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Abstract. For −1 ≤ t ≤ 1, Lim-Pálfia defined a new family of operator power means
of positive definite matrices and subsequently by Lawson-Lim their notion and most of
their results extend to the setting of positive invertible operators on a Hilbert space.
Each of these means except t ̸= 0 arises as a unique positive invertible solution of a
non-linear operator equation and satisfies all desirable properties of power arithmetic
means of positive real numbers. The purpose of this paper is to extend the range in
which operator power means due to Lawson-Lim-Pálfia are defined. We investigate some
properties of operator power means for t ∈ (−2, 2)\[−1, 1].

1. Introduction

Let B(H) be the C∗-algebra of all bounded linear operators on a Hilbert space H
equipped with the operator norm, S(H) the set of all bounded self-adjoint operators, and
P = P(H) the open convex cone of all positive invertible operators. For X,Y ∈ S(H), we
write X ≤ Y if Y − X is positive, and X < Y if Y − X is positive invertible.

For positive real numbers x1, . . . , xn ∈ R and a weight vector ω = (ω1, . . . , ωn) such as
ωi ≥ 0 for i = 1, . . . , n and

∑n
i=1 ωi = 1, the power arithmetic means

Mt(ω; x1, . . . , xn) =
(
ω1x

t
1 + · · · + ωnxt

n

)1/t
for t ∈ R

make a path of means from the harmonic one at t = −1 to the arithmetic one at t = 1
via the geometric one at t → 0. The following is a noncommutative version of the power
arithmetic mean: For positive invertible operators A1, . . . , An ∈ P and a weight vector ω

Mt(ω; A1, . . . , An) =

(
n∑

i=1

ωiA
t
i

)1/t

for t ∈ R.

Bhagwat and Subramanian [2] showed that the power arithmetic mean has the following
monotonicity:

1 ≤ t ≤ s =⇒ Mt(ω; A1, . . . , An) ≤ Ms(ω; A1, . . . , An)

and the limit M0(ω; A1, . . . , An) = u- limt→0+ Mt(ω; A1, . . . , An) exists and is equal to the
chaotic geometric mean exp(

∑n
i=1 ωi log Ai), also see [7, 15], which reduced to the usual

geometric mean in the case of commuting operators. However, Mt(ω; A1, . . . , An) does
not have the monotonicity for −1 < t < 1 in general and they are not operator means
except for the case of t = ±1.

Recently, for −1 ≤ t ≤ 1, Lim-Pálfia [13] defined a new family of operator power means
of positive definite matrices and subsequently by Lawson-Lim [12] their notion and most
of their results extend to the setting of positive invertible operators on a Hilbert space.
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We denote by {Pt(ω; A)}, where ω is a weight vector and A is an n-tuple of positive
invertible operators on a Hilbert space. Each of these means except t ̸= 0 arises as a
unique positive invertible solution Pt(ω; A) of a non-linear operator equation

X =
n∑

i=1

ωi(X ♯t Ai) (t ∈ [−1, 1]\{0})

and satisfies desirable properties of power arithmetic means of positive real numbers and
interpolates between the weighted harmonic and arithmetic means. Moreover, Lawson-
Lim showed that the Karcher mean of positive invertible operators coincides with the
limit of operator power means as t → 0. For more details on the Karcher mean; see
[4, 5, 17]. In fact, if Ai mutually commute for i = 1, . . . , n, then it follows that Pt(ω; A) =

(
∑n

i=1 ωiA
t
i)

1/t
. Moreover, they showed that the power means Pt(ω; A) have a monotone

increasing property for −1 < t < 1:

−1 < t ≤ s < 1 =⇒ Pt(ω; A) ≤ Ps(ω; A)

and an information monotonicity:

Φ(Pt(ω; A)) ≤ Pt(ω; Φ(A)) (t ∈ (0, 1])

for any unital positive limear map Φ.
However, the range in which the operator power means are defined, is limited to [−1, 1].

The purpose of this paper is to extend the range of the definition of power means Pt(ω; A).
Moreover, we investigate some properties of Pt(ω; A) for t ∈ (−2, 2)\[−1, 1].

2. Preliminaries

For A,B ∈ P and t ∈ [0, 1], the t-geometric operator mean is defined as

A ♯t B = A1/2
(
A−1/2BA−1/2

)t
A1/2.

