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ABSTRACT. In this paper, we show Hilbert C*-module versions of Hoélder-
McCarthy inequality and its complementary inequality. As an application, we
obtain Holder type inequalities and its reverses on a Hilbert C*-module.

1. INTRODUCTION

The Holder inequality is one of the most important inequalities in functional
analysis. If a = (a1,...,a,) and b = (by,...,b,) are n-tuples of nonnegative
numbers, and 1/p+ 1/¢ = 1, then

n n 1/p n 1/q
Z ab; < <Z af) <Z bf) for all p > 1

and

n n l/p n 1/q
Zaibiz <Zaf> <be) forallp<Oor0<p<1.
i=1 i=1 i=1

Non-commutative versions of the Holder inequality and its reverses have been
studied by many authors. T. Ando [!] showed the Hadamard product version of
a Holder type. T. Ando and F. Hiai [2] discussed the norm Hélder inequality and
the matrix Holder inequality. B. Mond and O. Shisha [15], M. Fujii, S. Izumino,
R. Nakamoto and Y. Seo [7], and S. Izumino and M. Tominaga [l 1] considered
the vector state version of a Holder type and its reverses. J.-C. Bourin, E.-Y.
Lee, M. Fujii and Y. Seo [3] showed the geometric operator mean version, and so
on.
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In this paper, as a generalization of the vector state version due to [7], we show
Hilbert C*-module versions of Holder-McCarthy inequality and its complemen-
tary inequality. As an application, we obtain Holder type inequalities and its
reverses on a Hilbert C*-module.

2. PRELIMINARY

Let B(H) be the C*-algebra of all bounded linear operators on a Hilbert space
H, and & be a unital C*-algebra of B(H) with the unit element e. For a € 7,
we denote the absolute value of a by |a| = (a*a)%. For positive elements a,b € &7

and t € [0, 1], the t-geometric mean of a and b in the sense of Kubo-Ando theory
[12] is defined by

t
afy b= az (a_%ba_%) a?

for a > 0, i.e., a is invertible. In the case of non-invertible, since a f; b satisfies the
upper semicontinuity, we define a #; b = lim._.,o(a + ce) f; (b+ ce) in the strong
operator topology. Hence a fi; b € &7” in general, where «7” is the bi-commutant
of 7. In the case of t = 1/2, we denote a f1/2 b by a § b simply. The operator
geometric mean has the symmetric property: a #; b =0 t_; a, and a f; b = a' b’
for commuting a and b.

A complex linear space 2 is said to be an inner product </ -module (or a pre-
Hilbert o7-module) if 2" is a right «/-module together with a C*-valued map
(x,y) — (z,y) : & x & — o such that

(i) (z,0y + Bz) = alz,y) + Blz,2) (v,y,2€ Z,a,8€C),
(i) (,ya) = (&.9)a (v.y€ Z,a€ o),

(ili) (y,z) = (z, )" (z,y € 2),

(iv) (z,2) >0 (xr € Z) and if (x,z) = 0, then x = 0.

The linear structures of .o and 2" are assumed to be compatible. If 2" satisfies
all conditions for an inner-product 7-module except for the second part of (iv),
then we call 2" a semi-inner product o7 -module.

Let 2 be an inner product o/-module over a unital C*-algebra o/. We define
the norm of 2" by || = ||:= /|| (z,z) || for z € 2", where the latter norm denotes
the C*-norm of &7. If 2" is complete with respect to this norm, then 2 is called
a Hilbert o/ -module. An element x of the Hilbert .7-module is called nonsingular
if the element (x,x) € </ is invertible. For more details on Hilbert C*-modules,
see [13, 14].

In [6], from a viewpoint of operator geometric mean, we showed the following
new Cauchy-Schwarz inequality:

Theorem 2.1 (Cauchy-Schwarz inequality). Let 2~ be a semi-inner product < -
module over a unital C*—algebra <. If v,y € X such that the inner product
(x,y) has a polar decomposition (z,y) = ul(x,y)| with a partial isometry u € <,
then

