ON THE ANDO-LI-MATHIAS MEAN AND THE KARCHER MEAN OF POSITIVE DEFINITE MATRICES

JUN ICHI FUJII ${ }^{1}$ AND YUKI SEO ${ }^{2}$

Abstract

In this paper, from the viewpoint of the Ando-Hiai inequality, we make a comparison between the Ando-Li-Mathias geometric mean and the Karcher mean of n positive definite matrices. Among others, we show complements of the n-variable AndoHiai inequality for the Ando-Li-Mathias geometric mean by means of the Kantorovich constant.

1. Introduction

Let $\mathbb{M}=\mathbb{M}_{d}$ be the set of all $d \times d$ matrices on the complex number field $\mathbb{C}, \mathbb{P}=\mathbb{P}_{d}$ be the set of all $d \times d$ positive definite matrices and I stands for the identity matrix. For Hermitian matrices A, B we write $A \geq B$ or $B \leq A$ to mean that $A-B$ is positive semidefinite. In particular, $A \geq 0$ indicates that A is positive semidefinite. This is known as the Löwner partial order, or the usual order. If A is positive definite, that is, positive semidefinite and invertible, we write $A>0$. For two positive semidefinite matrices A and B, the matrix geometric mean $A \sharp_{\alpha} B$ is defined by

$$
A \not \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \quad \text { for all } 0 \leq \alpha \leq 1
$$

if $A>0$. In the case of $\alpha=\frac{1}{2}$, we denote $A \sharp_{1 / 2} B$ by $A \sharp B$ simply. In 2004, Ando, Li and Mathias [2] succeeded in the formulation of the geometric mean for n positive definite matrices, and they showed that it has many required properties as the geometric mean. The weighted version of the Ando-Li-Mathias geometric mean was established by Lawson and Lim [19]. Following [2], we recall the definition of the Ando-Li-Mathias geometric mean $G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right)$ for n positive definite matrices A_{1}, \cdots, A_{n}. We simply call it the $A L M$ mean. Let $G_{\text {alm }}\left(A_{1}, A_{2}\right)=A_{1} \sharp A_{2}$. For $n \geq 3, G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right)$ is definied inductively as follows: Put $A_{i}^{(0)}=A_{i}$ for all $i=1, \ldots, n$ and

$$
A_{i}^{(r)}=G_{\mathrm{alm}}\left(\left(A_{j}^{(r-1)}\right)_{j \neq i}\right)=G_{\mathrm{alm}}\left(A_{1}^{(r-1)}, \cdots, A_{i-1}^{(r-1)}, A_{i+1}^{(r-1)}, \cdots, A_{n}^{(r-1)}\right)
$$

inductively for r. Then the sequences $\left\{A_{i}^{(r)}\right\}$ have the same limit for all $i=1, \ldots, n$ in the Thompson metric $d(A, B)=\left\|\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right\|_{\infty}$ for positive definite A and B, where the spectral (operator) norm of $X \in \mathbb{M}_{d}$ is defined by $\|X\|_{\infty} \equiv \max \{\|X x\|:\|x\|=1, x \in$

[^0]$\left.\mathbb{C}^{d}\right\}$. So we can define $G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right)=\lim _{r \rightarrow \infty} A_{i}^{(r)}$. Then the arithmetic-geometricharmonic mean inequality holds:
$$
\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}^{-1}\right)^{-1} \leq G_{\mathrm{alm}}\left(A_{1}, \cdots, A_{n}\right) \leq \frac{1}{n} \sum_{i=1}^{n} A_{i}
$$

Since then, many authors have studied geometric means of n-matrices [$10,17,18]$. On the other hand, Moakher [21] and then Bhatia and Holbrook [8] suggested a new definition of the geometric mean for n positive definite matrices by taking the mean to be the unique minimizer of the sum of the squares of the distances $\delta_{2}(A, B)=\left\|\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right\|_{2}$ with the Hilbert-Schmidt norm $\|A\|_{2}=\sqrt{\operatorname{tr}\left(A^{*} A\right)}$. Computing appropriate derivatives as in $[21,6]$ yields that it coincides with the unique positive definite solution of the Karcher equation

$$
\begin{equation*}
\sum_{i=1}^{n} \omega_{i} \log X^{-\frac{1}{2}} A_{i} X^{-\frac{1}{2}}=0 \tag{1.1}
\end{equation*}
$$

for given n positive definite matrices A_{1}, \cdots, A_{n}, where $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$ is a weight vector, i.e., $\omega_{1}, \cdots, \omega_{n} \geq 0$ and $\sum_{i=1}^{n} \omega_{i}=1$. We say the solution X of (1.1) the Karcher mean, or the Riemannian mean for n positive definite matrices A_{1}, \cdots, A_{n} and denote it by $G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right)$, see also $[9,20]$. In particular, in the case of $\omega=\left(\frac{1}{n}, \cdots, \frac{1}{n}\right)$ we denote it by $G_{k}\left(A_{1}, \cdots, A_{n}\right)$. In the case of $n=2$, the Karcher mean $G((1-\alpha, \alpha) ; A, B)$ coincides with the matrix geometric mean $A \sharp_{\alpha} B$. The matrix geometric mean $A \not \sharp_{\alpha} B$ satisfies the following Ando-Hiai inequality [1]: For $\alpha \in[0,1]$

$$
A \sharp_{\alpha} B \leq I \quad \text { implies } \quad A^{p} \sharp_{\alpha} B^{p} \leq I \quad \text { for all } p \geq 1 .
$$