For convenience, we use the notation ♮t for the binary operation

A ♮t B = A1/2
(
A−1/2BA−1/2

)t
A1/2 for t ̸∈ [0, 1],

whose formula is the same as ♯t. Though A♯tB for t ∈ [0, 1] is monotonic, A♮sB for
s ̸∈ [0, 1] is not.

Lemma 2.1. Let A,B, X, Y ∈ P and 1 < t ≤ 2. Then
(i) If X ≤ Y , then Y ♮t A ≤ X ♮t A.
(ii) If A ≤ B with m1 ≤ A ≤ M1, m2 ≤ B ≤ M2 and m ≤ X ≤ M for some scalars
0 < mi ≤ Mi (i = 1, 2) and 0 < m ≤ M , then

X ♮t A ≤ K(mi/M, Mi/m, t)X ♮t B for i = 1, 2,

where the generalized Kantorovich constant K(m,M, t) is defined by

(1) K(m,M, t) =
mM t − Mmt

(t − 1)(M − m)

(
t − 1

t

M t − mt

mM t − Mmt

)t

for any real number t ∈ R, see [11, Theorem 2.53].
(iii) If m ≤ A ≤ M for some scalars 0 < m ≤ M , then

∥ X ∥1−t mt ≤ X ♮t A ≤∥ X−1 ∥−(1−t) M t.
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Proof. (i): For 1 < t ≤ 2

Y ♮t A = A ♮1−t Y = A1/2
(
A−1/2Y A−1/2

)1−t
A1/2

= A1/2
(
A1/2Y −1A1/2

)t−1
A1/2

≤ A1/2
(
A1/2X−1A1/2

)t−1
A1/2 by 0 < t − 1 < 1 and Y −1 ≤ X−1

= X ♮t A.

(ii): Since A ≤ B, we have X−1/2AX−1/2 ≤ X−1/2BX−1/2 and m1/M ≤ X−1/2AX−1/2 ≤
M1/m and m2/M ≤ X−1/2BX−1/2 ≤ M2/m. By the generalized Kantorovich inequality
[11, Theorem 8.3], it follows from 1 < t ≤ 2 that

(X−1/2AX−1/2)t ≤ K(
mi

M
,
Mi

m
, t)(X−1/2BX−1/2)t for i = 1, 2,

and we have the desired inequality.
(iii): It follows from ∥ X−1 ∥−1≤ X ≤∥ X ∥ and (i). �

Remark 2.2. Let X ≥ 0 and 0 < A ≤ B. Then the inequality AXA ≤ BXB doe not
hold in general. If we put t = 2 in (2) of Lemma 2.1, then we have

AXA ≤ min

{
(nm1 + NM1)

2

4nNm1M1

,
(nm2 + NM2)

2

4nNm2M2

}
BXB

where n ≤ X ≤ N and m1 ≤ A ≤ M1,m2 ≤ B ≤ M2 for some scalars 0 < n ≤ N and

0 < mi ≤ Mi (i = 1, 2). If B = I, then we have AXA ≤ (n+N)2

4nN
X in [10, Lemma 4].

3. Thompson metric

The Thompson metric on P is defined by

d(A,B) = log max{M(A/B),M(B/A)}

where M(A/B) = inf{λ > 0 : A ≤ λB} =∥ B−1/2AB−1/2 ∥= r(B−1A). It is known that
d is a complete metric on P and

d(A,B) =∥ log B−1/2AB−1/2 ∥=∥ log A−1/2BA−1/2 ∥,

see [16]. We list some basic properties of the Thompson metric:

Lemma 3.1 (see [3, 6]). For A,B,C, D ∈ P
(i) d(A,B) = d(A−1, B−1) = d(T ∗AT, T ∗BT ) for invertible T ∈ B(H);
(ii) d(A + B, C + D) ≤ max{d(A,C), d(B, D)};
(iii) d(At, Bt) ≤ td(A,B) for t ∈ [0, 1];
(iv) d(αA, αB) = d(A,B) for positive real number α > 0;
(v) d(A♯tB, C♯tD) ≤ (1 − t)d(A, C) + td(B, D) for t ∈ [0, 1].