()] < w(z,z)u t (y,y). (2.1)
Under the assumption that 2 is an inner product o/ -module and y is nonsin-
gular, the equality in (2.1) holds if and only if xu = yb for some b € .
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Next we review the basic concepts of adjointable operators on a Hilbert C*-
module. Let 2 be a Hilbert C*-module over a unital C*-algebra <. Let
End,(Z) denote the set of all bounded C-linear o/-homomorphism from 2~
to . Let T € Endy(2Z"). We say that T is adjointable if there exists a
T* € Endy,(Z) such that (T'z,y) = (z, T*y) for all z,y € 2. Let L(Z") denote
the set of all adjointable operators from 2 to 2 . Moreover, we define its norm
by

| T ||= sup{|| (T, Tw) ||:[| = || < 1}.
Then L£(Z) is a C*-algebra. The symbol I stands for the identity operator in
L(Z). The following lemma due to Pashke [16] is very important:

Lemma 2.2. Let 2 be a Hilbert C*-module and let T be a bounded <f -linear
operator on 2. The following conditions are equivalent:

(1) T is a positive element of L(Z");
(2) (x,Tx) >0 for all z in Z .

In [8], we showed the following generalized Cauchy—Schwarz inequality on a
Hilbert C*-module by virtue of (2.1) and Lemma 2.2:

Theorem 2.3 (generalized Cauchy-Schwarz inequality). Let T' be a positive op-
erator in L(Z). If x,y € 2 such that (x,Ty) has a polar decomposition
(x, Ty) = ul{x, Ty)| with a partial isometry u € <, then

|(z, Ty)| < u*(z, Tx)u § (y, Ty). (2.2)

Under the assumption that (y, Ty) is invertible, the equality in (2.2) holds if and
only if T%(xu) = T%(yb) for some b € o .

3. HOLDER-MCCARTHY INEQUALITY

In this section, we show two Hilbert C*-module versions of Holder-McCarthy
inequality and its complementary inequality. For convenience, we use the notation
0; for the binary operation

t
al,b=a? (a_%ba_%) az for t ¢ [0, 1],
whose formula is the same as fi;.

Theorem 3.1. Let T be a positive operator in L(Z") and x a nonsingular element

of .

(1) If p>1, then (z,Tz) < (z,x) #1)p (x,TPx).
(2) Ifp< =1 or1/2<p<1, then (x,x) 1/ (x,TPzx) < (x,Tw).

Proof. For a nonsingular element x of 2", Put
®,(X) = (x(z,2)"2, Xa(z,2)"2)  for X € L(Z).
Then @, is a unital positive linear map from £(2") to 7.
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Suppose that p > 1. Since t/? is operator concave, it follows from [1, 5] that
®,(TP) < ®,(T)"/? and this implies
) 1/p

(z,z)? (3.1)

N|=

<ZE,$>_%<5L‘7T1/I)ZL‘><1’,ZL‘>_% < ((x,x)‘é(x,TxMx,x)_

and
1/p

(x, T"Pz) < <x,a7>% ((m,x)_%@,Tx)(a:,x)_%)
= (z,2) thyp (z,Tx).
Replacing 7" by 7% in (3.1), we have (1).
Suppose that p < —lor 1/2<p<1. Since =1 <1/p<0orl1<1/p<2 we
have ®,(T)» < ®,(T7) by the operator convexity of #'/P and this implies

1

({2, 2) 3 @, Ta) (e, 2)2) < (w,2) 3@, Toa) (w,2) 5,
Hence it follows that

M

(z,2) bjp (@, Tx) < (2, Trx) (3.2)
and replacing 7" by 7" in (3.2) we have (2). O

Remark 3.2. The inequality (2) of Theorem 3.1 does not hold for 0 < p < 1/2
in general. In fact, we give a simple counterexample to the case of p = 1/3 as
follows: Put

X Y X 0
‘I’((Z W)) = <0 W)
for X,Y,Z, W € My(C). Then £ is a Hilbert &/-module with an inner product
(x,y) = ®(z*y) for x,y € Z . Let

and

2 111 /2 0 0 0
1111 q 10 200
Tl YTl o 010
1111 0 0 01
If T =T, is defined by T,y = zy for all y € 2", then T is a positive operator in
L(Z) and
,1/2 71/2 3_ ]_3 8 4 4
(1002 a2 = ( $) o (]
and
_ _ 29 22 17 17
1/2 3 1/2 _
e T e = (5 ) 0 (17 17).
so that

(e, )2 (2, T30 (, )~ V2 — (<$,1’>_1/2<1’,T£L'><1’, x>_1/2)3

16 14\ (13 13
- <14 12) @ (13 13) 20®0.
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Next, we show a complementary part of Theorem 3.1. For this, we need the
generalized Kantorovich constant K(a, 3,p) for 0 < o < /3, which is defined by

o — o <p_1 B —ar )
P=D@B-a)\ p afr—par
for any real number p € R, see also [10, Definition 2.2]. The constant K («, 3, p)

satisfies 0 < K(a,3,p) < 1for 0 < p <1 and K(«,3,p) > 1 for p & [0,1]. For
more details on the generalized Kantorovich constant, see [10, Chapter 2.7].

