OPERATOR POWER MEANS DUE TO LAWSON-LIM-PÁLFIA FOR $1<t<2$

YUKI SEO

Abstract

For $-1 \leq t \leq 1$, Lim-Pálfia defined a new family of operator power means of positive definite matrices and subsequently by Lawson-Lim their notion and most of their results extend to the setting of positive invertible operators on a Hilbert space. Each of these means except $t \neq 0$ arises as a unique positive invertible solution of a non-linear operator equation and satisfies all desirable properties of power arithmetic means of positive real numbers. The purpose of this paper is to extend the range in which operator power means due to Lawson-Lim-Pálfia are defined. We investigate some properties of operator power means for $t \in(-2,2) \backslash[-1,1]$.

1. Introduction

Let $B(H)$ be the C^{*}-algebra of all bounded linear operators on a Hilbert space H equipped with the operator norm, $S(H)$ the set of all bounded self-adjoint operators, and $\mathbb{P}=\mathbb{P}(H)$ the open convex cone of all positive invertible operators. For $X, Y \in S(H)$, we write $X \leq Y$ if $Y-X$ is positive, and $X<Y$ if $Y-X$ is positive invertible.

For positive real numbers $x_{1}, \ldots, x_{n} \in \mathbb{R}$ and a weight vector $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ such as $\omega_{i} \geq 0$ for $i=1, \ldots, n$ and $\sum_{i=1}^{n} \omega_{i}=1$, the power arithmetic means

$$
M_{t}\left(\omega ; x_{1}, \ldots, x_{n}\right)=\left(\omega_{1} x_{1}^{t}+\cdots+\omega_{n} x_{n}^{t}\right)^{1 / t} \quad \text { for } t \in \mathbb{R}
$$

make a path of means from the harmonic one at $t=-1$ to the arithmetic one at $t=1$ via the geometric one at $t \rightarrow 0$. The following is a noncommutative version of the power arithmetic mean: For positive invertible operators $A_{1}, \ldots, A_{n} \in \mathbb{P}$ and a weight vector ω

$$
M_{t}\left(\omega ; A_{1}, \ldots, A_{n}\right)=\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{t}\right)^{1 / t} \quad \text { for } t \in \mathbb{R}
$$

Bhagwat and Subramanian [2] showed that the power arithmetic mean has the following monotonicity:

$$
1 \leq t \leq s \quad \Longrightarrow \quad M_{t}\left(\omega ; A_{1}, \ldots, A_{n}\right) \leq M_{s}\left(\omega ; A_{1}, \ldots, A_{n}\right)
$$

and the limit $M_{0}\left(\omega ; A_{1}, \ldots, A_{n}\right)=u-\lim _{t \rightarrow 0+} M_{t}\left(\omega ; A_{1}, \ldots, A_{n}\right)$ exists and is equal to the chaotic geometric mean $\exp \left(\sum_{i=1}^{n} \omega_{i} \log A_{i}\right)$, also see [7,15], which reduced to the usual geometric mean in the case of commuting operators. However, $M_{t}\left(\omega ; A_{1}, \ldots, A_{n}\right)$ does not have the monotonicity for $-1<t<1$ in general and they are not operator means except for the case of $t= \pm 1$.

Recently, for $-1 \leq t \leq 1$, Lim-Pálfia [13] defined a new family of operator power means of positive definite matrices and subsequently by Lawson-Lim [12] their notion and most of their results extend to the setting of positive invertible operators on a Hilbert space.

[^0]We denote by $\left\{P_{t}(\omega ; \mathbb{A})\right\}$, where ω is a weight vector and \mathbb{A} is an n-tuple of positive invertible operators on a Hilbert space. Each of these means except $t \neq 0$ arises as a unique positive invertible solution $P_{t}(\omega ; \mathbb{A})$ of a non-linear operator equation

$$
X=\sum_{i=1}^{n} \omega_{i}\left(X \not \sharp_{t} A_{i}\right) \quad(t \in[-1,1] \backslash\{0\})
$$

and satisfies desirable properties of power arithmetic means of positive real numbers and interpolates between the weighted harmonic and arithmetic means. Moreover, LawsonLim showed that the Karcher mean of positive invertible operators coincides with the limit of operator power means as $t \rightarrow 0$. For more details on the Karcher mean; see $[4,5,17]$. In fact, if A_{i} mutually commute for $i=1, \ldots, n$, then it follows that $P_{t}(\omega ; \mathbb{A})=$ $\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{t}\right)^{1 / t}$. Moreover, they showed that the power means $P_{t}(\omega ; \mathbb{A})$ have a monotone increasing property for $-1<t<1$:

$$
-1<t \leq s<1 \quad \Longrightarrow \quad P_{t}(\omega ; \mathbb{A}) \leq P_{s}(\omega ; \mathbb{A})
$$

and an information monotonicity:

$$
\Phi\left(P_{t}(\omega ; \mathbb{A})\right) \leq P_{t}(\omega ; \Phi(\mathbb{A})) \quad(t \in(0,1])
$$

for any unital positive limear map Φ.
However, the range in which the operator power means are defined, is limited to $[-1,1]$. The purpose of this paper is to extend the range of the definition of power means $P_{t}(\omega ; \mathbb{A})$. Moreover, we investigate some properties of $P_{t}(\omega ; \mathbb{A})$ for $t \in(-2,2) \backslash[-1,1]$.