For A,B ∈ P, a map γA,B : R 7→ P defined by γA,B(t) = A♮tB for t ∈ R is a path
joining A and B. Then we have the following:

Theorem 3.2. Let A,B ∈ P. Then

d(A♮sB,A♮tB) = |s − t|d(A, B) for all s, t ∈ R.
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Proof. By definition of the Thompson metric and Lemma 3.1

d(A♮sB,A♮tB) = d((A−1/2BA−1/2)s, (A−1/2BA−1/2)t)

= d((A−1/2BA−1/2)s−t, I) =∥ log(A−1/2BA−1/2)s−t ∥
= |s − t| ∥ log A−1/2BA−1/2 ∥= |s − t|d(A,B).

�

We have the following estimate in the case of 1 < t < 2, which corresponds to (v) of
Lemma 3.1:

Theorem 3.3. Let A,B, C, D ∈ P such that m1A ≤ C ≤ M1A and m2B ≤ D ≤ M2B
for some scalars 0 < m1 ≤ M1 and 0 < m2 ≤ M2. For each 1 < t < 2

d(A♮tB, C♮tD) ≤ (t − 1)d(A,C) + td(B, D) + log K(t)

where K(t) = max{K(m1,M1, t), K(m2,M2, t)} and the generalized Kantorovich constant
K(m,M, t) is defined by (1).

Proof. Since ∥ A1/2C−1A1/2 ∥−1≤ A−1/2CA−1/2, it follows from Lemma 2.1 that

C ♮t D = A1/2
[
(A−1/2CA−1/2) ♮t (A−1/2DA−1/2)

]
A1/2

≤ A1/2
[
∥ A1/2C−1A1/2 ∥−1 ♮t (A−1/2DA−1/2)

]
A1/2 by (i) of Lemma 2.1

=∥ A1/2C−1A1/2 ∥−(1−t) A ♮t D

=∥ A1/2C−1A1/2 ∥−(1−t) B1/2
[
(B−1/2AB−1/2) ♮t (B−1/2DB−1/2)

]
B1/2

≤∥ A1/2C−1A1/2 ∥−(1−t)∥ B−1/2DB−1/2 ∥t K(m2, M2, t)B♮1−tA by (ii) of Lemma 2.1

=∥ A1/2C−1A1/2 ∥−(1−t)∥ B−1/2DB−1/2 ∥t K(m2,M2, t)A♮tB.

Similarly, it follows that

A♮tB ≤∥ C1/2A−1C1/2 ∥t−1∥ D−1/2BD1/2 ∥t K(m1,M1, t) C♮tD.

Therefore, we have

∥ (A♮tB)−1/2(C♮tD)(A♮tB)−1/2 ∥≤∥ A1/2C−1A1/2 ∥−(1−t)∥ B−1/2DB−1/2 ∥t K(m2,M2, t)

and

∥ (C♮tD)−1/2(A♮tB)(C♮tD)−1/2 ∥≤∥ C1/2A−1C1/2 ∥t−1∥ D−1/2BD1/2 ∥t K(m1,M1, t)

and this implies the desired inequality. �

4. Operator power means

In this section, we extend the range in which the power means due to Lawson-Lim-Pálfia
are defined. For this, we need the following Lemma:

Lemma 4.1. Let X, Y, A ∈ P and 1 < t ≤ 2. Then

d(X♮t A, Y ♮t A) ≤ (t − 1)d(X, Y ).
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Proof. For 1 < t ≤ 2,

d(X♮t A, Y ♮t A) = d(A♮1−tX,A♮1−t Y )

= d((A1/2X−1A1/2)t−1, (A1/2Y −1A1/2)t−1) by (i) of Lemma 3.1

≤ (t − 1)d(A1/2XA1/2, A1/2Y A1/2) by (iii) of Lemma 3.1

= (t − 1)d(X, Y ) by (i) of Lemma 3.1.

�
Theorem 4.2. Let A1, A2, . . . , An ∈ P and a weight vector ω = (ω1, . . . , ωn). Then for
each 1 < t < 2, the following equation has a unique positive invertible solution:

X =
n∑

i=1

ωi(X ♮t Ai).

Proof. We will show that the map f : P 7→ P defined by f(X) =
∑n

i=1 ωi(X♮tAi) is a
strict contraction with respect to the Thompson metric. Let X, Y > 0.

d(f(X), f(Y )) ≤ max
1≤i≤n

{d(ωi(X♮t Ai), ωi(Y ♮t Ai))} by (ii) of Lemma 3.1

= max
1≤i≤n

{d(X♮t Ai, Y ♮t Ai)} by (iv) of Lemma 3.1

≤ (t − 1)d(X,Y ) by Lemma 4.1.