Yamazaki [25] showed that the Karcher mean satisfies the n-variable Ando-Hiai inequality, though the ALM mean does not satisfy it. In [4], Bhagwat and Subramanjian showed that for positive definite A_{1}, \cdots, A_{n} and a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$

$$
\lim _{p \rightarrow 0}\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{p}\right)^{\frac{1}{p}}=\exp \left(\sum_{i=1}^{n} \omega_{i} \log A_{i}\right)
$$

By taking the logarithm of the arithmetic-geometric-harmonic mean inequality, it follows that

$$
\begin{equation*}
\lim _{p \rightarrow 0} G_{k}\left(\omega ; A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}=\exp \left(\sum_{i=1}^{n} \omega_{i} \log A_{i}\right) \tag{1.2}
\end{equation*}
$$

also see [12]. The right-hand side of (1.2) is called the chaotic geometric mean [14, 22, 23], or the Log-Euclidean mean [7,3] and we denote it by

$$
\diamond\left(\omega ; A_{1}, \cdots, A_{n}\right) \equiv \exp \left(\sum_{i=1}^{n} \omega_{i} \log A_{i}\right)
$$

In particular, we denote $\diamond\left(A_{1}, \cdots, A_{n}\right)=\exp \left(\frac{1}{n} \sum_{i=1}^{n} \log A_{i}\right)$ and $A \diamond_{\alpha} B=\exp ((1-$ $\alpha) \log A+\alpha \log B)$ for $\alpha \in[0,1]$. The chaotic geometric mean does not have either of the properties (i) monotonicity and (ii) transformer equality. In fact, it is known that the exponential map is not order-preserving under the usual order. However, the
chaotic geometric mean is monotone under the chaotic order and the arithmetic-geometricharmonic mean inequality holds under the chaotic order, see [23]. Therefore, the chaotic geometric mean plays an important role in the field of means.

In this paper, from the viewpoint of the Ando-Hiai inequality, we make a comparison among three geometric means: The ALM mean, the Karcher mean and the chaotic geometric mean of n positive definite matrices. We show complements of the n-variable Ando-Hiai inequality for the ALM mean by means of the Kantorovich constant.

2. Preliminary

A norm $\|\cdot\| \|$ on \mathbb{M}_{d} is said to be unitarily invariant if $\|U X V\|=\|X\|$ for all $X \in \mathbb{M}_{d}$ and all unitary U, V. We denote by $\|A\|_{\infty}$ the spectral (operator) norm of $A:\|A\|_{\infty} \equiv$ $\max \left\{\|A x\|:\|x\|=1, x \in \mathbb{C}^{d}\right\}$. For a Hermitian matrix $A \in \mathbb{M}_{d}$, we denote by $\lambda_{1}(A) \geq$ $\lambda_{2}(A) \geq \cdots \geq \lambda_{d}(A)$ the eigenvalues of A arranged in the decreasing order with their multiplicities counted. The notion $\lambda(A)$ stands for the row vector $\left(\lambda_{1}(A), \lambda_{2}(A), \cdots, \lambda_{d}(A)\right)$. The eigenvalue inequality $\lambda(A) \leq \lambda(B)$ means $\lambda_{j}(A) \leq \lambda_{j}(B)$ for all $j=1, \ldots, d$. For two Hermitian matrices A, B the inequality $\lambda(A) \leq \lambda(B)$ if and only if $A \leq U B U^{*}$ for some unitary matrix U. The weak majorization $\lambda(A) \prec_{w} \lambda(B)$ means $\sum_{i=1}^{k} \lambda_{i}(A) \leq \sum_{i=1}^{k} \lambda_{i}(B)$ for all $k=1, \ldots, d$. It is known that $A \leq B \Longrightarrow \lambda(A) \leq \lambda(B) \Longrightarrow \lambda(A) \prec_{w} \lambda(B)$. The Ky Fan dominance theorem states that $\lambda(A) \prec_{w} \lambda(B)$ if and only if $\|A\| \leq\|B\|$ for positive semidefinite A and B. For more information on matrix analysis, see [5].

