangle^{-1/2} \langle x, Tx \rangle \langle x, x \rangle^{-1/2}\right)^3 = \begin{pmatrix} 13 & 8\\ 8 & 5 \end{pmatrix} \oplus \begin{pmatrix} 4 & 4\\ 4 & 4 \end{pmatrix}$$

and

$$\langle x, x \rangle^{-1/2} \langle x, T^3 x \rangle \langle x, x \rangle^{-1/2} = \begin{pmatrix} 29 & 22 \\ 22 & 17 \end{pmatrix} \oplus \begin{pmatrix} 17 & 17 \\ 17 & 17 \end{pmatrix},$$

so that

$$\langle x, x \rangle^{-1/2} \langle x, T^3 x \rangle \langle x, x \rangle^{-1/2} - \left(\langle x, x \rangle^{-1/2} \langle x, Tx \rangle \langle x, x \rangle^{-1/2} \right)^3$$
$$= \begin{pmatrix} 16 & 14 \\ 14 & 12 \end{pmatrix} \oplus \begin{pmatrix} 13 & 13 \\ 13 & 13 \end{pmatrix} \not\geq 0 \oplus 0.$$

Next, we show a complementary part of Theorem 3.1. For this, we need the generalized Kantorovich constant $K(\alpha, \beta, p)$ for $0 < \alpha < \beta$, which is defined by

$$K(\alpha,\beta,p) = \frac{\alpha\beta^p - \beta\alpha^p}{(p-1)(\beta-\alpha)} \left(\frac{p-1}{p} \frac{\beta^p - \alpha^p}{\alpha\beta^p - \beta\alpha^p}\right)^p$$
(3.3)

for any real number $p \in \mathbb{R}$, see also [10, Definition 2.2]. The constant $K(\alpha, \beta, p)$ satisfies $0 < K(\alpha, \beta, p) \le 1$ for $0 \le p \le 1$ and $K(\alpha, \beta, p) \ge 1$ for $p \notin [0, 1]$. For more details on the generalized Kantorovich constant, see [10, Chapter 2.7].

Theorem 3.3. Let T be a positive invertible operator in $\mathcal{L}(\mathscr{X})$ such that $\alpha I \leq T \leq \beta I$ for some scalars $0 < \alpha < \beta$, and x a nonsingular element of \mathscr{X} .

(1) If $p \ge 1$, then

$$\langle x, x \rangle \ \sharp_{1/p} \ \langle x, T^p x \rangle \le K(\alpha, \beta, p)^{1/p} \langle x, Tx \rangle.$$

(2) If $p \le -1$ or $1/2 \le p \le 1$, then

$$\langle x, Tx \rangle \leq K(\alpha^p, \beta^p, 1/p) \langle x, x \rangle ||_{1/p} \langle x, T^p x \rangle,$$

where the generalized Kantorovich constant $K(\alpha, \beta, p)$ is defined by (3.3).

Proof. For a nonsingular element x of \mathscr{X} , put $\Phi_x(X) = \langle x \langle x, x \rangle^{-\frac{1}{2}}, Xx \langle x, x \rangle^{-\frac{1}{2}} \rangle$ for $X \in \mathcal{L}(\mathscr{X})$. Then $\Phi_x : \mathcal{L}(\mathscr{X}) \mapsto \mathscr{A}$ is a unital positive linear map.

Suppose that $p \ge 1$. It follows from [10, Lemma 4.3] that

$$\Phi_x(T^p) \le K(\alpha, \beta, p)\Phi_x(T)^p.$$

This implies

$$\langle x, x \rangle \ \sharp_{1/p} \ \langle x, T^p x \rangle \le K(\alpha, \beta, p)^{1/p} \langle x, Tx \rangle$$

and we have (1).

In the case of $p \leq -1$ or $1/2 \leq p \leq 1$, since $-1 \leq 1/p < 0$ or $1 \leq 1/p \leq 2$, it follows that $\Phi_x(T^{1/p}) \leq K(\alpha, \beta, 1/p) \Phi_x(T)^{1/p}$. Similarly we have the desired inequality (2).

