SELBERG TYPE INEQUALITIES IN A HILBERT C^{*}-MODULE AND ITS APPLICATIONS

Kyoko Kubo*, Fumio Kubo** and Yuki Seo***

Received December 10, 2013

Abstract

In this paper, we present a Selberg type inequality in a Hilbert C^{*} module, which ia simultaneous extensions of the Cauchy-Schwarz inequality and the Bessel inequality in a Hibert C^{*}-module. As an application, we give a generalization of the Selberg inequality in a Hilbert C^{*}-module.

1 Introduction The theory of Hilbert C^{*}-modules over non-commutative C^{*}-algebras firstly appeared in Paschke [18] and Rieffel [19], and it has contributed greatly to the developments of operator algebras. Recently, many researchers have studied geometric properties of Hilbert C^{*}-modules from a viewpoint of the operator theory. For example, Dragomir, Khosravi and Moslehian [4], and Bounader and Chahbi [3] showed several variants of the Bessel inequality, the Selberg inequality and these generalizations in the framework of a Hilbert C^{*}-module. We showed in [6] the new Cauchy-Schwarz inequality in a Hilberet C^{*}-module by means of the operator geometric mean. From the viewpoint, we show a Hilbert C^{*}-module version of the Selberg inequality which is simultaneous extensions of the Cauchy-Schwarz inequality and the Bessel one in a Hilbert C^{*}-module.

We briefly review the Selberg inequality and its generalization in a Hilbert space.
Let H be a Hilbert space with the inner product $\langle\cdot, \cdot\rangle$. The Selberg inequality [2, 17] states that if $y_{1}, y_{2}, \ldots, y_{n}$ and x are nonzero vectors in H, then

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\left|\left\langle y_{i}, x\right\rangle\right|^{2}}{\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|} \leq\|x\|^{2} . \tag{1.1}
\end{equation*}
$$

Moreover, Furuta [10] posed conditions enjoying the equality: The equality in (1.1) holds if and only if $x=\sum_{i=1}^{n} a_{i} y_{i}$ for some scalars $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{C}$ such that for arbitrary $i \neq j$

$$
\begin{equation*}
\left\langle y_{i}, y_{j}\right\rangle=0 \quad \text { or } \quad\left|a_{i}\right|=\left|a_{j}\right| \quad \text { with }\left\langle a_{i} y_{i}, a_{j} y_{j}\right\rangle \geq 0 \tag{1.2}
\end{equation*}
$$

also see [7]. Note that the Selberg inequality is simultaneous extensions of the Bessel inequality and the Cauchy-Schwarz inequality.

Fujii and Nakamoto [9] showed a refinement of the Selberg inequality: If $\left\langle y, y_{i}\right\rangle=0$ for given nonzero vectors $y_{1}, \ldots, y_{n} \in H$, then

$$
\begin{equation*}
|\langle x, y\rangle|^{2}+\sum_{i=1}^{n} \frac{\left|\left\langle x, y_{i}\right\rangle\right|^{2}}{\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|}\|y\|^{2} \leq\|x\|^{2}\|y\|^{2} \tag{1.3}
\end{equation*}
$$

holds for all $x \in H$. Also, Bombieri [1] showed the following generalization of the Bessel inequality: If x, y_{1}, \ldots, y_{n} are nonzero vectors in H, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left\langle x, y_{i}\right\rangle\right|^{2} \leq\|x\|^{2} \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right| . \tag{1.4}
\end{equation*}
$$

2010 Mathematics Subject Classification. 46L08, 47A63.
Key words and phrases. Hilbert C^{*}-module, Selberg inequality, Bessel inequality, Cauchy-Schwarz inequality.

Moreover, Mitrinović, Pecǎrić and Fink [17, Theorem 5 in pp394] mentioned the following inequality equivalent to Bombieri's type: If x, y_{1}, \ldots, y_{n} are nonzero vectors in H and $a_{1}, \ldots, a_{n} \in \mathbb{C}$, then

$$
\begin{equation*}
\left|\sum_{i=1}^{n} a_{i}\left\langle x, y_{i}\right\rangle\right|^{2} \leq\|x\|^{2} \sum_{i=1}^{n}\left|a_{i}\right|^{2} \sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right| . \tag{1.5}
\end{equation*}
$$

In this paper, from a viewpoint of the operator theory, we propose a Selberg type inequality in a Hilbert C^{*}-module, which ia simultaneous extensions of the Bessel inequality and the Cauchy-Schwarz inequality in a Hibert C^{*}-module. As applications, we show Hilbert C^{*} module versions of Fujii-Nakamoto type (1.3), Bombieri type (1.4) and Mitrinović, Pecǎrić and Fink type (1.5). Moreover, we give a generalization of the Selberg inequality in a Hilbert C^{*}-module.

