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Abstract. In this paper, from the viewpoint of the Ando-Hiai inequality, we make a
comparison between the Ando-Li-Mathias geometric mean and the Karcher mean of n
positive definite matrices. Among others, we show complements of the n-variable Ando-
Hiai inequality for the Ando-Li-Mathias geometric mean by means of the Kantorovich
constant.

1. Introduction

Let M = Md be the set of all d × d matrices on the complex number field C, P = Pd

be the set of all d × d positive definite matrices and I stands for the identity matrix.
For Hermitian matrices A,B we write A ≥ B or B ≤ A to mean that A − B is positive
semidefinite. In particular, A ≥ 0 indicates that A is positive semidefinite. This is known
as the Löwner partial order, or the usual order. If A is positive definite, that is, positive
semidefinite and invertible, we write A > 0. For two positive semidefinite matrices A and
B, the matrix geometric mean A ♯α B is defined by

A ♯α B = A
1
2

(
A− 1

2 BA− 1
2

)α

A
1
2 for all 0 ≤ α ≤ 1

if A > 0. In the case of α = 1
2
, we denote A ♯1/2 B by A ♯ B simply. In 2004, Ando, Li

and Mathias [2] succeeded in the formulation of the geometric mean for n positive definite
matrices, and they showed that it has many required properties as the geometric mean.
The weighted version of the Ando-Li-Mathias geometric mean was established by Lawson
and Lim [19]. Following [2], we recall the definition of the Ando-Li-Mathias geometric
mean Galm(A1, · · · , An) for n positive definite matrices A1, · · · , An. We simply call it
the ALM mean. Let Galm(A1, A2) = A1 ♯ A2. For n ≥ 3, Galm(A1, · · · , An) is definied

inductively as follows: Put A
(0)
i = Ai for all i = 1, . . . , n and

A
(r)
i = Galm((A

(r−1)
j )j ̸=i) = Galm(A

(r−1)
1 , · · · , A

(r−1)
i−1 , A

(r−1)
i+1 , · · · , A(r−1)

n )

inductively for r. Then the sequences {A(r)
i } have the same limit for all i = 1, . . . , n in the

Thompson metric d(A,B) =∥ log A− 1
2 BA− 1

2 ∥∞ for positive definite A and B, where the
spectral (operator) norm of X ∈ Md is defined by ∥ X ∥∞≡ max{ ∥ Xx ∥:∥ x ∥= 1, x ∈
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Cd}. So we can define Galm(A1, · · · , An) = limr→∞ A
(r)
i . Then the arithmetic-geometric-

harmonic mean inequality holds:(
1

n

n∑
i=1

A−1
i

)−1

≤ Galm(A1, · · · , An) ≤ 1

n

n∑
i=1

Ai.

Since then, many authors have studied geometric means of n-matrices [10, 17, 18]. On the
other hand, Moakher [21] and then Bhatia and Holbrook [8] suggested a new definition of
the geometric mean for n positive definite matrices by taking the mean to be the unique
minimizer of the sum of the squares of the distances δ2(A,B) =∥ log A− 1

2 BA− 1
2 ∥2 with

the Hilbert-Schmidt norm ∥ A ∥2=
√

tr(A∗A). Computing appropriate derivatives as in
[21, 6] yields that it coincides with the unique positive definite solution of the Karcher
equation

(1.1)
n∑

i=1

ωi log X− 1
2 AiX

− 1
2 = 0

for given n positive definite matrices A1, · · · , An, where ω = (ω1, · · · , ωn) is a weight
vector, i.e., ω1, · · · , ωn ≥ 0 and

∑n
i=1 ωi = 1. We say the solution X of (1.1) the Karcher

mean, or the Riemannian mean for n positive definite matrices A1, · · · , An and denote
it by Gk(ω; A1, · · · , An), see also [9, 20]. In particular, in the case of ω = ( 1

n
, · · · , 1

n
) we

denote it by Gk(A1, · · · , An). In the case of n = 2, the Karcher mean G((1− α, α); A,B)
coincides with the matrix geometric mean A ♯α B. The matrix geometric mean A ♯α B
satisfies the following Ando-Hiai inequality [1]: For α ∈ [0, 1]

A ♯α B ≤ I implies Ap ♯α Bp ≤ I for all p ≥ 1.