3. Specht type theorem

Specht [24] estimated the upper boundary of the arithmetic mean by the geometric one for positive numbers: For $a_{1}, \cdots, a_{n} \in[m, M]$ with $0<m \leq M$

$$
\begin{equation*}
\sqrt[n]{a_{1} a_{2} \cdots a_{n}} \leq \frac{a_{1}+\cdots+a_{n}}{n} \leq S(h) \sqrt[n]{a_{1} a_{2} \cdots a_{n}} \tag{3.1}
\end{equation*}
$$

where $h=\frac{M}{m}$ and the Specht ratio $S(h)$ is defined by

$$
\begin{equation*}
S(h)=\frac{(h-1) h^{\frac{1}{n-1}}}{e \log h}(h \neq 1) \quad \text { and } \quad S(1)=1 \tag{3.2}
\end{equation*}
$$

see also [15]. Therefore the Specht theorem (3.1) means a ratio type reverse inequality of the arithmetic-geometric mean inequality.

In [11], we showed the following Specht type theorem for the ALM mean: For positive definite $A_{1}, \cdots, A_{n} \in \mathbb{P}$ such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m \leq M$

$$
\begin{equation*}
G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right) \leq \frac{1}{n} \sum_{i=1}^{n} A_{i} \leq \frac{(M+m)^{2}}{4 M m} G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right), \tag{3.3}
\end{equation*}
$$

where the constant $\frac{(M+m)^{2}}{4 M m}$ is called the Kantorovich constant. Though the weighted arithmetic-geometric mean inequality does not hold for the chaotic geometric mean, we showed the following inequality in [11, Lemma 12]: For a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$

$$
\begin{equation*}
S(h)^{-1} \diamond\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq \sum_{i=1}^{n} \omega_{i} A_{i} \leq S(h) \diamond\left(\omega ; A_{1}, \cdots, A_{n}\right) \tag{3.4}
\end{equation*}
$$

where $h=\frac{M}{m}$. Here, we state the relation between the Kantorovich constant and the Spehct ratio:
Lemma 3.1. For $0<m \leq M$ and $h=\frac{M}{m}$

$$
\begin{equation*}
S(h) \leq \frac{(M+m)^{2}}{4 M m} \leq S(h)^{2} . \tag{3.5}
\end{equation*}
$$

Proof. The first inequality is due to [26]. For the second inequality, it follows from the definition of the Specht ratio that

$$
\frac{m+M}{2} \leq S(h) \sqrt{M m}
$$

and hence we have $\frac{(M+m)^{2}}{4 M m} \leq S(h)^{2}$.
We show the following Specht type theorem for the Karcher mean.
Theorem 3.2. Let A_{1}, \cdots, A_{n} be positive definite matrices in \mathbb{P} such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m<M$, and a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$. Then

$$
\begin{equation*}
G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq \sum_{i=1}^{n} \omega_{i} A_{i} \leq \frac{(M+m)^{2}}{4 M m} G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right) \tag{3.6}
\end{equation*}
$$

Proof. By the Kantorovich inequality [13], we have

$$
\sum_{i=1}^{n} \omega_{i} A_{i} \leq \frac{(M+m)^{2}}{4 M m}\left(\sum_{i=1}^{n} \omega_{1} A_{i}^{-1}\right)^{-1}
$$

Since the Karcher mean satisfies the arithmetic-geometric-harmonic mean inequality, it follows that

$$
\sum_{i=1}^{n} \omega_{i} A_{i} \leq \frac{(M+m)^{2}}{4 M m}\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{-1}\right)^{-1} \leq \frac{(M+m)^{2}}{4 M m} G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right)
$$

Remark 3.3. Since the right hand side of (3.4) implies a commutative case (3.1), the inequality (3.4) is sharp. However, we don't know whether it is possible to replace the Kantorovich constant $\frac{(M+m)^{2}}{4 M m}$ by the Specht ratio $S(h)$ in (3.3) and (3.6).

As a corollary, we have the following order relation between the Karcher mean and the chaotic geometric mean.

Corollary 3.4. Let $A_{1}, \cdots, A_{n} \in \mathbb{P}$ such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m<M$, and a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$. Put $h=\frac{M}{m}$. Then

$$
S(h)^{-1} \diamond\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq S(h) \diamond\left(\omega ; A_{1}, \cdots, A_{n}\right)
$$

Proof. By (3.4), we have

$$
G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq \sum_{i=1}^{n} \omega_{i} A_{i} \leq S(h) \diamond\left(\omega ; A_{1}, \cdots, A_{n}\right)
$$

and it follows from the self duality of the Karcher mean and the chaotic geometric mean that

$$
G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right) \geq\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{-1}\right)^{-1} \geq S(h)^{-1} \diamond\left(\omega ; A_{1}, \cdots, A_{n}\right)
$$

Corollary 3.5. Let $A_{1}, \cdots, A_{n} \in \mathbb{P}$ such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m<M$, and a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$. Put $h=\frac{M}{m}$. Then

$$
\left\|G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right)\right\| \leq\left\|\diamond\left(\omega ; A_{1}, \cdots, A_{n}\right)\right\| \leq S(h)\left\|G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right)\right\|
$$

for every unitarily invariant norm $\|\cdot\|$, where the Specht ratio $S(h)$ is defined by (3.2).
Proof. The first inequality is due to Theorem C in $\S 4$ and (1.2). The second inequality is due to Corollary 3.4.