2 Preliminaries Let \mathscr{A} be a unital C^{*}-algebra with the unit element e. An element $a \in \mathscr{A}$ is called positive if it is selfadjoint and its spectrum is contained in $[0, \infty)$. For $a \in \mathscr{A}$, we denote the absolute value of a by $|a|=\left(a^{*} a\right)^{\frac{1}{2}}$. For positive elements $a, b \in \mathscr{A}$, the operator geometric mean of a and b is defined by

$$
a \sharp b=a^{\frac{1}{2}}\left(a^{-\frac{1}{2}} b a^{-\frac{1}{2}}\right)^{\frac{1}{2}} a^{\frac{1}{2}}
$$

for invertible a. If a and b are non invertible, then $a \sharp b$ belongs to the double commutant $\mathscr{A}^{\prime \prime}$ in general. In fact, since $a \sharp b$ satisfies the upper semicontinuity, it follows that $a \sharp b=$ $\lim _{\varepsilon \rightarrow+0}(a+\varepsilon e) \sharp(b+\varepsilon e)$ in the strong operator topology. If \mathscr{A} is monotone complete in the sense that every bounded increasing net in the self-adjoint part has a supremum with respect to the usual partial order, then we have $a \sharp b \in \mathscr{A}$, see [13]. The operator geometric mean has the symmetric property: $a \sharp b=b \sharp a$. In the case that a and b commute, we have $a \sharp b=\sqrt{a b}$. For more details on the operator geometric mean, see [12, 8].

A complex linear space \mathscr{X} is said to be an inner product \mathscr{A}-module (or a pre-Hilbert \mathscr{A}-module) if \mathscr{X} is a right \mathscr{A}-module together with a C^{*}-valued map $(x, y) \mapsto\langle x, y\rangle$: $\mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ such that
(i) $\langle x, \alpha y+\beta z\rangle=\alpha\langle x, y\rangle+\beta\langle x, z\rangle \quad(x, y, x \in \mathscr{X}, \alpha, \beta \in \mathbb{C})$,
(ii) $\langle x, y a\rangle=\langle x, y\rangle a \quad(x, y \in \mathscr{X}, a \in \mathscr{A})$,
(iii) $\langle y, x\rangle=\langle x, y\rangle^{*} \quad(x, y \in \mathscr{X})$,
(iv) $\langle x, x\rangle \geq 0(x \in \mathscr{X})$ and if $\langle x, x\rangle=0$, then $x=0$.

We always assume that the linear structures of \mathscr{A} and \mathscr{X} are compatible. Notice that (ii) and (iii) imply $\langle x a, y\rangle=a^{*}\langle x, y\rangle$ for all $x, y \in \mathscr{X}, a \in \mathscr{A}$. If \mathscr{X} satisfies all conditions for an inner-product \mathscr{A}-module except for the second part of (iv), then we call \mathscr{X} a semi-inner product \mathscr{A}-module.

In this case, we write $\|x\|:=\sqrt{\|\langle x, x\rangle\|}$, where the latter norm denotes the C^{*}-norm of \mathscr{A}. If an inner-product \mathscr{A}-module \mathscr{X} is complete with respect to its norm, then \mathscr{X} is called a Hilbert C^{*}-module. In [6], from a viewpoint of operator theory, we presented the following Cauchy-Schwarz inequality in the framework of a semi-inner product C^{*}-module over a unital C^{*}-algebra: If $x, y \in \mathscr{X}$ such that the inner product $\langle x, y\rangle$ has a polar decomposition $\langle x, y\rangle=u|\langle x, y\rangle|$ with a partial isometry $u \in \mathscr{A}$, then

$$
\begin{equation*}
|\langle x, y\rangle| \leq u^{*}\langle x, x\rangle u \sharp\langle y, y\rangle . \tag{2.1}
\end{equation*}
$$

An element x of a Hilbert C^{*}-module \mathscr{X} is called nonsingular if the element $\langle x, x\rangle \in \mathscr{A}$ is invertible. The set $\left\{x_{i}\right\} \subset \mathscr{X}$ is called orthonormal if $\left\langle x_{i}, x_{j}\right\rangle=\delta_{i j} e$. For more details on Hilbert C^{*}-modules, see [16].

In [4], Dragomir, Khosravi and Moslehian showed a version of the Bessel inequality and some generalizations of this inequality in the framework of Hilbert C^{*}-modules. Moreover, in [3], Bounader and Chahbi showed a type and refinement of Selberg inequality in Hilbert C^{*}-modules. We shall show an improvement of the Selberg type inequality due to Bounader and Chahbi.

3 Main theorem Fiest of all, we show the following Selberg type inequality in a Hilbert C^{*}-module.

Theorem 1. Let \mathscr{X} be an inner product C^{*}-module over a unital C^{*}-algbera \mathscr{A}. If x, y_{1}, \ldots, y_{n} are nonzero vectors in \mathscr{X} such that y_{1}, \ldots, y_{n} are nonsingular, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, x\right\rangle \leq\langle x, x\rangle \tag{3.1}
\end{equation*}
$$

The equality in (3.1) holds if and only if $x=\sum_{i=1}^{n} y_{i} a_{i}$ for some $a_{i} \in \mathscr{A}$ and $i=1, \ldots, n$ such that for arbitrary $i \neq j\left\langle y_{i}, y_{j}\right\rangle=0$ or $\left|\left\langle y_{j}, y_{i}\right\rangle\right| a_{i}=\left\langle y_{i}, y_{j}\right\rangle a_{j}$.