Yamazaki [25] showed that the Karcher mean satisfies the n-variable Ando-Hiai inequality,
though the ALM mean does not satisfy it. In [4], Bhagwat and Subramanjian showed
that for positive definite A1, · · · , An and a weight vector ω = (ω1, · · · , ωn)

lim
p→0

(
n∑

i=1

ωiA
p
i

) 1
p

= exp

(
n∑

i=1

ωi log Ai

)
.

By taking the logarithm of the arithmetic-geometric-harmonic mean inequality, it follows
that

(1.2) lim
p→0

Gk(ω; Ap
1, · · · , Ap

n)
1
p = exp

(
n∑

i=1

ωi log Ai

)
,

also see [12]. The right-hand side of (1.2) is called the chaotic geometric mean [14, 22, 23],
or the Log-Euclidean mean [7, 3] and we denote it by

♢(ω; A1, · · · , An) ≡ exp

(
n∑

i=1

ωi log Ai

)
.

In particular, we denote ♢(A1, · · · , An) = exp
(

1
n

∑n
i=1 log Ai

)
and A ♢α B = exp((1 −

α) log A + α log B) for α ∈ [0, 1]. The chaotic geometric mean does not have either
of the properties (i) monotonicity and (ii) transformer equality. In fact, it is known
that the exponential map is not order-preserving under the usual order. However, the



ON THE ANDO-LI-MATHIAS MEAN AND THE KARCHER MEAN 3

chaotic geometric mean is monotone under the chaotic order and the arithmetic-geometric-
harmonic mean inequality holds under the chaotic order, see [23]. Therefore, the chaotic
geometric mean plays an important role in the field of means.

In this paper, from the viewpoint of the Ando-Hiai inequality, we make a compari-
son among three geometric means: The ALM mean, the Karcher mean and the chaotic
geometric mean of n positive definite matrices. We show complements of the n-variable
Ando-Hiai inequality for the ALM mean by means of the Kantorovich constant.

2. Preliminary

A norm |||·||| on Md is said to be unitarily invariant if |||UXV ||| = |||X||| for all X ∈ Md

and all unitary U, V . We denote by ∥ A ∥∞ the spectral (operator) norm of A: ∥ A ∥∞≡
max{ ∥ Ax ∥:∥ x ∥= 1, x ∈ Cd}. For a Hermitian matrix A ∈ Md, we denote by λ1(A) ≥
λ2(A) ≥ · · · ≥ λd(A) the eigenvalues of A arranged in the decreasing order with their mul-
tiplicities counted. The notion λ(A) stands for the row vector (λ1(A), λ2(A), · · · , λd(A)).
The eigenvalue inequality λ(A) ≤ λ(B) means λj(A) ≤ λj(B) for all j = 1, . . . , d. For two
Hermitian matrices A,B the inequality λ(A) ≤ λ(B) if and only if A ≤ UBU∗ for some

unitary matrix U . The weak majorization λ(A) ≺w λ(B) means
∑k

i=1 λi(A) ≤
∑k

i=1 λi(B)
for all k = 1, . . . , d. It is known that A ≤ B =⇒ λ(A) ≤ λ(B) =⇒ λ(A) ≺w λ(B). The
Ky Fan dominance theorem states that λ(A) ≺w λ(B) if and only if |||A||| ≤ |||B||| for
positive semidefinite A and B. For more information on matrix analysis, see [5].

3. Specht type theorem

Specht [24] estimated the upper boundary of the arithmetic mean by the geometric one
for positive numbers: For a1, · · · , an ∈ [m,M ] with 0 < m ≤ M

(3.1) n
√

a1a2 · · · an ≤ a1 + · · · + an

n
≤ S(h) n

√
a1a2 · · · an

where h = M
m

and the Specht ratio S(h) is defined by

(3.2) S(h) =
(h − 1)h

1
h−1

e log h
(h ̸= 1) and S(1) = 1,

see also [15]. Therefore the Specht theorem (3.1) means a ratio type reverse inequality of
the arithmetic-geometric mean inequality.