Next, we discuss Hölder-McCarthy type inequalities on a Hilbert C^{*}-module outside intervals of Theorem 3.1.

Corollary 3.4. Let T be a positive invertible operator in $\mathcal{L}(\mathscr{X})$ such that $\alpha I \leq T \leq \beta I$ for some scalars $0 < \alpha < \beta$, and x a nonsingular element of \mathscr{X} . If -1 or <math>0 , then

$$K(\alpha^p, \beta^p, 1/p)^{-1} \langle x, Tx \rangle \le \langle x, x \rangle \ \natural_{1/p} \ \langle x, T^p x \rangle \le K(\alpha^p, \beta^p, 1/p) \langle x, Tx \rangle,$$

where the generalized Kantorovich constnat $K(\alpha, \beta, p)$ is defined by (3.3).

Proof. For a unital positive linear map Φ_x from $\mathcal{L}(\mathscr{X})$ to \mathscr{A} , it follows from [10, Lemma 4.3] that for -1 or <math>0

$$K(\alpha, \beta, 1/p)^{-1} \Phi_x(T)^{1/p} \le \Phi_x(T^{1/p}) \le K(\alpha, \beta, 1/p) \Phi_x(T)^{1/p}$$

Hence we have this theorem as in the proof of Theorem 3.3.

Similarly we have the following Hölder-McCarthy type inequality on a Hilbert C*-module and its complementary inequality as follows:

Theorem 3.5. Let T be a positive invertible operator in $\mathcal{L}(\mathscr{X})$ such that $\alpha I \leq T \leq \beta I$ for some scalars $0 < \alpha < \beta$. Then for 0

$$K(\alpha,\beta,p)\langle x,x\rangle \ \sharp_p \ \langle x,Tx\rangle \leq \langle x,T^px\rangle \leq \langle x,x\rangle \ \sharp_p \ \langle x,Tx\rangle$$

for every nonsingular element $x \in \mathscr{X}$, where $K(\alpha, \beta, p)$ is defined by (3.3).

4. Hölder inequality

As an application of Theorem 3.1 and Theorem 3.3, we show Hölder type inequalities on a Hilbert C^{*}-module and its reverses.

Theorem 4.1. Let A and B be positive invertible operators in $\mathcal{L}(\mathscr{X})$ and x a nonsingular element of \mathscr{X} , and $\frac{1}{p} + \frac{1}{q} = 1$.

(1) If p > 1, then

$$\langle x, B^q \ \sharp_{1/p} \ A^p \ x \rangle \le \langle x, B^q x \rangle \ \sharp_{1/p} \ \langle x, A^p x \rangle$$

$$(4.1)$$

or

$$\langle x, A^p \ \sharp_{1/q} \ B^q \ x \rangle \le \langle x, A^p x \rangle \ \sharp_{1/q} \ \langle x, B^q x \rangle.$$
 (4.2)

(2) If
$$p \leq -1$$
 or $\frac{1}{2} \leq p < 1$, then
 $\langle x, B^q \mid_{1/p} A^p \mid x \rangle \geq \langle x, B^q x \rangle \mid_{1/p} \langle x, A^p x \rangle$
(4.3)

or

$$\langle x, A^p |_{1/q} B^q x \rangle \ge \langle x, A^p x \rangle |_{1/q} \langle x, B^q x \rangle.$$
 (4.4)

Proof. Replacing x and T by $B^{\frac{q}{2}}x$ and $(B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}})^{\frac{1}{p}}$ in (1) of Theorem 3.1 respectively, we have (4.1) of Theorem 4.1. By (4.1) and the symmetric property of t-geometric mean, we have (4.2). The latter (4.3) and (4.4) are proved similarly.

By Theorem 3.5, we have the following weighted version of Cauchy type inequality on a Hilbert C^{*}-module.

Theorem 4.2. Let A and B be positive invertible operators in $\mathcal{L}(\mathscr{X})$ such that $\alpha I \leq A, B \leq \beta I$ for some scalars $0 < \alpha < \beta$. Then for 0

$$K(\frac{\alpha^2}{\beta^2}, \frac{\beta^2}{\alpha^2}, p)\langle x, B^2x \rangle \ \sharp_p \ \langle x, A^2x \rangle \leq \langle x, A^2 \ \sharp_p \ B^2x \rangle \leq \langle x, B^2x \rangle \ \sharp_p \ \langle x, A^2x \rangle$$

for every nonsingular element $x \in \mathscr{X}$.