Similarly we have the following order relation between the ALM mean and the chaotic geometric mean.
Corollary 3.6. Let $A_{1}, \cdots, A_{n} \in \mathbb{P}$ such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m<M$, and a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$. Put $h=\frac{M}{m}$. Then

$$
S(h)^{-1} \diamond\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq G_{\text {alm }}\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq S(h) \diamond\left(\omega ; A_{1}, \cdots, A_{n}\right)
$$

and

$$
S(h)^{-1}\left\|G_{\text {alm }}\left(\omega ; A_{1}, \cdots, A_{n}\right)\right\| \leq\left\|\diamond\left(\omega ; A_{1}, \cdots, A_{n}\right)\right\| \leq S(h)\left\|G_{\text {alm }}\left(\omega ; A_{1}, \cdots, A_{n}\right)\right\|
$$

for every unitarily invariant norm $\|\cdot\|$, where the Specht ratio $S(h)$ is defined by (3.2).

4. Ando-Hiai inequality for the ALM geometric mean

In this section, from the viewpoint of the Ando-Hiai inequality, we make a comparison among three geometric means: The ALM mean, the Karcher mean and the chaotic geometric mean.

Let A_{1}, \cdots, A_{n} be positive definite matrices in \mathbb{P} and a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$. By definition, the chaotic geometric mean satisfies the n-variable Ando-Hiai inequality: $\diamond\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq I$ implies $\diamond\left(\omega ; A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq I$ for all $p>0$. On the other hand, Yamazaki [25] showed that

$$
\begin{equation*}
\sum_{i=1}^{n} \omega_{i} \log A_{i} \leq 0 \quad \text { implies } \quad G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq I \tag{4.1}
\end{equation*}
$$

By (4.1), Yamazaki showed the following n-variable Ando-Hiai inequality for the Karcher mean:

Theorem B. Let $A_{1}, \cdots, A_{n} \in \mathbb{P}$ and a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$. Then

$$
\begin{equation*}
G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right) \leq I \quad \text { implies } \quad G_{k}\left(\omega ; A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq I \quad \text { for all } p \geq 1 \tag{4.2}
\end{equation*}
$$

or equivalently,

$$
\left\|G_{k}\left(\omega ; A_{1}^{p}, \cdots, A_{n}^{p}\right)\right\|_{\infty} \leq\left\|G_{k}\left(\omega ; A_{1}, \cdots, A_{n}\right)^{p}\right\|_{\infty} \quad \text { for all } p \geq 1
$$

By Theorem B, Hiai [16] showed the following log-majorization for the Karcher mean:

Theorem C. Let $A_{1}, \cdots, A_{n} \in \mathbb{P}$ and a weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$. Then for $p \geq q>0$

$$
\left\|G_{k}\left(\omega ; A_{1}^{p}, \cdots, A_{n}^{p}\right)^{1 / p}\right\| \leq\left\|G_{k}\left(\omega ; A_{1}^{q}, \cdots, A_{n}^{q}\right)^{1 / q}\right\|
$$

for every unitarily invariant norm $\|\cdot\| \|$.
If the ALM mean satisfies the n-variable Ando-Hiai inequality, then it follows from [25, Corollary 6] that the ALM mean coincides with the Karcher mean. It is known that the ALM mean is different from the Karcher mean. Hence the ALM mean doe not satisfy the n-variable Ando-Hiai inequality. Then we have the following evaluation among three geometric means by means of the Kantorovich constant:

Theorem 4.1. Let A_{1}, \cdots, A_{n} be positive definite matrices in \mathbb{P} such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m<M$. Then the following assertions are mutually equivalent:
(i) $\diamond\left(A_{1}, \cdots, A_{n}\right) \leq I$.
(ii) $\quad G_{k}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq I$ for all $p>0$.
(iii) $\quad G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq \frac{\left(M^{p}+m^{p}\right)^{2}}{4 M^{p} m^{p}} I$ for all $p>0$.