In [11], we showed the following Specht type theorem for the ALM mean: For positive
definite A1, · · · , An ∈ P such that mI ≤ Ai ≤ MI for i = 1, . . . , n and some scalars
0 < m ≤ M

(3.3) Galm(A1, · · · , An) ≤ 1

n

n∑
i=1

Ai ≤
(M + m)2

4Mm
Galm(A1, · · · , An),

where the constant (M+m)2

4Mm
is called the Kantorovich constant. Though the weighted

arithmetic-geometric mean inequality does not hold for the chaotic geometric mean, we
showed the following inequality in [11, Lemma 12]: For a weight vector ω = (ω1, · · · , ωn)

(3.4) S(h)−1♢(ω; A1, · · · , An) ≤
n∑

i=1

ωiAi ≤ S(h)♢(ω; A1, · · · , An)
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where h = M
m

. Here, we state the relation between the Kantorovich constant and the
Spehct ratio:

Lemma 3.1. For 0 < m ≤ M and h = M
m

(3.5) S(h) ≤ (M + m)2

4Mm
≤ S(h)2.

Proof. The first inequality is due to [26]. For the second inequality, it follows from the
definition of the Specht ratio that

m + M

2
≤ S(h)

√
Mm

and hence we have (M+m)2

4Mm
≤ S(h)2. �

We show the following Specht type theorem for the Karcher mean.

Theorem 3.2. Let A1, · · · , An be positive definite matrices in P such that mI ≤ Ai ≤ MI
for i = 1, . . . , n and some scalars 0 < m < M , and a weight vector ω = (ω1, · · · , ωn).
Then

(3.6) Gk(ω; A1, · · · , An) ≤
n∑

i=1

ωiAi ≤
(M + m)2

4Mm
Gk(ω; A1, · · · , An).

Proof. By the Kantorovich inequality [13], we have

n∑
i=1

ωiAi ≤
(M + m)2

4Mm

(
n∑

i=1

ω1A
−1
i

)−1

.

Since the Karcher mean satisfies the arithmetic-geometric-harmonic mean inequality, it
follows that

n∑
i=1

ωiAi ≤
(M + m)2

4Mm

(
n∑

i=1

ωiA
−1
i

)−1

≤ (M + m)2

4Mm
Gk(ω; A1, · · · , An).

�

Remark 3.3. Since the right hand side of (3.4) implies a commutative case (3.1), the
inequality (3.4) is sharp. However, we don’t know whether it is possible to replace the

Kantorovich constant (M+m)2

4Mm
by the Specht ratio S(h) in (3.3) and (3.6).

As a corollary, we have the following order relation between the Karcher mean and the
chaotic geometric mean.

Corollary 3.4. Let A1, · · · , An ∈ P such that mI ≤ Ai ≤ MI for i = 1, . . . , n and some
scalars 0 < m < M , and a weight vector ω = (ω1, · · · , ωn). Put h = M

m
. Then

S(h)−1♢(ω; A1, · · · , An) ≤ Gk(ω; A1, · · · , An) ≤ S(h)♢(ω; A1, · · · , An).

Proof. By (3.4), we have

Gk(ω; A1, · · · , An) ≤
n∑

i=1

ωiAi ≤ S(h)♢(ω; A1, · · · , An)
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and it follows from the self duality of the Karcher mean and the chaotic geometric mean
that

Gk(ω; A1, · · · , An) ≥

(
n∑

i=1

ωiA
−1
i

)−1

≥ S(h)−1♢(ω; A1, · · · , An).

�
Corollary 3.5. Let A1, · · · , An ∈ P such that mI ≤ Ai ≤ MI for i = 1, . . . , n and some
scalars 0 < m < M , and a weight vector ω = (ω1, · · · , ωn). Put h = M

m
. Then

|||Gk(ω; A1, · · · , An)||| ≤ |||♢(ω; A1, · · · , An)||| ≤ S(h) |||Gk(ω; A1, · · · , An)|||
for every unitarily invariant norm |||·|||, where the Specht ratio S(h) is defined by (3.2).

Proof. The first inequality is due to Theorem C in §4 and (1.2). The second inequality is
due to Corollary 3.4. �

Similarly we have the following order relation between the ALM mean and the chaotic
geometric mean.