2. Preliminaries

For $A, B \in \mathbb{P}$ and $t \in[0,1]$, the t-geometric operator mean is defined as

$$
A \sharp_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2} .
$$

For convenience, we use the notation k_{t} for the binary operation

$$
A \text { Ł }_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2} \quad \text { for } t \notin[0,1],
$$

whose formula is the same as \sharp_{t}. Though $A \nVdash_{t} B$ for $t \in[0,1]$ is monotonic, $A \bigsqcup_{s} B$ for $s \notin[0,1]$ is not.
Lemma 2.1. Let $A, B, X, Y \in \mathbb{P}$ and $1<t \leq 2$. Then
(i) If $X \leq Y$, then $Y \natural_{t} A \leq X \natural_{t} A$.
(ii) If $A \leq B$ with $m_{1} \leq A \leq M_{1}, m_{2} \leq B \leq M_{2}$ and $m \leq X \leq M$ for some scalars $0<m_{i} \leq M_{i}(i=1,2)$ and $0<m \leq M$, then

$$
X \mathfrak{h}_{t} A \leq K\left(m_{i} / M, M_{i} / m, t\right) X \mathfrak{h}_{t} B \quad \text { for } i=1,2,
$$

where the generalized Kantorovich constant $K(m, M, t)$ is defined by

$$
\begin{equation*}
K(m, M, t)=\frac{m M^{t}-M m^{t}}{(t-1)(M-m)}\left(\frac{t-1}{t} \frac{M^{t}-m^{t}}{m M^{t}-M m^{t}}\right)^{t} \tag{1}
\end{equation*}
$$

for any real number $t \in \mathbb{R}$, see [11, Theorem 2.53].
(iii) If $m \leq A \leq M$ for some scalars $0<m \leq M$, then

$$
\|X\|^{1-t} m^{t} \leq X \mathfrak{h}_{t} A \leq\left\|X^{-1}\right\|^{-(1-t)} M^{t} .
$$

Proof. (i): For $1<t \leq 2$

$$
\begin{aligned}
Y \mathfrak{\natural}_{t} A & =A \mathfrak{\natural}_{1-t} Y=A^{1 / 2}\left(A^{-1 / 2} Y A^{-1 / 2}\right)^{1-t} A^{1 / 2} \\
& =A^{1 / 2}\left(A^{1 / 2} Y^{-1} A^{1 / 2}\right)^{t-1} A^{1 / 2} \\
& \leq A^{1 / 2}\left(A^{1 / 2} X^{-1} A^{1 / 2}\right)^{t-1} A^{1 / 2} \quad \text { by } 0<t-1<1 \text { and } Y^{-1} \leq X^{-1} \\
& =X \mathfrak{h}_{t} A .
\end{aligned}
$$

(ii): Since $A \leq B$, we have $X^{-1 / 2} A X^{-1 / 2} \leq X^{-1 / 2} B X^{-1 / 2}$ and $m_{1} / M \leq X^{-1 / 2} A X^{-1 / 2} \leq$ M_{1} / m and $m_{2} / M \leq X^{-1 / 2} B X^{-1 / 2} \leq M_{2} / m$. By the generalized Kantorovich inequality [11, Theorem 8.3], it follows from $1<t \leq 2$ that

$$
\left(X^{-1 / 2} A X^{-1 / 2}\right)^{t} \leq K\left(\frac{m_{i}}{M}, \frac{M_{i}}{m}, t\right)\left(X^{-1 / 2} B X^{-1 / 2}\right)^{t} \quad \text { for } i=1,2,
$$

and we have the desired inequality.
(iii): It follows from $\left\|X^{-1}\right\|^{-1} \leq X \leq\|X\|$ and (i).