Proof. Replace x and T by Bx and $B^{-1}A^2B^{-1}$ in Theorem 3.5 respectively. Since $\frac{\alpha^2}{\beta^2}I \leq B^{-1}A^2B^{-1} \leq \frac{\beta^2}{\alpha^2}$, the theorem follows.

If we put p = 1/2 in Theorem 4.2, then we have the following Pólya-Szegö type inequality on a Hilbert C^{*}-module which is regarded as a reverse of Cauchy type inequality, also see [8, Theorem 3.3].

Corollary 4.3. Let A and B be positive invertible operators in $\mathcal{L}(\mathscr{X})$ such that $\alpha I \leq A, B \leq \beta I$ for some scalars $0 < \alpha < \beta$. Then

$$\langle x, Ax \rangle \ \sharp \ \langle x, Bx \rangle \leq \frac{\alpha + \beta}{2\sqrt{\alpha\beta}} \langle x, A \ \sharp \ Bx \rangle$$

for every nonsingular element $x \in \mathscr{X}$.

Next, we show a complementary version of Theorem 4.1.

Theorem 4.4. Let A and B be positive invertible operators in $\mathcal{L}(\mathscr{X})$ such that $\alpha I \leq A, B \leq \beta I$ for some scalars $0 < \alpha < \beta$, and x a nonsingular element of \mathscr{X} and $\frac{1}{p} + \frac{1}{q} = 1$.

(1) If p > 1, then

$$\langle x, B^q x \rangle \ \sharp_{1/p} \ \langle x, A^p x \rangle \le K \left(\frac{\alpha}{\beta^{q-1}}, \frac{\beta}{\alpha^{q-1}}, p \right)^{\frac{1}{p}} \langle x, B^q \ \sharp_{1/p} \ A^p \ x \rangle.$$

(2) If $p \leq -1$ or $1/2 \leq p < 1$, then

$$\langle x, B^q x \rangle |_{1/p} \langle x, A^p x \rangle \ge K \left(\frac{\alpha^p}{\beta^q}, \frac{\beta^p}{\alpha^q}, \frac{1}{p} \right)^{-1} \langle x, B^q |_{1/p} A^p x \rangle.$$

Proof. Replace x and T by $B^{\frac{q}{2}}x$ and $(B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}})^{\frac{1}{p}}$ in (1) of Theorem 3.3 respectively. Since $\alpha/\beta^{q-1}I \leq (B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}})^{\frac{1}{p}} \leq \beta/\alpha^{q-1}I$, we have (1) of Theorem 4.4. The latter (2) are proved similarly.

Next, we discuss Hölder type inequalities in a complementary interval of Theorem 4.1.

Corollary 4.5. Let A and B be positive invertible operators in $\mathcal{L}(\mathscr{X})$ such that $\alpha I \leq A, B \leq \beta I$ for some scalars $0 < \alpha < \beta$, and x a nonsingular element of \mathscr{X} and $\frac{1}{p} + \frac{1}{q} = 1$. If -1 or <math>0 , then

$$K\left(\frac{\alpha^p}{\beta^q}, \frac{\beta^p}{\alpha^q}, \frac{1}{p}\right)^{-1} \langle x, B^q \mid \natural_{1/p} A^p x \rangle \leq \langle x, B^q x \rangle \mid \natural_{1/p} \langle x, A^p x \rangle$$
$$\leq K\left(\frac{\alpha^p}{\beta^q}, \frac{\beta^p}{\alpha^q}, \frac{1}{p}\right) \langle x, B^q \mid \natural_{1/p} A^p x \rangle.$$

Proof. Replacing x and T by $B^{\frac{q}{2}}x$ and $\left(B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}}\right)^{\frac{1}{p}}$ in Corollary 3.4 respectively, we have this theorem.