Corollary 3.6. Let A1, · · · , An ∈ P such that mI ≤ Ai ≤ MI for i = 1, . . . , n and some
scalars 0 < m < M , and a weight vector ω = (ω1, · · · , ωn). Put h = M

m
. Then

S(h)−1♢(ω; A1, · · · , An) ≤ Galm(ω; A1, · · · , An) ≤ S(h)♢(ω; A1, · · · , An)

and

S(h)−1 |||Galm(ω; A1, · · · , An)||| ≤ |||♢(ω; A1, · · · , An)||| ≤ S(h) |||Galm(ω; A1, · · · , An)|||
for every unitarily invariant norm |||·|||, where the Specht ratio S(h) is defined by (3.2).

4. Ando-Hiai inequality for the ALM geometric mean

In this section, from the viewpoint of the Ando-Hiai inequality, we make a compari-
son among three geometric means: The ALM mean, the Karcher mean and the chaotic
geometric mean.

Let A1, · · · , An be positive definite matrices in P and a weight vector ω = (ω1, · · · , ωn).
By definition, the chaotic geometric mean satisfies the n-variable Ando-Hiai inequality:
♢(ω; A1, · · · , An) ≤ I implies ♢(ω; Ap

1, · · · , Ap
n) ≤ I for all p > 0. On the other hand,

Yamazaki [25] showed that

(4.1)
n∑

i=1

ωi log Ai ≤ 0 implies Gk(ω; A1, · · · , An) ≤ I.

By (4.1), Yamazaki showed the following n-variable Ando-Hiai inequality for the Karcher
mean:

Theorem B. Let A1, · · · , An ∈ P and a weight vector ω = (ω1, · · · , ωn). Then

(4.2) Gk(ω; A1, · · · , An) ≤ I implies Gk(ω; Ap
1, · · · , Ap

n) ≤ I for all p ≥ 1

or equivalently,

∥ Gk(ω; Ap
1, · · · , Ap

n) ∥∞ ≤ ∥ Gk(ω; A1, · · · , An)p ∥∞ for all p ≥ 1.

By Theorem B, Hiai [16] showed the following log-majorization for the Karcher mean:
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Theorem C. Let A1, · · · , An ∈ P and a weight vector ω = (ω1, · · · , ωn). Then for
p ≥ q > 0 ∣∣∣∣∣∣Gk(ω; Ap

1, · · · , Ap
n)1/p

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Gk(ω; Aq

1, · · · , Aq
n)1/q

∣∣∣∣∣∣
for every unitarily invariant norm |||·|||.

If the ALM mean satisfies the n-variable Ando-Hiai inequality, then it follows from [25,
Corollary 6] that the ALM mean coincides with the Karcher mean. It is known that the
ALM mean is different from the Karcher mean. Hence the ALM mean doe not satisfy
the n-variable Ando-Hiai inequality. Then we have the following evaluation among three
geometric means by means of the Kantorovich constant:

Theorem 4.1. Let A1, · · · , An be positive definite matrices in P such that mI ≤ Ai ≤ MI
for i = 1, . . . , n and some scalars 0 < m < M . Then the following assertions are mutually
equivalent:

(i) ♢(A1, · · · , An) ≤ I.

(ii) Gk(A
p
1, · · · , Ap

n) ≤ I for all p > 0.

(iii) Galm(Ap
1, · · · , Ap

n) ≤ (Mp+mp)2

4Mpmp I for all p > 0.

Proof. The equivalence of (i) and (ii) is shown in [25, Theorem 4].
Proof of (ii)=⇒(iii). By the Kantorovich inequality [13], we have

Galm(A1, · · · , An) ≤ 1

n

n∑
i=1

Ai ≤
(M + m)2

4Mm

(
1

n

n∑
i=1

A−1
i

)−1

≤ (M + m)2

4Mm
Gk(A1, · · · , An)

and hence it follows from mpI ≤ Ap
i ≤ MpI for i = 1, . . . , n that

Galm(Ap
1, · · · , Ap

n) ≤ (Mp + mp)2

4Mpmp
Gk(A

p
1, · · · , Ap

n) ≤ (Mp + mp)2

4Mpmp
I

for all p > 0.
Proof of (iii)=⇒(i). By assumption

Galm(Ap
1, · · · , Ap

n)
1
p ≤

(
(Mp + mp)2

4Mpmp

) 1
p

I

for all p > 0. Since limp→0

(
(Mp+mp)2

4Mpmp

) 1
p

= 1 and the ALM mean Galm(Ap
1, · · · , Ap

n)
1
p

converges to the chaotic geometric mean ♢(A1, · · · , An) as p → 0 in [12], we have (i). �

We recall the definition of the generalized Kantorovich constant, also see [15, Definition
2.2]. For positive definite A1, · · · , An in P, Jensen operator inequality for an operator
convex function says that(

1

n

n∑
i=1

Ai

)p

≤ 1

n

n∑
i=1

Ap
i for all 1 ≤ p ≤ 2.
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Then we have the following reverse of Jensen operator inequality:

(4.3)
1

n

n∑
i=1

Ap
i ≤ K(m,M, p)

(
1

n

n∑
i=1

Ai

)p

for all p ≥ 1,

where the generalized Kantorovich constant K(m,M, p) is defined by

(4.4) K(m, M, p) =
mMp − Mmp

(p − 1)(M − m)

(
p − 1

p

Mp − mp

mMp − Mmp

)p

for any real numbers p ∈ R. In particular, K(m, M, 2) coincides with the Kantorovich

constant (M+m)2

4Mm
.

We need the following lemma to show our results.

Lemma 4.2. Let A and B be positive definite matrices. If A ≤ B, then there exists a
unitary matrix U such that Ap ≤ UBpU∗ for all p > 0.

Proof. If A ≤ B, then there exists a unitary matrix U such that A ≤ UBU∗ and A
commutes with UBU∗. Hence we have Ap ≤ (UBU∗)p = UBpU∗ for all p > 0. �

By Theorem 3.2, we have the following complements of the n-variable Ando-Hiai in-
equality for the ALM mean.

Theorem 4.3. Let A1, · · · , An be positive definite marices in P such that mI ≤ Ai ≤ MI
for i = 1, . . . , n and some scalars 0 < m < M . Then

(4.5) |||Galm(Ap
1, · · · , Ap

n)||| ≤ K(m,M, p)

(
(M + m)2

4Mm

)p

|||Galm(A1, · · · , An)p|||

for all p ≥ 1 and every unitarily invariant norm |||·|||. In particular,

(4.6) Galm(A1, · · · , An) ≤ I implies Galm(Ap
1, · · · , Ap

n) ≤ K(m,M, p)

(
(M + m)2

4Mm

)p

I

for all p ≥ 1.

Proof. By the arithmetic-geometric mean inequality and (4.3), it follows that

Galm(Ap
1, · · · , Ap

n) ≤ 1

n

n∑
i=1

Ap
i ≤ K(m,M, p)

(
1

n

n∑
i=1

Ai

)p

for all p ≥ 1.

On the other hand, by the Specht type theorem for the ALM mean, it follows that

1

n

n∑
i=1

Ai ≤
(M + m)2

4Mm
Galm(A1, · · · , An)

and hence by Lemma 4.2 there exists a unitary matrix U such that(
1

n

n∑
i=1

Ai

)p

≤
(

(M + m)2

4Mm

)p

UGalm(A1, · · · , An)pU∗

for all p ≥ 1. Combining two inequalities above, we have

Galm(Ap
1, · · · , Ap

n) ≤ K(m,M, p)

(
(M + m)2

4Mm

)p

UGalm(A1, · · · , An)pU∗
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and this implies

|||Galm(Ap
1, · · · , Ap

n)||| ≤ K(m,M, p)

(
(M + m)2

4Mm

)p

|||Galm(A1, · · · , An)p||| for all p ≥ 1.