Theorem 1 is simultaneous extensions of the Bessel inequality [4] and the CauchySchwarz inequality [6] in a Hilbert C^{*}-module. As a matter of fact, if $\left\{y_{1}, \ldots, y_{n}\right\}$ is orthonormal in Theorem 1, then we have the Bessel inequality:

$$
\sum_{i=1}^{n}\left|\left\langle y_{i}, x\right\rangle\right|^{2} \leq\langle x, x\rangle
$$

holds for all $x \in \mathscr{X}$. If $n=1$ and $y=y_{1}$ in Theorem 1 and $\langle x, y\rangle$ has a polar decomposition $\langle x, y\rangle=u|\langle x, y\rangle|$ with a partial isometry $u \in \mathscr{A}$, then we have $u|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle y, x\rangle| u^{*} \leq$ $\langle x, x\rangle$ and hence

$$
|\langle x, y\rangle|=|\langle x, y\rangle|\langle y, y\rangle^{-1}|\langle y, x\rangle| \sharp\langle y, y\rangle \leq u^{*}\langle x, x\rangle u \sharp\langle y, y\rangle .
$$

This implies the Cauchy-Schwarz inequality (2.1).
To prove Theorem 1, we need the following two lemmas:
Lemma 2. If $a \in \mathscr{A}$, then the operator matrix on $\mathscr{A} \oplus \mathscr{A}$

$$
A=\left(\begin{array}{cc}
\left|a^{*}\right| & -a \\
-a^{*} & |a|
\end{array}\right)
$$

is positive, and $\binom{\xi}{\eta} \in \mathrm{N}(A)$ if and only if $\left|a^{*}\right| \xi=a \eta$, where $N(A)$ is the kernel of A.
Proof. Let $a=u|a|$ be the polar decomposition of a, where u is the partial isometry in the double commutant $\mathscr{A}^{\prime \prime}$. Since it follows that $\left|a^{*}\right|=u|a| u^{*}$, we have

$$
A=\left(\begin{array}{cc}
u|a| u^{*} & -u|a| \\
-|a| u^{*} & |a|
\end{array}\right)=\left(\begin{array}{cc}
u|a|^{1 / 2} & 0 \\
0 & |a|^{1 / 2}
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
u|a|^{1 / 2} & 0 \\
0 & |a|^{1 / 2}
\end{array}\right)^{*} \geq 0
$$

Next, it is obvious that $\binom{\xi}{\eta} \in \operatorname{Ker}(A)$ if and only if $|a| \eta=a^{*} \xi$ and $\left|a^{*}\right| \xi=a \eta$. Moreover, it follows that $|a| \eta=a^{*} \xi$ if and only if $\left|a^{*}\right| \xi=a \eta$. In fact, if $|a| \eta=a^{*} \xi$, then we have $a \eta=u|a| \eta=u a^{*} \xi=u|a| u^{*} \xi=\left|a^{*}\right| \xi$. Conversely, if $\left|a^{*}\right| \xi=a \eta$, then we have $a^{*} \xi=u^{*}\left|a^{*}\right| \xi=u^{*} a \eta=u^{*} u|a| \eta=|a| \eta$.

Lemma 3. For any $y_{1}, y_{2}, \ldots, y_{n} \in \mathscr{X}$

$$
\left(\begin{array}{ccc}
\left\langle y_{1}, y_{1}\right\rangle & \cdots & \left\langle y_{1}, y_{n}\right\rangle \tag{3.2}\\
& \ddots & \\
\left\langle y_{n}, y_{1}\right\rangle & \cdots & \left\langle y_{n}, y_{n}\right\rangle
\end{array}\right) \leq\left(\begin{array}{ccc}
\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{1}\right\rangle\right| & & 0 \\
& \ddots & \\
0 & & \sum_{j=1}^{n}\left|\left\langle y_{j}, y_{n}\right\rangle\right|
\end{array}\right)
$$

Proof. The difference between both sides of (3.2) is the following form:

$$
\sum_{i, j=1}^{n}\left(\begin{array}{cccc}
0 & & & 0 \\
& \left|\left\langle y_{j}, y_{i}\right\rangle\right| & -\left\langle y_{i}, y_{j}\right\rangle & \\
& -\left\langle y_{i}, y_{j}\right\rangle & \left|\left\langle y_{i}, y_{j}\right\rangle\right| & \\
0 & & & 0
\end{array}\right)
$$

and for each pair i, j it is positive by Lemma 2.
Proof of Theorem 1 For each $i=1, \ldots, n$, put $c_{i}=\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|$. Since y_{i} is nonsingular, it follows that c_{i} is invertible in \mathscr{A}. It follows from Lemma 3 that