Proof. The equivalence of (i) and (ii) is shown in [25, Theorem 4].
Proof of $(\mathrm{ii}) \Longrightarrow$ (iii). By the Kantorovich inequality [13], we have

$$
\begin{aligned}
G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right) & \leq \frac{1}{n} \sum_{i=1}^{n} A_{i} \leq \frac{(M+m)^{2}}{4 M m}\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}^{-1}\right)^{-1} \\
& \leq \frac{(M+m)^{2}}{4 M m} G_{k}\left(A_{1}, \cdots, A_{n}\right)
\end{aligned}
$$

and hence it follows from $m^{p} I \leq A_{i}^{p} \leq M^{p} I$ for $i=1, \ldots, n$ that

$$
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq \frac{\left(M^{p}+m^{p}\right)^{2}}{4 M^{p} m^{p}} G_{k}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq \frac{\left(M^{p}+m^{p}\right)^{2}}{4 M^{p} m^{p}} I
$$

for all $p>0$.
Proof of $(\mathrm{iii}) \Longrightarrow(\mathrm{i})$. By assumption

$$
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}} \leq\left(\frac{\left(M^{p}+m^{p}\right)^{2}}{4 M^{p} m^{p}}\right)^{\frac{1}{p}} I
$$

for all $p>0$. Since $\lim _{p \rightarrow 0}\left(\frac{\left(M^{p}+m^{p}\right)^{2}}{4 M^{p} m^{p}}\right)^{\frac{1}{p}}=1$ and the ALM mean $G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}$ converges to the chaotic geometric mean $\diamond\left(A_{1}, \cdots, A_{n}\right)$ as $p \rightarrow 0$ in [12], we have (i).

We recall the definition of the generalized Kantorovich constant, also see [15, Definition 2.2]. For positive definite A_{1}, \cdots, A_{n} in \mathbb{P}, Jensen operator inequality for an operator convex function says that

$$
\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}\right)^{p} \leq \frac{1}{n} \sum_{i=1}^{n} A_{i}^{p} \quad \text { for all } 1 \leq p \leq 2
$$

Then we have the following reverse of Jensen operator inequality:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} A_{i}^{p} \leq K(m, M, p)\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}\right)^{p} \quad \text { for all } p \geq 1 \tag{4.3}
\end{equation*}
$$

where the generalized Kantorovich constant $K(m, M, p)$ is defined by

$$
\begin{equation*}
K(m, M, p)=\frac{m M^{p}-M m^{p}}{(p-1)(M-m)}\left(\frac{p-1}{p} \frac{M^{p}-m^{p}}{m M^{p}-M m^{p}}\right)^{p} \tag{4.4}
\end{equation*}
$$

for any real numbers $p \in \mathbb{R}$. In particular, $K(m, M, 2)$ coincides with the Kantorovich constant $\frac{(M+m)^{2}}{4 M m}$.

We need the following lemma to show our results.
Lemma 4.2. Let A and B be positive definite matrices. If $A \leq B$, then there exists a unitary matrix U such that $A^{p} \leq U B^{p} U^{*}$ for all $p>0$.
Proof. If $A \leq B$, then there exists a unitary matrix U such that $A \leq U B U^{*}$ and A commutes with $U B U^{*}$. Hence we have $A^{p} \leq\left(U B U^{*}\right)^{p}=U B^{p} U^{*}$ for all $p>0$.

By Theorem 3.2, we have the following complements of the n-variable Ando-Hiai inequality for the ALM mean.

Theorem 4.3. Let A_{1}, \cdots, A_{n} be positive definite marices in \mathbb{P} such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m<M$. Then

$$
\begin{equation*}
\left\|G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)\right\| \leq K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p}\left\|G_{\mathrm{alm}}\left(A_{1}, \cdots, A_{n}\right)^{p}\right\| \tag{4.5}
\end{equation*}
$$

for all $p \geq 1$ and every unitarily invariant norm $\|\cdot\|$. In particular,

$$
\begin{equation*}
G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right) \leq I \text { implies } G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p} I \tag{4.6}
\end{equation*}
$$

for all $p \geq 1$.
Proof. By the arithmetic-geometric mean inequality and (4.3), it follows that

$$
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq \frac{1}{n} \sum_{i=1}^{n} A_{i}^{p} \leq K(m, M, p)\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}\right)^{p} \quad \text { for all } p \geq 1
$$

On the other hand, by the Specht type theorem for the ALM mean, it follows that

$$
\frac{1}{n} \sum_{i=1}^{n} A_{i} \leq \frac{(M+m)^{2}}{4 M m} G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right)
$$

and hence by Lemma 4.2 there exists a unitary matrix U such that

$$
\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}\right)^{p} \leq\left(\frac{(M+m)^{2}}{4 M m}\right)^{p} U G_{\mathrm{alm}}\left(A_{1}, \cdots, A_{n}\right)^{p} U^{*}
$$

for all $p \geq 1$. Combining two inequalities above, we have

$$
G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p} U G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right)^{p} U^{*}
$$

and this implies

$$
\left\|G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)\right\| \leq K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p}\left\|G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right)^{p}\right\| \quad \text { for all } p \geq 1
$$