Since 1 < t < 2, it follows that f is a strict contraction and hence f has a unique fixed
point. �
Definition 4.3. Let A = (A1, . . . , An) ∈ Pn and a weight vector ω = (ω1, . . . , ωn). For
t ∈ (1, 2), we denote by Pt(ω; A) the unique positive invertible solution of

X =
n∑

i=1

ωi(X ♮t Ai).

For t ∈ (−2,−1), we define Pt(ω; A) = P−t(ω; A−1)−1, where A−1 = (A−1
1 , . . . , A−1

n ). In

fact, X = Pt(ω; A) is the unique positive invertible solution of X = (
∑n

i=1 ωi(X♮−tAi)
−1)

−1

and X−1 =
∑n

i=1 ωi(X
−1♮−tA

−1
i ) if and only if X−1 = P−t(ω; A−1).

Remark 4.4. Let t ∈ (1, 2). Put f : P 7→ P defined by f(X) =
∑n

i=1 ωi(X♮tAi). By
Theorem 4.2, f is a strict contraction for the Thompson metric and by the Banach fixed
point theorem

lim
k→∞

fk(X) = Pt(ω; A) for any X ∈ P.

Similarly, the map g(X) = (
∑n

i=1 ωi(X♮−tAi)
−1)

−1
is a strict contraction for the Thomp-

son metric and limk→∞ gk(X) = P−t(ω; A) for any X ∈ P.

For A = (A1, . . . , An) ∈ Pn,M ∈ B(H), ω = (ω1, . . . , ωn) and for a permutation σ on
n-letters, we set

MAM∗ = (MA1M
∗, . . . ,MAnM∗), Aσ = (Aσ(1), . . . , Aσ(n))

ω̂ =
1

1 − ωn

(ω1, . . . , ωn−1).

We list some basic properties of Pt(ω; A) for t ∈ (−2, 2)\[−1, 1].
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Proposition 4.5. Let A = (A1, . . . , An) ∈ Pn, a weight vector ω = (ω1, . . . , ωn) and let
t ∈ (−2, 2)\[−1, 1].

(i) Pt(ω; A) = (
∑n

i=1 ωiA
t
i)

1/t if the Ai’s commute;
(ii) Pt(ωσ; Aσ) = Pt(ω; A) for any permutation σ;
(iii) Pt(ω; MAM∗) = MPt(ω; A)M∗ for any invertible M ;
(iv) Pt(ω; A−1)−1 = P−t(ω; A);
(v)

∑n
i=1 ωiAi ≤ Pt(ω; A) for t ∈ (1, 2);

(vi) Pt(ω; A) ≤ (
∑n

i=1 ωiA
−1
i )−1 for t ∈ (−2,−1);

(vii) If m ≤ Ai ≤ M for i = 1, . . . , n and some scalars 0 < m ≤ M , then m ≤
Pt(ω; A) ≤ m1−tM t for t ∈ (1, 2) and m−tM1+t ≤ Pt(ω; A) ≤ M for t ∈ (−2,−1);

(viii) For t ∈ (1, 2), Pt(ω; A1, . . . , An−1, X) = X if and only if X = Pt(ω̂; A1, . . . , An−1).

Proof. Proofs from (i) to (iv) are similar to those of [13].
(v): Put X = Pt(ω; A) for t ∈ (1, 2). Since αT + (1−α)I ≤ Tα for all α > 1 and positive
invertible T , we have (1 − t)A + tB ≤ A♮tB for 1 < t < 2 putting T = A−1/2BA−1/2 and
multiplying A1/2 on both sides, see [9, pp.123]. Therefore it follows that

X =
n∑

i=1

ωi(X♮tAi) ≥
n∑

i=1

ωi((1 − t)X + tAi) = (1 − t)X + t
n∑

i=1

ωiAi

and hence X ≥
∑n

i=1 ωiAi.

(vi): Put X = Pt(ω; A) for t ∈ (−2,−1). Since X =
(∑n

i=1 ωi(X
−1♮−tA

−1
i )
)−1

, it follows
that

X−1 =
n∑

i=1

ωi(X
−1♮−tA

−1
i ) ≥

n∑
i=1

ωi((1 + t)X−1 + (−t)A−1
i ) = (1 + t)X−1 − t

n∑
i=1

ωiA
−1
i

and hence X ≤ (
∑n

i=1 ωiA
−1
i )−1 for t ∈ (−2,−1).