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle c_{i}^{-1}\left\langle y_{i}, y_{j}\right\rangle c_{j}^{-1}\left\langle y_{j}, x\right\rangle \\
& =\left(\left\langle x, y_{1}\right\rangle c_{1}^{-1} \cdots\left\langle x, y_{n}\right\rangle c_{n}^{-1}\right)\left(\begin{array}{ccc}
\left\langle y_{1}, y_{1}\right\rangle & \cdots & \left\langle y_{1}, y_{n}\right\rangle \\
& \ddots & \\
\left\langle y_{n}, y_{1}\right\rangle & \cdots & \left\langle y_{n}, y_{n}\right\rangle
\end{array}\right)\left(\begin{array}{c}
c_{1}^{-1}\left\langle y_{1}, x\right\rangle \\
\vdots \\
c_{n}^{-1}\left\langle y_{n}, x\right\rangle
\end{array}\right) \\
& \leq\left(\left\langle x, y_{1}\right\rangle c_{1}^{-1} \cdots\left\langle x, y_{n}\right\rangle c_{n}^{-1}\right)\left(\begin{array}{ccc}
c_{1} & & 0 \\
& \ddots & \\
0 & & c_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1}^{-1}\left\langle y_{1}, x\right\rangle \\
\vdots \\
c_{n}^{-1}\left\langle y_{n}, x\right\rangle
\end{array}\right) \\
& =\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle c_{i}^{-1}\left\langle y_{i}, x\right\rangle
\end{aligned}
$$

and this implies

$$
\begin{aligned}
0 & \leq\left\langle x-\sum_{i=1}^{n} y_{i} c_{i}^{-1}\left\langle y_{i}, x\right\rangle, x-\sum_{i=1}^{n} y_{i} c_{i}^{-1}\left\langle y_{i}, x\right\rangle\right\rangle \\
& =\langle x, x\rangle-2 \sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle c_{i}^{-1}\left\langle y_{i}, x\right\rangle+\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle c_{i}^{-1}\left\langle y_{i}, y_{j}\right\rangle c_{j}^{-1}\left\langle y_{j}, x\right\rangle \\
& \leq\langle x, x\rangle-\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle c_{i}^{-1}\left\langle y_{i}, x\right\rangle .
\end{aligned}
$$

Hence we have the desired inequality (3.1).

The equality in (3.1) holds if and only if the following (3.3) and (3.4) are satisfied:

$$
\begin{equation*}
x=\sum_{i=1}^{n} y_{i} c_{i}^{-1}\left\langle y_{i}, x\right\rangle \tag{3.3}
\end{equation*}
$$

and for arbitrary $i \neq j$

$$
\left(\left\langle x, y_{i}\right\rangle c_{i}^{-1} \quad\left\langle x, y_{j}\right\rangle c_{j}^{-1}\right)\left(\begin{array}{ll}
\left|\left\langle y_{j}, y_{i}\right\rangle\right| & -\left\langle y_{i}, y_{j}\right\rangle \tag{3.4}\\
-\left\langle y_{j}, y_{i}\right\rangle & \left|\left\langle y_{i}, y_{j}\right\rangle\right|
\end{array}\right)\binom{c_{i}^{-1}\left\langle y_{i}, x\right\rangle}{ c_{j}^{-1}\left\langle y_{j}, x\right\rangle}=0 .
$$

Put $A=\left(\begin{array}{ll}\left|\left\langle y_{j}, y_{i}\right\rangle\right| & -\left\langle y_{i}, y_{j}\right\rangle \\ -\left\langle y_{j}, y_{i}\right\rangle & \left|\left\langle y_{i}, y_{j}\right\rangle\right|\end{array}\right)$ and it follows that the condition (3.4) holds if and only if

$$
A^{1 / 2}\binom{c_{i}^{-1}\left\langle y_{i}, x\right\rangle}{ c_{j}^{-1}\left\langle y_{j}, x\right\rangle}=\binom{0}{0} \quad \Longleftrightarrow \quad A\binom{c_{i}^{-1}\left\langle y_{i}, x\right\rangle}{ c_{j}^{-1}\left\langle y_{j}, x\right\rangle}=\binom{0}{0}
$$

Hence it follows from Lemma 2 that the condition (3.4) is equivalent to the following (3.5) and (3.6): For arbitrary $i \neq j$

$$
\begin{equation*}
\left\langle y_{i}, y_{j}\right\rangle=0 \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\left\langle y_{j}, y_{i}\right\rangle\right| c_{i}^{-1}\left\langle y_{i}, x\right\rangle=\left\langle y_{i}, y_{j}\right\rangle c_{j}^{-1}\left\langle y_{j}, x\right\rangle . \tag{3.6}
\end{equation*}
$$