5. Weighted Cauchy-Schwarz inequality

In this section, we discuss weighted Cauchy-Schwarz inequality on a Hilbert C^* -module. We cite [9] for the case of the Hilbert space operator.

For $T \in \mathcal{L}(\mathscr{X})$, we denote the range of T and the kernel of T by R(T) and N(T), respectively. A closed submodule \mathscr{M} of \mathscr{X} is said to be *complemented* if $\mathscr{X} = \mathscr{M} \oplus \mathscr{M}^{\perp}$. Suppose that the closures of the ranges of T and T^* are both

complemented. Then it follows from [13, page 30] that T has a polar decomposition T = U|T| with a partial isometry $U \in \mathcal{L}(\mathscr{X})$ and N(U) = N(|T|). Also, we showed in [8, Lemma 6.1] that

 $|T^*|^q = U|T|^q U^* \qquad \text{for any positive number } q. \tag{5.1}$

As a generalization of Theorem 2.3, we have the following inequality.

Theorem 5.1 (Weighted Cauchy-Schwarz Inequality). Let T be an operator in $\mathcal{L}(\mathscr{X})$ such that the closures of the ranges of T and T^* are both complemented. If $x, y \in \mathscr{X}$ such that $\langle Tx, y \rangle$ has a polar decomposition $\langle Tx, y \rangle = u |\langle Tx, y \rangle|$ with a partial isometry $u \in \mathscr{A}$, then the following inequality holds

$$|\langle Tx, y \rangle| \le u^* \langle x, |T|^{2\alpha} x \rangle u \ \sharp \ \langle y, |T^*|^{2\beta} y \rangle \tag{5.2}$$

for any $\alpha, \beta \in [0, 1]$ and $\alpha + \beta = 1$. In particular,

$$|\langle Tx, y \rangle| \le u^* \langle x, |T|^2 x \rangle u \ \sharp \ \langle y, UU^* y \rangle$$

and

 $|\langle Tx, y \rangle| \le u^* \langle x, U^* Ux \rangle u \ \sharp \ \langle y, |T^*|^2 y \rangle.$

Moreover, under the assumption that $\langle y, |T^*|^{2\beta}y \rangle$ is invertible for $\beta \in [0, 1]$, the equality in (5.2) holds if and only if $Txu = |T^*|^{2\beta}yb$ for some $b \in \mathscr{A}$.

Proof. In the case of $\alpha = 0$ or 1, it follows from Theorem 2.1 that

$$|\langle Tx, y \rangle| = |\langle |T|x, U^*y \rangle| \le u^* \langle x, |T|^2 x \rangle u \ \sharp \ \langle y, UU^*y \rangle$$

and

$$\begin{split} |\langle Tx, y \rangle| &= |\langle x, |T|U^*y \rangle| = |\langle x, U^*U|T|U^*y \rangle| = |\langle Ux, |T^*|y \rangle| \\ &\leq u^* \langle Ux, Ux \rangle u \ \sharp \ \langle |T^*|y, |T^*|y \rangle = u^* \langle x, U^*Ux \rangle u \ \sharp \ \langle y, |T^*|^2y \rangle \end{split}$$

by (5.1).

In the case of $0 < \alpha < 1$, we have

$$\begin{split} |\langle Tx, y \rangle| &= |\langle U|T|x, y \rangle| = |\langle |T|^{\alpha}x, |T|^{\beta}U^{*}y \rangle| \quad \text{by } \alpha + \beta = 1\\ &\leq u^{*}\langle x, |T|^{2\alpha}x \rangle u \ \sharp \ \langle y, U|T|^{2\beta}U^{*}y \rangle \quad \text{by Theorem 2.1}\\ &= u^{*}\langle x, |T|^{2\alpha}x \rangle u \ \sharp \ \langle y, |T^{*}|^{2\beta}y \rangle. \quad \text{by } (5.1). \end{split}$$