(vii): Put X = Pt(ω; A) for t ∈ (1, 2), and X ≥
∑n

i=1 ωiAi ≥ m. Hence we have

X =
n∑

i=1

ωi(X♮tAi) ≤
n∑

i=1

ωi(m♮tAi) =
n∑

i=1

ωi(m
1−tAt

i) ≤ m1−tM t

by (i) of Lemma 2.1. Similarly, put X = Pt(ω; A) for t ∈ (−2,−1), and

X ≤
(∑n

i=1 ωiA
−1
i

)−1 ≤ M . Hence we have

X−1 =
n∑

i=1

ωi(X
−1♮−tA

−1
i ) ≤

n∑
i=1

ωi(M
−1♮−tA

−1
i ) =

n∑
i=1

ωi(M
−1−tAt

i) ≤ M−1−tmt

and m−tM1+t ≤ X.
(viii): For 1 < t < 2, Pt(ω; A1, . . . , An−1, X) = X ⇐⇒ X =

∑n−1
i=1 ωi(X♮tAi) + ωnX ⇐⇒

X =
∑n−1

i=1
ωi

1−ωn
(X♮tAi) ⇐⇒ X = Pt(ω̂; A1, . . . , An−1). �

Theorem 4.6. Let A = (A1, . . . , An) ∈ Pn such that 0 < m ≤ Ai ≤ M for some scalars
0 < m ≤ M and a weight vector ω = (ω1, . . . , ωn). Let 1 < t ≤ s < 2. Then

d(Pt(ω; A), Ps(ω; A)) ≤ s − t

(2 − s)(2 − t)

[
t∆(A) + log K

(
m/M, (M/m)t, t

)]
,

where the generalized Kantorovich constant K(m,M, t) is defined by (1) and ∆(A) =
max1≤i,j≤n{d(Ai, Aj)} denotes the d-diameter of A = (A1, . . . , An).
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Proof. Put X = Pt(ω; A) and Y = Ps(ω; A). Since m ≤ Ai ≤ M for i = 1, . . . , n and m ≤
X ≤ m1−tM t, we have m/MAi ≤ X ≤ (M/m)tAi and m/MAi ≤ Aj ≤ M/mAi for i, j =
1, . . . , n. It follows from [18, Proposition 4] that K(m/M,M/m, t) ≤ K(m/M, (M/m)t, t)
for 1 < t < 2. By Theorem 3.3, it follows that

d(X,Aj) = d(
n∑

i=1

ωi(X♮tAi),
n∑

i=1

ωiAj)

≤ max
1≤i≤n

{d(X♮tAi, Aj♮tAj)}

≤ max
1≤i≤n

{
(t − 1)d(X, Aj) + td(Ai, Aj) + log K(m/M, (M/m)t, t)

}
= (t − 1)d(X, Aj) + t∆(A) + log K(m/M, (M/m)t, t)

for j = 1, . . . , n and hence we have

d(X, Aj) ≤
t

2 − t
∆(A) +

1

2 − t
log K(m/M, (M/m)t, t).

By Lemma 4.1, we have

d(X, Y ) = d(Y, X) = d(
n∑

i=1

ωi(Y ♮sAi),
n∑

i=1

ωi(X♮tAi))

≤ max
1≤i≤n

{d(Y ♮sAi, X♮tAi)}

≤ max
1≤i≤n

{d(Y ♮sAi, X♮sAi) + d(X♮sAi, X♮tAi)}

≤ max
1≤i≤n

{(s − 1)d(Y,X) + (s − t)d(X,Ai)}

≤ (s − 1)d(X,Y ) + (s − t)

[
t

2 − t
∆(A) +

1

2 − t
log K

(
m/M, (M/m)t, t

)]

and hence we have d(X, Y ) ≤ s−t
2−s

[
t

2−t
∆(A) + 1

2−t
log K (m/M, (M/m)t, t)

]
.