Conversely, suppose that $x=\sum_{i=1}^{n} y_{i} a_{i}$ for some $a_{i} \in \mathscr{A}$ and for $i \neq j\left\langle y_{i}, y_{j}\right\rangle=0$ or $\left|\left\langle y_{j}, y_{i}\right\rangle\right| a_{i}=\left\langle y_{i}, y_{j}\right\rangle a_{j}$. Then

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, x\right\rangle=\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n} \mid\left\langle y_{j}, y_{i}\right\rangle\right)^{-1} \sum_{j=1}^{n}\left\langle y_{i}, y_{j}\right\rangle a_{j} \\
& =\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1} \sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right| a_{i} \\
& =\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right) a_{i} \\
& =\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle a_{i} \\
& =\langle x, x\rangle
\end{aligned}
$$

Whence the proof is complete.
Remark 4. (1) In the case that \mathscr{X} is a Hilbert space, the equality condition $\left|\left\langle y_{j}, y_{i}\right\rangle\right| a_{i}=$ $\left\langle y_{i}, y_{j}\right\rangle a_{j}$ in Theorem 1 implies the condition (1.2). In fact, for some scalars $a_{i}, a_{j} \in \mathbb{C}$, it follows that $\left\langle a_{i} y_{i}, a_{j} y_{j}\right\rangle=a_{i}^{*}\left\langle y_{i}, y_{j}\right\rangle a_{j}=a_{i}^{*}\left|\left\langle y_{j}, y_{i}\right\rangle\right| a_{i} \geq 0$, and $\left|\left\langle y_{j}, y_{i}\right\rangle\right|=\left|\left\langle y_{j}, y_{i}\right\rangle^{*}\right|$ implies $\left|a_{i}\right|=\left|a_{j}\right|$.
(2) In the Hilbert space setting, K. Kubo and F. Kubo [15] showed another proof of Selberg's inequality (1.1) using Geršgorin's location of eigenvalues [14, Theorem 6.1.1] and a diagonal domination theorem of positive semidefinite matrix.

4 Applications In this section, by using Theorem 1, we consider several Hilbert C^{*} module versions of the Selberg inequality and the Bessel inequality.

Bounader and Chahbi in [3, Theorem 3.1] showed that if \mathscr{X} is an inner product C^{*} module and y_{1}, \ldots, y_{n} are nonzero vectors in \mathscr{X}, and $x \in \mathscr{X}$, then

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\left|\left\langle y_{i}, x\right\rangle\right|^{2}}{\sum_{j=1}^{n}\left\|\left\langle y_{j}, y_{i}\right\rangle\right\|} \leq\langle x, x\rangle \tag{4.1}
\end{equation*}
$$

By Theorem 1, we have the following corollary, which is an improvement of (4.1):
Corollary 5. Let \mathscr{X} be an inner product C^{*}-module over a unital C^{*}-algbera \mathscr{A}. If x, y_{1}, \ldots, y_{n} are nonzero vectors in \mathscr{X} such that y_{1}, \ldots, y_{n} are nonsingular, then

$$
\sum_{i=1}^{n} \frac{\left|\left\langle y_{i}, x\right\rangle\right|^{2}}{\left\|\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right\|} \leq\langle x, x\rangle
$$

Proof. By assumption it follows that $\sum_{i=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|$ is invertible in \mathscr{A} and hence

$$
\left(\sum_{i=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1} \geq\left\|\sum_{i=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right\|^{-1}
$$

Therefore, Theorem 1 implies Corollary 5.
Moreover, Bounader and Chahbi showed a Hilbert C^{*}-module version of Fujii-Nakamoto type (1.3), which is a refinement of (4.1): If y and y_{1}, \ldots, y_{n} are nonzero vectros in \mathscr{X} such that $\left\langle y, y_{i}\right\rangle=0$ for $i=1, \ldots, n$, and $x \in \mathscr{X}$, then

$$
\begin{equation*}
|\langle y, x\rangle|^{2}+\sum_{i=1}^{n} \frac{\left|\left\langle y_{i}, x\right\rangle\right|^{2}}{\sum_{j=1}^{n}\left\|\left\langle y_{i}, y_{j}\right\rangle\right\|}\|\langle y, y\rangle\| \leq\|\langle y, y\rangle\|\langle x, x\rangle \tag{4.2}
\end{equation*}
$$

We show a Hilbert C^{*}-module version of a refinement of the Selberg inequality due to Fujii and Nakamoto, which is another version of (4.2):

Theorem 6. Let \mathscr{X} be an inner product C^{*}-module over a unital C^{*}-algbera \mathscr{A}. If $x, y, y_{1}, \ldots, y_{n}$ are nonzero vectors in \mathscr{X} such that y_{1}, \ldots, y_{n} are nonsingular, $\left\langle y, y_{i}\right\rangle=0$ for $i=1, \cdots, n$ and $\langle x, y\rangle=u|\langle x, y\rangle|$ is a polar decomposition in \mathscr{A}, i.e., $u \in \mathscr{A}$ is a partial isometry, then

$$
\begin{align*}
& |\langle y, x\rangle| \leq u^{*}\langle y, y\rangle u \sharp\left(\langle x, x\rangle-\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, x\right\rangle\right) \tag{4.3}\\
& \quad\left(\leq u^{*}\langle y, y\rangle u \sharp\langle x, x\rangle\right) .
\end{align*}
$$