In particular, it follows that

∥ Galm(Ap
1, · · · , Ap

n) ∥∞≤ K(m, M, p)

(
(M + m)2

4Mm

)p

∥ Galm(A1, · · · , An)p ∥∞

for all p ≥ 1. If Galm(A1, · · · , An) ≤ I, then

Galm(Ap
1, · · · , Ap

n) ≤∥ Galm(Ap
1, · · · , Ap

n) ∥∞≤ K(m,M, p)

(
(M + m)2

4Mm

)p

for all p ≥ 1. �
Remark 4.4. We can improve the result of (4.6) a little more. In fact, it follows that

Galm(Ap
1, · · · , Ap

n) ≤ K(m,M, p)

(
(M + m)2

4Mm

)p−1

UGalm(A1, · · · , An)p−1U∗

(
1

n

n∑
i=1

Ai

)
and hence if Galm(A1, · · · , An) ≤ I, then we have

Galm(Ap
1, · · · , Ap

n) ≤ K(m,M, p)

(
(M + m)2

4Mm

)p−1
(

1

n

n∑
i=1

Ai

)
for all p ≥ 1. Put

∆(p) = min{K(m, M, p)

(
(M + m)2

4Mm

)p

, K(m,M, p)

(
(M + m)2

4Mm

)p−1

M}

for p ≥ 1. Then we have the following Ando-Hiai inequality for the ALM mean.

Galm(A1, · · · , An) ≤ I implies Galm(Ap
1, · · · , Ap

n) ≤ ∆(p)I

for all p ≥ 1. However, we have ∆(1) ̸= 1.

Theorem 4.5. Let A1, · · · , An be positive definite marices in P such that mI ≤ Ai ≤ MI
for i = 1, . . . , n and some scalars 0 < m < M . Then

(4.7) Galm(Ap
1, · · · , Ap

n) ≤
(

(M + m)2

4Mm

)p

Galm(A1, · · · , An)p for all 0 < p < 1.

In particular,

(4.8) Galm(A1, · · · , An) ≤ I implies Galm(Ap
1, · · · , Ap

n) ≤
(

(M + m)2

4Mm

)p

I

for all 0 < p < 1.

Proof. By the arithmetic-geometric mean inequality and 0 < p < 1, it follows from the
Löwner-Heinz theorem and (3.3) that

Galm(Ap
1, · · · , Ap

n) ≤ 1

n

n∑
i=1

Ap
i ≤

(
1

n

n∑
i=1

Ai

)p

≤
(

(M + m)2

4Mm

)p

Galm(A1, · · · , An)p

for all 0 < p < 1. �
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By using the Specht type theorem for the ALM mean, we have the following comple-
ments of the log-majorization for the ALM mean.

Theorem 4.6. Let A1, · · · , An be positive definite matrices in P such that mI ≤ Ai ≤ MI
for i = 1, . . . , n and some scalars 0 < m ≤ M . Then for each 0 < q ≤ p

K(mq,M q,
p

q
)−

1
p

(
4M qmq

(M q + mq)2

) 1
q ∣∣∣∣∣∣∣∣∣Galm(Ap

1, · · · , Ap
n)

1
p

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣Galm(Aq
1, · · · , Aq

n)
1
q

∣∣∣∣∣∣∣∣∣
≤ K(mq, M q,

p

q
)

1
p

(
(M q + mq)2

4M qmq

) 1
q ∣∣∣∣∣∣∣∣∣Galm(Ap

1, · · · , Ap
n)

1
p

∣∣∣∣∣∣∣∣∣
for every unitarily invariant norm |||·|||, where the generalized Kantorovich constant K(m,M, p)
is defined by (4.4).

Proof. For each 0 < q ≤ p, it follows from the arithmetic-geometric mean inequality and
(4.3) that

Galm(A
p
q

1 , · · · , A
p
q
n ) ≤ 1

n

n∑
i=1

A
p
q

i ≤ K(m,M,
p

q
)

(
1

n

n∑
i=1

Ai

) p
q

by p
q
≥ 1.

Replacing Ai by Aq
i , we have

Galm(Ap
1, · · · , Ap

n) ≤ K(mq,M q,
p

q
)

(
1

n

n∑
i=1

Aq
i

) p
q

.

On the other hand, by (3.3) and mqI ≤ Aq
i ≤ M qI for i = 1, . . . , n we have

1

n

n∑
i=1

Aq
i ≤

(M q + mq)2

4M qmq
Galm(Aq

1, · · · , Aq
n)

and by Lemma 4.2 that there exists a unitary matrix U such that(
1

n

n∑
i=1

Aq
i

) p
q

≤
(

(M q + mq)2

4M qmq

) p
q

UGalm(Aq
1, · · · , Aq

n)
p
q U∗.