�

Theorem 4.7. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) such that 0 < m1 ≤ Ai ≤ M1

and 0 < m2 ≤ Bi ≤ M2 for i = 1, . . . , n for some scalars 0 < m1 ≤ M1 and 0 < m2 ≤ M2.
Then for each 1 < t < 2

d(Pt(ω; A), Pt(ω; B)) ≤ t

2 − t
max
1≤i≤n

{d(Ai, Bi)} +
1

2 − t
log K1(t),

where K1(t) = max{K(m2/m
1−t
1 M t

1,m
1−t
2 M t

2/m1, t), K(m2/M1,M2/m1, t)}.

Proof. For fixed t ∈ (1, 2), put X = Pt(ω; A) and Y = Pt(ω; B). Since m1 ≤ X ≤ m1−t
1 M t

1

and m2 ≤ Y ≤ m1−t
2 M t

2, we have m2/m
1−t
1 M t

1X ≤ Y ≤ m1−t
2 M t

2/m1X and m2/M1Ai ≤
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Bi ≤ M2/m1Ai for i = 1, . . . , n. Then it follows from Theorem 3.3 that

d(X,Y ) = d(
n∑

i=1

ωi(X♮tAi),
n∑

i=1

ωi(Y ♮tBi))

≤ max
1≤i≤n

{d(X♮tAi, Y ♮tBi)}

≤ max
1≤i≤n

{(t − 1)d(X, Y ) + td(Ai, Bi) + log K1(t)}

= (t − 1)d(X, Y ) + t max
1≤i≤n

{d(Ai, Bi)} + log K1(t).

�
Remark 4.8. As t → 1 in Theorem 4.7, we have K1(t) → 1. Since P1(ω; A) =∑n

i=1 ωiAi and P1(ω; B) =
∑n

i=1 ωiBi, this corresponds to d(
∑n

i=1 ωiAi,
∑n

i=1 ωiBi) ≤
max1≤i≤n{d(Ai, Bi)}, see [12, Lemma 2.4].

5. Monotonicity of power means

In this section, we consider the monotonicity of Pt(ω; A) for 1 < t < 2. Before this, in
the case of n = 2, we consider an explicit form of Pt(1 − α, α; A, B) for 1 < t < 2 and
moreover a positive solution of

(2) X = (1 − α)(X♮tA) + α(X♮tB) for t ∈ R.

The solution of (2) is X = Amt,αB = A1/2
(
(1 − α)I + α(A−1/2BA−1/2)t

)1/t
A1/2. Indeed,

put C = A−1/2BA−1/2 and Y = ((1 − α)I + αCt)
1/t

. Then it follows that

(1 − α)(X♮tA) + α(X♮tB) = A1/2 ((1 − α)(Y ♮tI) + α(Y ♮tC)) A1/2

= A1/2
(
(1 − α)Y 1−t + αY 1−tCt

)
A1/2

= A1/2
(
Y 1−t((1 − α)I + αCt)

)
A1/2

= A1/2Y A1/2 = X.

It is known that the solution X = Amt,αB for α ∈ [0, 1] is nondecreasing for t ∈ R, see
[11, Theorem 5.21]. However, in the case of n ≥ 3, we have the following order relation:

Theorem 5.1. Let A = (A1, . . . , An) ∈ Pn such that m ≤ Ai ≤ M for i = 1, . . . , n and
some scalars 0 < m ≤ M . Then for each 1 < t ≤ s < 2

(3) (m/M)
t(s−1)
2−s Ps(ω; A) ≤ Pt(ω; A) ≤ (M/m)

s(t−1)
2−t Ps(ω; A).

To prove Theorem 5.1, we need the following two lemmas. The following lemma is the
complement of the Löwner-Heinz inequality:

Lemma 5.2. ([14, Lemma 2.2]) If Y ≤ X, then Xp ≤∥ Xp/2Y −pXp/2 ∥ Y p for 0 < p < 1.

Lemma 5.3. For 1 < t < 2, define f(X) =
∑n

i=1 ωi(X♮tAi) where Ai are positive
invertible operators and ω is a weight vector. Let X, Y be positive invertible operators
such that m1 ≤ Y ≤ M1 and m2 ≤ X ≤ M2 for some scalars 0 < mi ≤ Mi (i = 1, 2).
Then

Y ≤ X =⇒ f(X) ≤ f(Y ) ≤ (M2/m1)
t−1 f(X).