In particular, it follows that

$$
\left\|G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)\right\|_{\infty} \leq K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p}\left\|G_{\mathrm{alm}}\left(A_{1}, \cdots, A_{n}\right)^{p}\right\|_{\infty}
$$

for all $p \geq 1$. If $G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right) \leq I$, then

$$
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq\left\|G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)\right\|_{\infty} \leq K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p}
$$

for all $p \geq 1$.
Remark 4.4. We can improve the result of (4.6) a little more. In fact, it follows that

$$
G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p-1} U G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right)^{p-1} U^{*}\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}\right)
$$

and hence if $G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right) \leq I$, then we have

$$
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p-1}\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}\right)
$$

for all $p \geq 1$. Put

$$
\Delta(p)=\min \left\{K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p}, K(m, M, p)\left(\frac{(M+m)^{2}}{4 M m}\right)^{p-1} M\right\}
$$

for $p \geq 1$. Then we have the following Ando-Hiai inequality for the ALM mean.

$$
G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right) \leq I \quad \text { implies } \quad G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq \Delta(p) I
$$

for all $p \geq 1$. However, we have $\Delta(1) \neq 1$.
Theorem 4.5. Let A_{1}, \cdots, A_{n} be positive definite marices in \mathbb{P} such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m<M$. Then

$$
\begin{equation*}
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq\left(\frac{(M+m)^{2}}{4 M m}\right)^{p} G_{\mathrm{alm}}\left(A_{1}, \cdots, A_{n}\right)^{p} \quad \text { for all } 0<p<1 \tag{4.7}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
G_{\text {alm }}\left(A_{1}, \cdots, A_{n}\right) \leq I \quad \text { implies } \quad G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq\left(\frac{(M+m)^{2}}{4 M m}\right)^{p} I \tag{4.8}
\end{equation*}
$$

for all $0<p<1$.
Proof. By the arithmetic-geometric mean inequality and $0<p<1$, it follows from the Löwner-Heinz theorem and (3.3) that

$$
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq \frac{1}{n} \sum_{i=1}^{n} A_{i}^{p} \leq\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}\right)^{p} \leq\left(\frac{(M+m)^{2}}{4 M m}\right)^{p} G_{\mathrm{alm}}\left(A_{1}, \cdots, A_{n}\right)^{p}
$$

for all $0<p<1$.

By using the Specht type theorem for the ALM mean, we have the following complements of the log-majorization for the ALM mean.
Theorem 4.6. Let A_{1}, \cdots, A_{n} be positive definite matrices in \mathbb{P} such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m \leq M$. Then for each $0<q \leq p$

$$
\begin{aligned}
K\left(m^{q}, M^{q}, \frac{p}{q}\right)^{-\frac{1}{p}} & \left(\frac{4 M^{q} m^{q}}{\left(M^{q}+m^{q}\right)^{2}}\right)^{\frac{1}{q}}\left\|G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}\right\| \leq\left\|G_{\mathrm{alm}}\left(A_{1}^{q}, \cdots, A_{n}^{q}\right)^{\frac{1}{q}}\right\| \\
& \leq K\left(m^{q}, M^{q}, \frac{p}{q}\right)^{\frac{1}{p}}\left(\frac{\left(M^{q}+m^{q}\right)^{2}}{4 M^{q} m^{q}}\right)^{\frac{1}{q}}\left\|G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}\right\|
\end{aligned}
$$

for every unitarily invariant norm $\|\cdot\|$, where the generalized Kantorovich constant $K(m, M, p)$ is defined by (4.4).

Proof. For each $0<q \leq p$, it follows from the arithmetic-geometric mean inequality and (4.3) that

$$
G_{\text {alm }}\left(A_{1}^{\frac{p}{q}}, \cdots, A_{n}^{\frac{p}{q}}\right) \leq \frac{1}{n} \sum_{i=1}^{n} A_{i}^{\frac{p}{q}} \leq K\left(m, M, \frac{p}{q}\right)\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}\right)^{\frac{p}{q}} \quad \text { by } \frac{p}{q} \geq 1
$$

Replacing A_{i} by A_{i}^{q}, we have

$$
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq K\left(m^{q}, M^{q}, \frac{p}{q}\right)\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}^{q}\right)^{\frac{p}{q}}
$$

On the other hand, by (3.3) and $m^{q} I \leq A_{i}^{q} \leq M^{q} I$ for $i=1, \ldots, n$ we have

$$
\frac{1}{n} \sum_{i=1}^{n} A_{i}^{q} \leq \frac{\left(M^{q}+m^{q}\right)^{2}}{4 M^{q} m^{q}} G_{\mathrm{alm}}\left(A_{1}^{q}, \cdots, A_{n}^{q}\right)
$$

and by Lemma 4.2 that there exists a unitary matrix U such that

$$
\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}^{q}\right)^{\frac{p}{q}} \leq\left(\frac{\left(M^{q}+m^{q}\right)^{2}}{4 M^{q} m^{q}}\right)^{\frac{p}{q}} U G_{\mathrm{alm}}\left(A_{1}^{q}, \cdots, A_{n}^{q}\right)^{\frac{p}{q}} U^{*} .
$$