Proof. Put $z=x-\sum_{i=1}^{n} y_{i}\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, x\right\rangle$. By the proof of Theorem 1, we have

$$
\langle z, z\rangle \leq\langle x, x\rangle-\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, x\right\rangle .
$$

Since $\langle y, z\rangle=\langle y, x\rangle$, it follows from the monotonicity of the operator geometric mean that

$$
\begin{aligned}
|\langle y, x\rangle| & =|\langle y, z\rangle| \leq u^{*}\langle y, y\rangle u \sharp\langle z, z\rangle \quad \text { by the Cauchy-Schwarz inequality (2.1) } \\
& \leq u^{*}\langle y, y\rangle u \sharp\left(\langle x, x\rangle-\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, x\right\rangle\right) .
\end{aligned}
$$

In [3, Corollary 3.5], Bounader and Chahbi showed a Hilbert C^{*}-module version of Bombieri type (1.4): If y_{1}, \ldots, y_{n} are nonzero vectors in \mathscr{X} and $x \in \mathscr{X}$, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left\langle y_{i}, x\right\rangle\right|^{2} \leq\langle x, x\rangle \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left\|\left\langle y_{i}, y_{j}\right\rangle\right\| \tag{4.4}
\end{equation*}
$$

We show a Hilbert C^{*}-module version of Bombieri type, which is an improvement of (4.4):

Theorem 7. Let \mathscr{X} be an inner product C^{*}-module over a unital C^{*}-algbera \mathscr{A}. If x, y_{1}, \ldots, y_{n} are nonzero vectors in \mathscr{X} such that y_{1}, \ldots, y_{n} are nonsingular, then

$$
\sum_{i=1}^{n}\left|\left\langle y_{i}, x\right\rangle\right|^{2} \leq\langle x, x\rangle \max _{1 \leq i \leq n}\left\|\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right\| .
$$

Proof. Since for $i=1, \ldots, n$

$$
\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right| \leq\left\|\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right\| \leq \max _{1 \leq i \leq n}\left\|\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right\|,
$$

we have this theorem by virtue of Theorem 1 .
As a corollary, we have the following Boas-Bellman type inequality [3, Corollary 3.6]:
Corollary 8. Let \mathscr{X} be an inner product C^{*}-module over a unital C^{*}-algbera \mathscr{A}. If x, y_{1}, \ldots, y_{n} are nonzero vectors in \mathscr{X} such that y_{1}, \ldots, y_{n} are nonsingular, then

$$
\sum_{i=1}^{n}\left|\left\langle y_{i}, x\right\rangle\right|^{2} \leq\langle x, x\rangle\left(\max _{1 \leq i \leq n}\left\|\left\langle y_{i}, y_{i}\right\rangle\right\|+(n-1) \max _{j \neq i}\left\|\left\langle y_{j}, y_{i}\right\rangle\right\|\right)
$$

Finally, we show a Mitrinović-Pečarić-Fink type inequality [17, Theorem 5 in pp394] in Hilbert C^{*}-modules, which is another version of [4, Theorem 3.8]:

Theorem 9. Let \mathscr{X} be an inner product C^{*}-module over a unital C^{*}-algbera \mathscr{A}. If x, y_{1}, \ldots, y_{n} are nonzero vectors in \mathscr{X} and $a_{1}, \cdots, a_{n} \in \mathscr{A}$ such that y_{1}, \ldots, y_{n} are nonsingular and $\left\langle x, \sum_{i=1}^{n} y_{i} a_{i}\right\rangle=u\left|\left\langle x, \sum_{i=1}^{n} y_{i} a_{i}\right\rangle\right|$ is a polar decomposition in \mathscr{A}, i.e., $u \in \mathscr{A}$ is a partial isometry, then

$$
\left|\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle a_{i}\right| \leq u^{*}\langle x, x\rangle u \sharp\left(\sum_{i=1}^{n} a_{i}^{*}\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right) a_{i}\right) .
$$

Proof. By the Cauchy-Schwarz inequality (2.1), we have

$$
\begin{aligned}
\left|\sum_{i=1}^{n}\left\langle x, y_{i}\right\rangle a_{i}\right| & =\left|\left\langle x, \sum_{i=1}^{n} y_{i} a_{i}\right\rangle\right| \\
& \leq u^{*}\langle x, x\rangle u \sharp\left(\left\langle\sum_{i=1}^{n} y_{i} a_{i}, \sum_{i=1}^{n} y_{i} a_{i}\right\rangle\right) \\
& =u^{*}\langle x, x\rangle u \sharp\left(\sum_{i, j=1}^{n} a_{i}^{*}\left\langle y_{i}, y_{j}\right\rangle a_{j}\right) \\
& \leq u^{*}\langle x, x\rangle u \sharp\left(\sum_{i=1}^{n} a_{i}^{*}\left(\sum_{j=1}^{n}\left|\left\langle y_{j}, y_{i}\right\rangle\right|\right) a_{i}\right) \quad \text { by Lemma } 3 .
\end{aligned}
$$