In particular, f 2 is monotone, that is, if Y ≤ X, then f 2(Y ) ≤ f 2(X).
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Proof. The assumption Y ≤ X implies f(Y ) =
∑n

i=1(Y ♮tAi) ≥
∑n

i=1(X♮tAi) = f(X)

by (i) of Lemma 2.1. Put Xi = A
1/2
i X−1A

1/2
i , Yi = A

1/2
i Y −1A

1/2
i for i = 1, . . . , n. Since

X−1 ≤ Y −1, we have Xi ≤ Yi and it follows from Lemma 5.2 and 0 < t − 1 < 1 that

Y t−1
i ≤∥ Y

(t−1)/2
i X

−(t−1)
i Y

(t−1)/2
i ∥ X t−1

i

for i = 1, . . . , n and hence

Y ♮tAi ≤∥ Y
(t−1)/2
i X

−(t−1)
i Y

(t−1)/2
i ∥ X♮tAi.

Also, by the Araki-Cordes inequality [11, pp.67], we have

∥ Y
(t−1)/2
i X

−(t−1)
i Y

(t−1)/2
i ∥≤∥ Y

1/2
i X−1

i Y
1/2
i ∥t−1

= r((A
1/2
i Y −1A

1/2
i )(A

−1/2
i XA

−1/2
i ))t−1

= r(XY −1)t−1 =∥ X1/2Y −1X1/2 ∥t−1≤ (M2/m1)
t−1 .

Therefore, we have

f(Y ) =
n∑
i

ωi(Y ♮tAi) ≤ (M2/m1)
t−1

n∑
i

ωi(X♮tAi) = (M2/m1)
t−1f(X).

�
Proof of Theorem 5.1 Put f(X) =

∑n
i=1 ωi(X♮tAi) and then Pt(ω; A) = limk→∞ fk(X)

for any X ∈ P. Since X♮tAi = X♮t/s(X♮sAi), it follows from 0 < t/s ≤ 1 that

f(X) =
n∑

i=1

ωi(X♮tAi) =
n∑

i=1

ωi

[
X♯t/s(X♮sAi)

]
≤

n∑
i=1

ωi

[
(1 − t

s
)X +

t

s
(X♮sAi)

]

= (1 − t

s
)X +

t

s

n∑
i=1

ωi(X♮sAi).

If we put X0 = Ps(ω; A), then we have

f(X0) ≤ (1 − t

s
)X0 +

t

s

n∑
i=1

ωi(X0♮sAi) = (1 − t

s
)X0 +

t

s
X0 = X0.

Moreover, we have m ≤ X0 ≤ m1−sM s and (m1−sM s)1−tmt ≤ f(X0) ≤ m1−tM t. By
Lemma 5.3, it follows that

f 2(X0) ≤
(

m1−sM s

(m1−sM s)1−tmt

)t−1

f(X0) ≤ (M/m)st(t−1) X0.

Since f2 is monotonic, we have

f4(X0) ≤ f2
(
(M/m)st(t−1)X0

)
= (M/m)st(t−1)(1−t)2 f2(X0)

≤ (M/m)st(t−1)(1−t)2+st(t−1) X0.

Inductively we have

f 2k(X0) ≤
[
(M/m)st(t−1)

] 1−(1−t)2k

1−(1−t)2 X0.
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As k → ∞, we have the desired inequality Pt(ω; A) ≤ (M/m)
s(t−1)
2−t Ps(ω; A).

Similarly, if we put Y0 = Ps(ω; A) and g(X) =
∑n

i=1 ωi(X♮sAi), then we have the LHS
of (3) in Theorem 5.1.

6. Positive linear maps

In this section, we consider an information monotonicity of Pt(ω; A) for 1 < t < 2.
Though the Ando inequality Φ(A♯tB) ≤ Φ(A)♯tΦ(B) holds for any positive linear map
and t ∈ [0, 1] (see [1]), the reverse holds in the case of t ∈ (1, 2):

Lemma 6.1. Let Φ be a positive linear map on B(H) and A,B ∈ P such that mA ≤ B ≤
MA for some scalars 0 < m ≤ M . Then

Φ(A♮tB) ≥ Φ(A)♮tΦ(B) ≥ K(m,M, t)−1Φ(A♮tB) for 1 < t < 2,

where the generalized Kantorovich constant K(m,M, t) is defined by (1).