Therefore it follows that

$$
G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right) \leq K\left(m^{q}, M^{q}, \frac{p}{q}\right)\left(\frac{\left(M^{q}+m^{q}\right)^{2}}{4 M^{q} m^{q}}\right)^{\frac{p}{q}} U G_{\mathrm{alm}}\left(A_{1}^{q}, \cdots, A_{n}^{q}\right)^{\frac{p}{q}} U^{*}
$$

By Lemma 4.2 again, there exists a unitary matrix V such that

$$
G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}} \leq K\left(m^{q}, M^{q}, \frac{p}{q}\right)^{\frac{1}{p}}\left(\frac{\left(M^{q}+m^{q}\right)^{2}}{4 M^{q} m^{q}}\right)^{\frac{1}{q}} V G_{\mathrm{alm}}\left(A_{1}^{q}, \cdots, A_{n}^{q}\right)^{\frac{1}{q}} V^{*}
$$

and this implies the first inequality of the desired one. Replacing A_{i} by A_{i}^{-1} in the inequality above and moreover taking the inverse, it follows from the self-duality of the ALM mean that

$$
G_{\mathrm{alm}}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}} \geq\left(K\left(m^{q}, M^{q}, \frac{p}{q}\right)^{\frac{1}{p}}\left(\frac{\left(M^{q}+m^{q}\right)^{2}}{4 M^{q} m^{q}}\right)^{\frac{1}{q}}\right)^{-1} V G_{\mathrm{alm}}\left(A_{1}^{q}, \cdots, A_{n}^{q}\right)^{\frac{1}{q}} V^{*}
$$

and this implies the second inequality of the desired one.

If we put $q \rightarrow 0$ in Theorem 4.6, then we have the following theorem.
Theorem 4.7. Let A_{1}, \cdots, A_{n} be positive definite matrices in \mathbb{P} such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m \leq M$. Put $h=\frac{M}{m}$. Then

$$
\begin{aligned}
S\left(h^{p}\right)^{-\frac{1}{p}}\left\|G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}\right\| & \leq\left\|\diamond\left(A_{1}, \cdots, A_{n}\right)\right\| \\
& \leq S\left(h^{p}\right)^{\frac{1}{p}}\left\|G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}\right\|
\end{aligned}
$$

for all $p>0$ and every unitarily invariant norm $\|\cdot\|$. In particular,

$$
S\left(h^{p}\right)^{\frac{1}{p}}\left\|G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}\right\| \rightarrow\left\|\diamond\left(A_{1}, \cdots, A_{n}\right)\right\| \quad \text { as } p \rightarrow 0
$$

where the Specht ratio $S(h)$ is defined by (3.2).
Proof. It follows from $K\left(m^{q}, M^{q}, \frac{p}{q}\right)^{\frac{1}{p}} \rightarrow S\left(h^{p}\right)^{\frac{1}{p}}$ as $q \rightarrow 0$ in [15, Theorem 2.56].
Remark 4.8. If we put $p=1$ in Theorem 4.7, then we have Corollary 3.6.

5. Comparisons

In this final section, we make a comparison between the ALM mean and the Karcher mean. Though the ALM mean does not coincide with the Karcher one in general, we have the following estimate.
Theorem 5.1. Let A_{1}, \cdots, A_{n} be positive definite matrices in \mathbb{P} such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m \leq M$. Then

$$
\frac{4 M m}{(M+m)^{2}} G_{k}\left(A_{1}, \cdots, A_{n}\right) \leq G_{\mathrm{alm}}\left(A_{1}, \cdots, A_{n}\right) \leq \frac{(M+m)^{2}}{4 M m} G_{k}\left(A_{1}, \cdots, A_{n}\right)
$$

Proof. The second inequality follows from the proof of $(\mathrm{ii}) \Longrightarrow$ (iii) of Theorem 4.1. For the first inequality, we similarly have

$$
\begin{aligned}
G_{k}\left(A_{1}, \cdots, A_{n}\right) & \leq \frac{1}{n} \sum_{i=1}^{n} A_{i} \leq \frac{(M+m)^{2}}{4 M m}\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}^{-1}\right)^{-1} \\
& \leq \frac{(M+m)^{2}}{4 M m} G_{\mathrm{alm}}\left(A_{1}, \cdots, A_{n}\right)
\end{aligned}
$$