K(a, 8,p) = (3-3)

Theorem 3.3. Let T' be a positive invertible operator in L(Z") such that ol <
T < BI for some scalars 0 < a < 3, and x a nonsingular element of Z .

(1) If p> 1, then
(x,2) hyp (2, TPx) < K(a,ﬁ,p)l/p(x,Tx>.
(2) If p<—1o0r1/2<p<1, then
(,Tx) < K(a”, 6, 1/p)(x,x) typ (2, T"x),
where the generalized Kantorovich constant K (o, 3,p) is defined by (3.3).
Proof. For a nonsingular element z of 2", put ®,(X) = (z(z,z)"2, Xz (z,z)"2)

for X € L(Z"). Then @, : L(Z") — & is a unital positive linear map.
Suppose that p > 1. It follows from [10, Lemma 4.3] that

O, (T?) < K(av, 8,p)®,.(T)P.
This implies
(z,2) f1p (2. T"x) < K (v 3,p)"/? (2, Tx)
and we have (1).
In the case of p < =1 or 1/2 < p < 1,since =1 < 1/p<0orl1<1/p<2
it follows that ®,(7"/?) < K(a, 3,1/p)®,(T)"/?. Similarly we have the desired
inequality (2). O

Next, we discuss Holder-McCarthy type inequalities on a Hilbert C*-module
outside intervals of Theorem 3.1.

Corollary 3.4. Let T be a positive invertible operator in L(Z") such that ol <
T < BI for some scalars 0 < o < (3, and x a nonsingular element of Z . If
—1<p<0or0<p<1/2, then

K(a?, 8%, 1/p) e, Ta) < (x,x) i1y (2, TPx) < K(a®, 3°,1/p)(x, Tx),
where the generalized Kantorovich constnat K (o, 3,p) is defined by (3.3).

Proof. For a unital positive linear map @, from £(2") to <7, it follows from [10,
Lemma 4.3] that for -1 <p<0or0<p<1/2

K(a, 3,1/p) ' 0.(T)? < &, (T7) < K(av, 8,1/p)®.(T)".
Hence we have this theorem as in the proof of Theorem 3.3. 0

Similarly we have the following Holder-McCarthy type inequality on a Hilbert
C*-module and its complementary inequality as follows:
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Theorem 3.5. Let T' be a positive invertible operator in L(Z") such that ol <
T < BI for some scalars 0 < a < 3. Then for0 <p <1

K(a,B,p)z,2) 8 (2, Tz) < (2,T"z) < (z,2) §, (z,T7)
for every nonsingular element x € 2", where K(«, 3,p) is defined by (3.3).

4. HOLDER INEQUALITY

As an application of Theorem 3.1 and Theorem 3.3, we show Holder type
inequalities on a Hilbert C*-module and its reverses.

Theorem 4.1. Let A and B be positive invertible operators in L(Z") and x a
nonsingular element of 2, and % + é = 1.

(1) If p> 1, then

(x, B 41/, AP x) < (x, Bz) 11/, (v, APx) (4.1)
or
(, A $1/q B x) < (x, APx) th/q (z, B'). (4.2)
(2) If p< =1 or 3 <p<1, then
(x, BY b1y AP x) > (2, B2) b1/ (2, AP) (4.3)
or
(x, AP 01/ B! ) > (x, APx) 1/ (@, Blx). (4.4)

Proof. Replacing « and T by Bz and (B_%APB_%)% in (1) of Theorem 3.1
respectively, we have (4.1) of Theorem 4.1. By (4.1) and the symmetric property
of t-geometric mean, we have (4.2). The latter (4.3) and (4.4) are proved similarly.

0J

By Theorem 3.5, we have the following weighted version of Cauchy type in-
equality on a Hilbert C*-module.

Theorem 4.2. Let A and B be positive invertible operators in L(Z") such that

al < A, B < BI for some scalars 0 < a < (3. Then for 0 <p <1
K2 B2 A2z) < (z, A2 4, B%1) < (z, B2 A?
(Ev §,p)<x, .CE) ﬁp <$a .CE) = <$7 jjp x> = <ZE, $> ﬁp <ZE, $>

for every nonsingular element x € 2.