Proof. We may assume that Φ is strictly positive. For A,B > 0, put

Ψ(X) = Φ(A)−1/2Φ(A1/2XA1/2)Φ(A)−1/2

and hence Ψ is a unital positive linear map. By the Jensen inequality [11, Corollary 1.22,
Corollary 2.12]

(4) K(m,M, t)Ψ(X)t ≥ Ψ(X t) ≥ Ψ(X)t for 1 < t < 2.

Therefore, it follows that

Φ(A)−1/2Φ(A♮tB)Φ(A)−1/2 = Φ(A)−1/2Φ(A1/2(A−1/2BA−1/2)tA1/2)Φ(A)−1/2

= Ψ((A−1/2BA−1/2)t)

≥ Ψ(A−1/2BA−1/2)t

=
(
Φ(A)−1/2Φ(B)Φ(A)−1/2

)t
and we have Φ(A♮tB) ≥ Φ(A)♮tΦ(B). Similarly, by using (4), we have the RHS of
Lemma 6.1. �

The operator power means Pt(ω; A) for t ∈ (0, 1] have an information monotonicity, see
[12, Proposition 3.6]. In the case of t ∈ (1, 2), we have the following slightly modification:

Theorem 6.2. Let A = (A1, . . . , An) and a weight vector ω. Let Φ be a unital positive
linear map. For each 1 < t < 2

K
(
(m/M)t ,M/m, t

) −1
t(2−t) (m/M)

t−1
2−t Φ(Pt(ω; A)) ≤ Pt(ω; Φ(A)) ≤ (M/m)

t(t−1)
2−t Φ(Pt(ω; A)),

where Φ(A) = (Φ(A1), . . . , Φ(An)) and the generalized Kantorovich constant K(m,M, t)
is defined by (1).

Proof. Put X = Pt(ω; A) and f(Y ) =
∑n

i=1 ωi(Y ♮tΦ(Ai)) for any Y ∈ P. Since Φ is
unital, we have m ≤ Φ(X) ≤ m1−tM t. Since f(Φ(X)) =

∑n
i=1 ωi(Φ(X)♮tΦ(Ai)), we

have (m1−tM t)1−tmt ≤ f(Φ(X)) ≤ m1−tM t. It follows from f(Φ(X)) ≤ Φ(X) that

f 2(Φ(X)) ≤ (M/m)t2(t−1)f(Φ(X)). Hence we have

f 3(Φ(X)) ≤ f 2(Φ(X)) ≤ (M/m)t2(t−1)Φ(X).
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Inductively it follows that

f2k−1(Φ(X)) ≤
[
(M/m)t2(t−1)

] 1−(1−t)2k

1−(1−t)2

Φ(X)

and as k → ∞ we have

Pt(ω; Φ(A)) ≤
[
(M/m)t2(t−1)

] 1
1−(1−t)2

Φ(Pt(ω; A)) = (M/m)
t(t−1)
2−t Φ(Pt(ω; A)).

Conversely, since K((m/M)t,M/m, t)−1Φ(X) ≤ f(Φ(X)), we have

K((m/M)t,M/m, t)−1(M/m)t(t−1)Φ(X) ≤ f 2(Φ(X)).

Since f2 is monotone, it follows that

f 3(Φ(X)) ≥ f 2(K((m/M)t,M/m, t)−1Φ(X)) = K((m/M)t,M/m, t)−(1−t)2f 2(Φ(X))

≥ K((m/M)t,M/m, t)−1−(1−t)2(m/M)t(t−1)Φ(X).

Inductively, we have

K((m/M)t,M/m, t)
− 1−(1−t)2(k−1)

1−(1−t)2
[
(m/M)t(t−1)

] 1
1−(1−t)2 Φ(X) ≤ f2k−1(Φ(X))

for k = 1, 2 · · · and as k → ∞

K((m/M)t,M/m, t)
−1

t(2−t) (m/M)
t−1
2−t Φ(Pt(ω; A) ≤ Pt(ω; Φ(A)).

�
Remark 6.3. As t → 1 in Theorem 6.2, we have K((m/M)t,M/m, t)

−1
t(2−t) (m/M)

t−1
2−t → 1

and (M/m)t2(t−1) → 1. This corresponds to P1(ω; Φ(A)) =
∑n

i=1 ωiΦ(Ai) = Φ(
∑n

i=1 ωiAi) =
Φ(P1(ω; A)).
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