By Theorem 5.1, we have the following norm inequality.
Theorem 5.2. Let A_{1}, \cdots, A_{n} be positive definite matrices in \mathbb{P} such that $m I \leq A_{i} \leq M I$ for $i=1, \ldots, n$ and some scalars $0<m \leq M$. Then

$$
\begin{aligned}
\left(\frac{4 M^{p} m^{p}}{\left(M^{p}+m^{p}\right)^{2}}\right)^{\frac{1}{p}}\left\|G_{k}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}\right\| & \leq\left\|G_{\text {alm }}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}\right\| \\
& \leq\left(\frac{\left(M^{p}+m^{p}\right)^{2}}{4 M^{p} m^{p}}\right)^{\frac{1}{p}}\left\|G_{k}\left(A_{1}^{p}, \cdots, A_{n}^{p}\right)^{\frac{1}{p}}\right\|
\end{aligned}
$$

for all $p>0$ and every unitarily invariant norm $\|\cdot\|$.

References

[1] T. Ando and F. Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197-198 (1994), 113-131.
[2] T. Ando, C.K. Li and R. Mathias, Geometric means, Linear Algebra Appl., 385 (2004), 305-334.
[3] V. Arsigny, P. Fillard, X. Pennec and N. Ayache, Geometric means in a novel vector space structure on symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 29 (2007), 328-347.
[4] K.V. Bhagwat and R. Subramanian, Inequalities between means of positive operators, Math. Proc. Camb. Phil. Soc., 83 (1978), 393-401.
[5] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[6] R. Bhatia, Positive Definite Matices, Princeton Ser. Appl. Math., Princeton University Press, Princeton, NJ, 2007.
[7] R. Bhatia and P. Grover, Norm inequalities related to the matrix geometric mean, Linear Algebra Appl., 437 (2012), 726-733.
[8] R. Bhatia and J. Holbrook, Riemannian geometry and matrix means, Linear Algebra Appl., 413 (2006), 594-618.
[9] R. Bhatia and R.I. Karandikar, Monotonicity of the matrix geometric mean, Math. Ann., 353 (2012), 1453-1467.
[10] D.A. Bini, B. Meini and F. Poloni, An effective matrix geometric mean satisfying the Ando-LiMathias properties, Math. Comp., 79 (2010), 437-452.
[11] J.I. Fujii, M. Fujii, M. Nakamura, J.E. Pečarić and Y. Seo, A reverse of the weighted geometric mean due to Lawson-Lim, Linear Algebra Appl., 427 (2007), 272-284.
[12] J.I. Fujii, M. Fujii and Y. Seo, The Golden-Thompson-Segal type inequalities related to the weighted geometric mean due to Lawson-Lim, J. Math. Inequal., 3 (2009), 511-518.
[13] J.I. Fujii, M. Nakamura, J. Pec̈arić and Y. Seo, Bounds for the ratio and difference between parallel sum and series via Mond-Pec̈arić method, Math. Inequal. Appl., 9, No.4, October (2006),749-759.
[14] M. Fujii and R. Nakamoto, A geometric mean in the Furuta inequality, Sci. Math. Jpn., 55 (2002), 615-621.
[15] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[16] F. Hiai, Log-majorization for weighted geometric mean of several matrices, note.
[17] S. Izumino and N. Nakamura, Geometric means of positive operators II, Sci. Math. Jpn., 69(2009), 35-44.
[18] S. Izumino and N. Nakamura, Geometric means of more than two operators, RIMS Kokyuroku. 1632 (2009), 14-27.
[19] J.D. Lawson and Y. Lim, A general framework for extending means to higher orders, Colloq. Math., 113 (2008), 191-221.
[20] Y. Lim and M. Palfia, Matrix power means and the Karcher mean, J. Funct. Anal., 262 (2012), 1498-1514.
[21] M. Moakher, A differential geometric approch to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), 735-747.
[22] Y. Seo, Norm inequalities for the chaotically geometric mean and its reverse, J. Math. Inequal., 1, No. 1 (2007), 39-43.
[23] Y. Seo, Generalized Pólya-Szegö type inequalities for some non-commutative geometric means, Linear Algebra Appl., 438 (2013), 1711-1726.
[24] W. Specht, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
[25] T. Yamazaki, Riemannian mean and matrix inequalities related to the Ando-Hiai inequality and chaotic order, to appear in Oper. Matrices.
[26] T. Yamazaki and M. Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2 (1999), 37-50.
${ }^{1}$ Department of Art and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan

E-mail address: fujii@cc.osaka-kyoiku.ac.jp
${ }^{2}$ Department of Mathematics Education, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan

E-mail address: yukis@cc.osaka-kyoiku.ac.jp

[^0]: 2010 Mathematics Subject Classification. 47A30, 47A63, 47A64.
 Key words and phrases. Ando-Li-Mathias geometric mean, Karcher mean, chaotic geometric mean, matrix geometric mean, unitarily invariant norm, Specht ratio, Kantorovich constant, Ando-Hiai inequality.