Proof. Replace z and T' by Bx and B~*A?B~! in Theorem 3.5 respectively. Since
g—i[ < B7'A’B 1 < g—z, the theorem follows. O

If we put p = 1/2 in Theorem 4.2, then we have the following Pdlya-Szegd type
inequality on a Hilbert C*-module which is regarded as a reverse of Cauchy type
inequality, also see [3, Theorem 3.3].
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Corollary 4.3. Let A and B be positive invertible operators in L(Z") such that
al < A, B < BI for some scalars 0 < a < (3. Then
a+
A Bxy< ——(x, A% B
(. Ax) £z, Ba) < S 7D At By

for every nonsingular element x € Z .

Next, we show a complementary version of Theorem 4.1.

Theorem 4.4. Let A and B be positive invertible operators in L(Z") such that
al < A, B < BI for some scalars 0 < o < 3, and x a nonsingular element of Z~
and % + % =1.

(1) If p>1, then

« I} ,
<x7qu> jjl/p <I,Ap$> <K (F?F7P> <LL’, B Ijl/p AP I‘)
(2) Ifp<—1or1/2<p<1, then
of pP 1

(x, Blx) 11/ (x, APx) > K( )_ (x, BY b1y APz).

ey

Proof. Replace z and T by B3z and (B’%APB’%)% in (1) of Theorem 3.3 respec-
q g\ 1

tively. Since a/B97'] < (B 2APB~2)» < 3/a47 I, we have (1) of Theorem 4.4.

The latter (2) are proved similarly. O

Next, we discuss Holder type inequalities in a complementary interval of The-
orem 4.1.

Corollary 4.5. Let A and B be positive invertible operators in L(Z") such that
al < A, B <31 for some scalars 0 < a < 3, and x a nonsingular element of X
and%%—é:l. If-1<p<0 07"0<p<%, then

K(ap g1

-1
@7&75) <I7Bq hl/p Apx> S <$7qu> hl/p <$,API>

af [P 1
S K (ﬁ,a,]}) <I’,Bq bl/p Ap[E>

1
Proof. Replacing = and T by B2z and (B_%APB_%)” in Corollary 3.4 respec-
tively, we have this theorem. O

5. WEIGHTED CAUCHY-SCHWARZ INEQUALITY

In this section, we discuss weighted Cauchy-Schwarz inequality on a Hilbert
C*-module. We cite [9] for the case of the Hilbert space operator.

For T' € L(Z), we denote the range of T" and the kernel of 7" by R(T") and
N(T), respectively. A closed submodule .# of 2" is said to be complemented if
X = M O .H+. Suppose that the closures of the ranges of T and T* are both
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complemented. Then it follows from [13, page 30| that T has a polar decomposi-
tion 7' = U|T'| with a partial isometry U € L(Z") and N(U) = N(|T|). Also, we
showed in [%, Lemma 6.1] that

7|9 =U|T|U* for any positive number g. (5.1)
As a generalization of Theorem 2.3, we have the following inequality.

Theorem 5.1 (Weighted Cauchy-Schwarz Inequality). Let T' be an operator in
L(Z) such that the closures of the ranges of T and T* are both complemented.
If v,y € 2 such that (T'z,y) has a polar decomposition (Tx,y) = u|(Tx,y)| with
a partial isometry u € &/, then the following inequality holds

(T2, y)| < u (2, [TPw)u gy, [T y) (5.2)

for any a, B € [0,1] and o + B = 1. In particular,
(T2, y)] < u(z, |TPz)u § (y, UU"y)

and

(Ta,y)| < w2, U Uz)u t (y, |T*[y).
Moreover, under the assumption that (y, |T*|*%y) is invertible for 3 € [0,1], the
equality in (5.2) holds if and only if Txu = |T*|*Pyb for some b € o .
Proof. In the case of @ = 0 or 1, it follows from Theorem 2.1 that