5 Generalization In this section, we present a generalization of the Selberg inequality in a Hilbert C^{*}-module.

We review the basic concepts of adjointable operators on a Hilbert C^{*}-module \mathscr{X} over a unital C^{*}-algebra \mathscr{A}. We define $\mathcal{L}(\mathscr{X})$ to be the set of all maps $T: \mathscr{X} \mapsto \mathscr{X}$ for which there is a map $T^{*}: \mathscr{X} \mapsto \mathscr{X}$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x, y \in \mathscr{X}$. For $T \in \mathcal{L}(\mathscr{X})$, we denote the kernel of T by $N(T)$. A closed submodule \mathscr{M} of \mathscr{X} is said to be complemented if $\mathscr{X}=\mathscr{M} \oplus \mathscr{M}^{\perp}$. Suppose that the closures of the ranges of T and T^{*} are both complemented. Then it follows from [16, Proposition 3.8] that T has a polar decomposition $T=U|T|$ with a partial isometry $U \in \mathcal{L}(\mathscr{X})$ and $N(U)=N(|T|)$, and the following hold:
(i) $N(|T|)=N(T)$.
(ii) $\left|T^{*}\right|^{q}=U|T|^{q} U^{*}$ for any positive number $q>0$.
(iii) $N\left(S^{q}\right)=N(S)$ for any positive operator $S \in \mathcal{L}(\mathscr{X})$ and $q>0$,
also see $[5,20]$.
Theorem 10. Let T be an operator in $\mathcal{L}(\mathscr{X})$ such that the closures of the ranges of T and T^{*} are both complemented. If $y_{1}, \ldots, y_{n} \notin \mathrm{~N}\left(T^{*}\right)$ are nonsingular, then

$$
\begin{equation*}
\left.\left.\sum_{i=1}^{n}\left\langle T x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\langle | T^{*}\right|^{2 \beta} y_{j}, y_{i}\right\rangle \mid\right)^{-1}\left\langle y_{i}, T x\right\rangle \leq\left.\langle | T\right|^{2 \alpha} x, x\right\rangle \tag{5.1}
\end{equation*}
$$

holds for every $x \notin \mathrm{~N}(T)$ and for any $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$. In particular,

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle T x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle T T^{*} y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, T x\right\rangle \leq\left\langle U^{*} U x, x\right\rangle \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle T x, y_{i}\right\rangle\left(\sum_{j=1}^{n}\left|\left\langle U U^{*} y_{j}, y_{i}\right\rangle\right|\right)^{-1}\left\langle y_{i}, T x\right\rangle \leq\left\langle T^{*} T x, x\right\rangle \tag{5.3}
\end{equation*}
$$

Moreover, the equality in (5.1) holds if and only if Tx $=\sum_{i=1}^{n}\left|T^{*}\right|^{2 \beta} y_{i} a_{i}$ for some a_{1}, \ldots, a_{n} $\in \mathscr{A}$ such that for arbitrary $\left.i \neq j,\left.\langle | T^{*}\right|^{2 \beta} y_{i}, y_{j}\right\rangle=0$ or $\left.\left.\left|\langle | T^{*}\right|^{2 \beta} y_{j}, y_{i}\right\rangle \mid a_{i}=\left.\langle | T^{*}\right|^{2 \beta} y_{i}, y_{j}\right\rangle a_{j}$.

Proof. Let $T=U|T|$ be the polar decomposition of T, where U is the partial isometry. In the case of $\alpha=0$ or 1, it follows from Theorem 1 that replacing x by $U^{*} U x$ (resp. $|T| x)$ and y_{i} by $|T| U^{*} y_{i}$ (resp. $U^{*} y_{i}$) for all $i=1, \ldots, n$, it follows that $\left\langle U^{*} U x,\right| T\left|U^{*} y_{i}\right\rangle=$ $\langle U x, U| T\left|U^{*} y_{i}\right\rangle=\left\langle x, U^{*}\right| T^{*}\left|y_{i}\right\rangle=\left\langle x, T^{*} y_{i}\right\rangle=\left\langle T x, y_{i}\right\rangle$ and we have (5.2) (resp. (5.3)). In the case of $0<\alpha<1$, we replace x by $|T|^{\alpha} x$ and also replace y_{i} by $|T|^{\beta} U^{*} y_{i}$ for all $i=1, \ldots, n$. Then we have