Therefore it follows that

Galm(Ap
1, · · · , Ap

n) ≤ K(mq,M q,
p

q
)

(
(M q + mq)2

4M qmq

) p
q

UGalm(Aq
1, · · · , Aq

n)
p
q U∗.

By Lemma 4.2 again, there exists a unitary matrix V such that

Galm(Ap
1, · · · , Ap

n)
1
p ≤ K(mq,M q,

p

q
)

1
p

(
(M q + mq)2

4M qmq

) 1
q

V Galm(Aq
1, · · · , Aq

n)
1
q V ∗

and this implies the first inequality of the desired one. Replacing Ai by A−1
i in the

inequality above and moreover taking the inverse, it follows from the self-duality of the
ALM mean that

Galm(Ap
1, · · · , Ap

n)
1
p ≥

(
K(mq,M q,

p

q
)

1
p

(
(M q + mq)2

4M qmq

) 1
q

)−1

V Galm(Aq
1, · · · , Aq

n)
1
q V ∗

and this implies the second inequality of the desired one. �
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If we put q → 0 in Theorem 4.6, then we have the following theorem.

Theorem 4.7. Let A1, · · · , An be positive definite matrices in P such that mI ≤ Ai ≤ MI
for i = 1, . . . , n and some scalars 0 < m ≤ M . Put h = M

m
. Then

S(hp)−
1
p

∣∣∣∣∣∣∣∣∣Galm(Ap
1, · · · , Ap

n)
1
p

∣∣∣∣∣∣∣∣∣ ≤ |||♢(A1, · · · , An)|||

≤ S(hp)
1
p

∣∣∣∣∣∣∣∣∣Galm(Ap
1, · · · , Ap

n)
1
p

∣∣∣∣∣∣∣∣∣
for all p > 0 and every unitarily invariant norm |||·|||. In particular,

S(hp)
1
p

∣∣∣∣∣∣∣∣∣Galm(Ap
1, · · · , Ap

n)
1
p

∣∣∣∣∣∣∣∣∣→ |||♢(A1, · · · , An)||| as p → 0,

where the Specht ratio S(h) is defined by (3.2).

Proof. It follows from K(mq,M q, p
q
)

1
p → S(hp)

1
p as q → 0 in [15, Theorem 2.56]. �

Remark 4.8. If we put p = 1 in Theorem 4.7, then we have Corollary 3.6.

5. Comparisons

In this final section, we make a comparison between the ALM mean and the Karcher
mean. Though the ALM mean does not coincide with the Karcher one in general, we
have the following estimate.

Theorem 5.1. Let A1, · · · , An be positive definite matrices in P such that mI ≤ Ai ≤ MI
for i = 1, . . . , n and some scalars 0 < m ≤ M . Then

4Mm

(M + m)2
Gk(A1, · · · , An) ≤ Galm(A1, · · · , An) ≤ (M + m)2

4Mm
Gk(A1, · · · , An).

Proof. The second inequality follows from the proof of (ii)=⇒(iii) of Theorem 4.1. For
the first inequality, we similarly have

Gk(A1, · · · , An) ≤ 1

n

n∑
i=1

Ai ≤
(M + m)2

4Mm

(
1

n

n∑
i=1

A−1
i

)−1

≤ (M + m)2

4Mm
Galm(A1, · · · , An).

�
By Theorem 5.1, we have the following norm inequality.

Theorem 5.2. Let A1, · · · , An be positive definite matrices in P such that mI ≤ Ai ≤ MI
for i = 1, . . . , n and some scalars 0 < m ≤ M . Then(

4Mpmp

(Mp + mp)2

) 1
p ∣∣∣∣∣∣∣∣∣Gk(A

p
1, · · · , Ap

n)
1
p

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣Galm(Ap
1, · · · , Ap

n)
1
p

∣∣∣∣∣∣∣∣∣
≤
(

(Mp + mp)2

4Mpmp

) 1
p ∣∣∣∣∣∣∣∣∣Gk(A

p
1, · · · , Ap

n)
1
p

∣∣∣∣∣∣∣∣∣
for all p > 0 and every unitarily invariant norm |||·|||.
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