(T, y)| = (||, Uy)| < w*{z, |T*z)u 2 {y, UU"y)
and
[(Tz,y)| = [z, [T|IU*y)| = [(2, UUIT|U"y)| = [(Uz, [T"|y)]|
< u Uz, Uz)u g (|T"|y, |T"|y) = v (2, U"Uz)u £ (y, |T"|*y)
by (5.1).
In the case of 0 < o < 1, we have
[Tz, y)| = (U|T|a,y)| = {|T|%2, [T)"U*y)] by a+f =1
< u*(x, |T*x)u t {y,U|T|**U*y) by Theorem 2.1
= u*(z, [TP*z)u g (y, |T*|*y). by (5.1).
Next, we consider the equality conditions in (5.2). Since (T'z,y) = {|T|*x, |T|°U*y)
and (y, |T*|*?y) is invertible for 3 € [0,1], it follows from Theorem 2.1 that
the equality in (5.2) holds if and only if |T|*zu = |T|°U*yb for some b € .
Since |T)z = 0 if and only if |T|*/2z = 0, it follows that N(|T|) = N(|T|9)
for any positive real numbers ¢ > 0. If |T|? (|T|*zu — |T|°U*yb) = 0, then
T (|T|*2u — |T|PU*yb) = |T|*Tzu — |T|PU*yb = 0 for any ¢ > 0 and this
implies |T'|*zu — |T|°U*yb = 0. Therefore we have the following implications:
IT|%2zu = |T|PUyb <= |T|*Pou = |T|*U*yb <= U|T|zu = U|T|*’U*yb
= Tau=|T*"*yb by (5.1).
]

If we put a = = % in Theorem 5.1, then we have the following inequality.
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Theorem 5.2. Let T be an operator in L(Z") such that the closures of the ranges
of T and T* are both complemented. If x,y € Z such that (T'z,y) has a polar
decomposition (T'z,y) = u|{Tz,y)| with a partial isometry u € <7, then

[Tz, y)| < u™(z, |T|x)u g (y, [T ]y). (5-3)

Moreover, under the assumption that (y,|T*|y) is invertible, the equality in (5.3)
holds if and only if Txu = |T*|yb for some b € .

to

11.

12.
13.

14.

15.

16.

Acknowledgement. The authors would like to express their cordial thanks
the referee for his/her valuable suggestions.

REFERENCES

. T. Ando, Concavity of certain maps on positive matrices and applications to Hadamard
products, Linear Algebra Appl. 26 (1979), 203-241.

T. Ando and F. Hiai, Hélder type inequalities for matrices, Math. Ineq. Appl. 1 (1988),
1-30.

J.-C. Bourin, E.-Y. Lee, M. Fujii and Y. Seo, A matriz reverse Holder inequality, Linear
Algegra Appl., 431 (2009), 2154-2159.

. M.D.Choi, A Schwarz inequality for positive linear maps on C*-algebras, 111. J. Math. 18
(1974), 565-574 .

C.Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math. Soc. 8
(1957), 42-44.

J.I. Fujii, M. Fujii, M.S. Moslehian and Y. Seo, Cauchy—-Schwarz inequality in semi-inner
product C*-modules via polar decomposition, J. Math. Anal. Appl., 394 (2012), 835-840.
M. Fujii, S. Izumino, R. Nakamoto and Y. Seo, Operator inequalities related to Cauchy-
Schwarz and Hélder-McCarthy inequalities, Nihonkai Math. J., 8 (1997), 117-122.

J.I. Fujii, M. Fujii and Y. Seo, Operator inequalities on Hilbert C*-modules via the Cauchy-
Schwarz inequality, to appear in Math. Inequal. Appl.

T. Furuta, Invitation to Linear Operators, Taylor&Francis, London, 2001.

. T. Furuta, J. Mi¢i¢ Hot, J. Pecari¢ and Y. Seo, Mond-Pecari¢ Method in Operator Inequal-
ities, Monographs in Inequalities 1, Element, Zagreb, 2005.

S. Izumino and M. Tominaga, Estimations in Hélder type inequalities, Math. Inequal. Appl.,
4 (2001), 163-187.

F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
E.C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Series 210, Cambridge
Univ. Press, 1995.

V.M. Manuilov and E.V. Troitsky, Hilbert C*-Modules, Translations of Mathematical Mono-
graphs, 226, American Mathematical Society, Providence RI, 2005.

B. Mond and O. Shisha, Difference and ratio inequalities in Hilbert space, ” Inequalities 117,
(O.Shisha, ed.), Academic Press, New York, 1970, 241-249.

W.L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc., 182
(1973), 443-468.

! DEPARTMENT OF MATHEMATICS EDUCATION, OSAKA KYOIKU UNIVERSITY, 4-698-1

ASAHIGAOKA, KASHIWARA, OSAKA 582-8582 JAPAN.

E-mail address: yukis@cc.osaka-kyoiku.ac.jp