$$
\left.\langle | T\left|{ }^{\beta} U^{*} y_{i},|T|{ }^{\beta} U^{*} y_{j}\right\rangle=\langle U| T\left|{ }^{2 \beta} U^{*} y_{i}, y_{j}\right\rangle=\left.\langle | T^{*}\right|^{2 \beta} y_{i}, y_{j}\right\rangle
$$

and $y_{1}, \ldots, y_{n} \notin \mathrm{~N}\left(T^{*}\right)=\mathrm{N}\left(\left|T^{*}\right|\right)=\mathrm{N}\left(\left|T^{*}\right|^{\beta}\right)$. Thus we have (5.1) by Theorem 1.
Next, we consider the equality condition in (5.1). By (iii), we have

$$
|T|^{\alpha} x=\sum_{i=1}^{n}|T|^{\beta} U^{*} y_{i} a_{i} \quad \Longleftrightarrow \quad|T|^{2 \alpha} x=\sum_{i=1}^{n}|T| U^{*} y_{i} a_{i}=\sum_{i=1}^{n} T^{*} y_{i} a_{i}
$$

Hence we have the following implication:

$$
\begin{aligned}
|T|^{\alpha} x=\sum_{i=1}^{n}|T|^{\beta} U^{*} y_{i} a_{i} & \Longleftrightarrow|T| x=|T|^{\alpha+\beta} x=\sum_{i=1}^{n}|T|^{2 \beta} U^{*} y_{i} a_{i} \quad \text { by (iii) } \\
& \Longleftrightarrow U|T| x=\sum_{i=1}^{n} U|T|^{2 \beta} U^{*} y_{i} a_{i} \quad \text { by (i) and (iii) } \\
& \Longleftrightarrow T x=\sum_{i=1}^{n}\left|T^{*}\right|^{2 \beta} y_{i} a_{i} . \quad \text { by (ii). }
\end{aligned}
$$

Whence the proof is complete.

References

[1] E. Bombieri, A note on the large sieve, Acta. Arith., 18 (1971), 401-404.
[2] E. Bombieri, Le Grand Grible dans la Theórie Analytique des Nombres, Asterisque 18, Societe Mathematique de France, 1974.
[3] N. Bounader and A. Chahbi, Selberg type inequalities in Hilbert C^{*}-modules, Int. J. Analy., 7 (2013), 385-391.
[4] S.S. Dragomir, M. Khosravi and M.S. Moslehian, Bessel type inequalities in Hilbert C^{*} modules, Linear Multilinear Algebra, 58 (2010), 967-975.
[5] J.I. Fujii, M. Fujii and Y. Seo, Operator inequalities on Hilbert C^{*}-modules via the CauchySchwarz inquality, to appear in Math. Ineq. Appl.
[6] J.I. Fujii, M. Fujii, M.S. Moslehian and Y. Seo, Cauchy-Schwarz inequality in semi-inner product C^{*}-modules via polar decomposition, J. Math. Anal. Appl., 394 (2012), 835-840.
[7] M. Fujii, K. Kubo and S. Otani, A graph theoretical observation on the Selberg inequality, Math. Japon., 35 (1990), 381-385.
[8] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent Developments of Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 4, Element, Zagreb, 2012.
[9] M. Fujii and R. Nakamoto, Simultaneous extensions of Selberg inequality and Heinz-KatoFuruta inequality, Nihonkai Math. J., 9 (1998), 219-225.
[10] T. Furuta, When does the equality of a generalized Selberg inequality hold?, Nihonkai Math. J., 2 (1991), 25-29.
[11] T. Furuta, Invitation to Linear Operators, Taylor \& Francis, London, 2001.
[12] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[13] M. Hamana, Partial *-automorphisms, normalizers, and submodules in monotome complete C^{*}-algebras, Canad. J.Math., 58 (2006), 1144-1202.
[14] R.A. Horn and C.A. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985.
[15] K. Kubo and F. Kubo, Diagonal matrix that dominates a positive semidefinite matrix, Technical note, 1988.
[16] E.C. Lance, Hilbert C^{*}-Modules, London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995.
[17] D.S. Mitrinović, J. Pecǎrić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
[18] W.L. Paschke, Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[19] M.A. Rieffel, Morita equivalence for C^{*}-algebras and W^{*}-algebras, J. Pure Applied Algebra, 5 (1974), 51-96.
[20] Y. Seo, Hölder type inequalities on Hilbert C^{*}-modules and its reverses, Ann. Funct. Anal., 5 (2014), 1-9.

Communicated by Masatoshi Fujii

* 2-7-5 Nagaemachi, Toyama, Toyama 930-0076, Japan
** Department of mathematics, Toyama University, Gofuku, Toyama 930-8555, Japan E-mail address: fkubo@sci.u-toyama.ac.jp
*** Department of Mathematics Education, Osaka Kyoiku University, 4-698-1 Asahigaoka Kashiwara Osaka 582-8582 Japan.
E-mail address : yukis@cc.osaka-kyoiku.ac.jp