Next, we consider the equality conditions in (5.2). Since $\langle Tx, y \rangle = \langle |T|^{\alpha}x, |T|^{\beta}U^*y \rangle$ and $\langle y, |T^*|^{2\beta}y \rangle$ is invertible for $\beta \in [0, 1]$, it follows from Theorem 2.1 that the equality in (5.2) holds if and only if $|T|^{\alpha}xu = |T|^{\beta}U^*yb$ for some $b \in \mathscr{A}$. Since |T|x = 0 if and only if $|T|^{1/2}x = 0$, it follows that $N(|T|) = N(|T|^q)$ for any positive real numbers q > 0. If $|T|^{\beta}(|T|^{\alpha}xu - |T|^{\beta}U^*yb) = 0$, then $|T|^q(|T|^{\alpha}xu - |T|^{\beta}U^*yb) = |T|^{\alpha+q}xu - |T|^{\beta+q}U^*yb = 0$ for any q > 0 and this implies $|T|^{\alpha}xu - |T|^{\beta}U^*yb = 0$. Therefore we have the following implications:

$$|T|^{\alpha}xu = |T|^{\beta}U^{*}yb \iff |T|^{\alpha+\beta}xu = |T|^{2\beta}U^{*}yb \iff U|T|xu = U|T|^{2\beta}U^{*}yb$$
$$\iff Txu = |T^{*}|^{2\beta}yb \qquad \text{by (5.1)}.$$

If we put $\alpha = \beta = \frac{1}{2}$ in Theorem 5.1, then we have the following inequality.

Theorem 5.2. Let T be an operator in $\mathcal{L}(\mathscr{X})$ such that the closures of the ranges of T and T^* are both complemented. If $x, y \in \mathscr{X}$ such that $\langle Tx, y \rangle$ has a polar decomposition $\langle Tx, y \rangle = u | \langle Tx, y \rangle |$ with a partial isometry $u \in \mathscr{A}$, then

$$|\langle Tx, y \rangle| \le u^* \langle x, |T|x \rangle u \ \sharp \ \langle y, |T^*|y \rangle.$$
(5.3)

Moreover, under the assumption that $\langle y, |T^*|y \rangle$ is invertible, the equality in (5.3) holds if and only if $Txu = |T^*|yb$ for some $b \in \mathscr{A}$.

Acknowledgement. The authors would like to express their cordial thanks to the referee for his/her valuable suggestions.

References

- T. Ando, Concavity of certain maps on positive matrices and applications to Hadamard products, Linear Algebra Appl. 26 (1979), 203-241.
- T. Ando and F. Hiai, Hölder type inequalities for matrices, Math. Ineq. Appl. 1 (1988), 1-30.
- J.-C. Bourin, E.-Y. Lee, M. Fujii and Y. Seo, A matrix reverse Hölder inequality, Linear Algegra Appl., 431 (2009), 2154–2159.
- M.D.Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Ill. J. Math. 18 (1974), 565–574.
- C.Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math. Soc. 8 (1957), 42–44.
- J.I. Fujii, M. Fujii, M.S. Moslehian and Y. Seo, Cauchy-Schwarz inequality in semi-inner product C^{*}-modules via polar decomposition, J. Math. Anal. Appl., **394** (2012), 835-840.
- M. Fujii, S. Izumino, R. Nakamoto and Y. Seo, Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J., 8 (1997), 117–122.
- J.I. Fujii, M. Fujii and Y. Seo, Operator inequalities on Hilbert C^{*}-modules via the Cauchy-Schwarz inequality, to appear in Math. Inequal. Appl.
- 9. T. Furuta, Invitation to Linear Operators, Taylor&Francis, London, 2001.
- T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- S. Izumino and M. Tominaga, *Estimations in Hölder type inequalities*, Math. Inequal. Appl., 4 (2001), 163–187.
- 12. F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205–224.
- E.C. Lance, *Hilbert C^{*}-Modules*, London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995.
- V.M. Manuilov and E.V. Troitsky, *Hilbert C^{*}-Modules*, Translations of Mathematical Monographs, 226, American Mathematical Society, Providence RI, 2005.
- B. Mond and O. Shisha, Difference and ratio inequalities in Hilbert space, "Inequalities II", (O.Shisha, ed.), Academic Press, New York, 1970, 241–249.
- W.L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc., 182 (1973), 443–468.

 1 Department of Mathematics Education, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 Japan.

E-mail address: yukis@cc.osaka-kyoiku.ac.jp