Remark 2.2. Let $X \geq 0$ and $0<A \leq B$. Then the inequality $A X A \leq B X B$ doe not hold in general. If we put $t=2$ in (2) of Lemma 2.1, then we have

$$
A X A \leq \min \left\{\frac{\left(n m_{1}+N M_{1}\right)^{2}}{4 n N m_{1} M_{1}}, \frac{\left(n m_{2}+N M_{2}\right)^{2}}{4 n N m_{2} M_{2}}\right\} B X B
$$

where $n \leq X \leq N$ and $m_{1} \leq A \leq M_{1}, m_{2} \leq B \leq M_{2}$ for some scalars $0<n \leq N$ and $0<m_{i} \leq M_{i}(i=1,2)$. If $B=I$, then we have $A X A \leq \frac{(n+N)^{2}}{4 n N} X$ in [10, Lemma 4].

3. Thompson metric

The Thompson metric on \mathbb{P} is defined by

$$
d(A, B)=\log \max \{M(A / B), M(B / A)\}
$$

where $M(A / B)=\inf \{\lambda>0: A \leq \lambda B\}=\left\|B^{-1 / 2} A B^{-1 / 2}\right\|=r\left(B^{-1} A\right)$. It is known that d is a complete metric on \mathbb{P} and

$$
d(A, B)=\left\|\log B^{-1 / 2} A B^{-1 / 2}\right\|=\left\|\log A^{-1 / 2} B A^{-1 / 2}\right\|
$$

see [16]. We list some basic properties of the Thompson metric:
Lemma 3.1 (see $[3,6])$. For $A, B, C, D \in \mathbb{P}$
(i) $d(A, B)=d\left(A^{-1}, B^{-1}\right)=d\left(T^{*} A T, T^{*} B T\right)$ for invertible $T \in B(H)$;
(ii) $d(A+B, C+D) \leq \max \{d(A, C), d(B, D)\}$;
(iii) $d\left(A^{t}, B^{t}\right) \leq t d(A, B)$ for $t \in[0,1]$;
(iv) $d(\alpha A, \alpha B)=d(A, B)$ for positive real number $\alpha>0$;
(v) $d\left(A \sharp_{t} B, C \sharp_{t} D\right) \leq(1-t) d(A, C)+t d(B, D)$ for $t \in[0,1]$.

For $A, B \in \mathbb{P}$, a map $\gamma_{A, B}: \mathbb{R} \mapsto \mathbb{P}$ defined by $\gamma_{A, B}(t)=A \natural_{t} B$ for $t \in \mathbb{R}$ is a path joining A and B. Then we have the following:

Theorem 3.2. Let $A, B \in \mathbb{P}$. Then

$$
d\left(A \mathfrak{\natural}_{s} B, A \mathfrak{\natural}_{t} B\right)=|s-t| d(A, B) \quad \text { for all } s, t \in \mathbb{R}
$$

Proof. By definition of the Thompson metric and Lemma 3.1

$$
\begin{aligned}
d\left(A \natural_{s} B, A \mathfrak{h}_{t} B\right) & =d\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{s},\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t}\right) \\
& =d\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{s-t}, I\right)=\left\|\log \left(A^{-1 / 2} B A^{-1 / 2}\right)^{s-t}\right\| \\
& =|s-t|\left\|\log A^{-1 / 2} B A^{-1 / 2}\right\|=|s-t| d(A, B)
\end{aligned}
$$

We have the following estimate in the case of $1<t<2$, which corresponds to (v) of Lemma 3.1:

Theorem 3.3. Let $A, B, C, D \in \mathbb{P}$ such that $m_{1} A \leq C \leq M_{1} A$ and $m_{2} B \leq D \leq M_{2} B$ for some scalars $0<m_{1} \leq M_{1}$ and $0<m_{2} \leq M_{2}$. For each $1<t<2$

$$
d\left(A \natural_{t} B, C \natural_{t} D\right) \leq(t-1) d(A, C)+t d(B, D)+\log K(t)
$$

where $K(t)=\max \left\{K\left(m_{1}, M_{1}, t\right), K\left(m_{2}, M_{2}, t\right)\right\}$ and the generalized Kantorovich constant $K(m, M, t)$ is defined by (1).

Proof. Since $\left\|A^{1 / 2} C^{-1} A^{1 / 2}\right\|^{-1} \leq A^{-1 / 2} C A^{-1 / 2}$, it follows from Lemma 2.1 that

$$
\begin{aligned}
& C \mathfrak{\natural}_{t} D=A^{1 / 2}\left[\left(A^{-1 / 2} C A^{-1 / 2}\right) \mathfrak{h}_{t}\left(A^{-1 / 2} D A^{-1 / 2}\right)\right] A^{1 / 2} \\
& \leq A^{1 / 2}\left[\left\|A^{1 / 2} C^{-1} A^{1 / 2}\right\|^{-1} \mathfrak{\natural}_{t}\left(A^{-1 / 2} D A^{-1 / 2}\right)\right] A^{1 / 2} \quad \text { by (i) of Lemma } 2.1 \\
& =\left\|A^{1 / 2} C^{-1} A^{1 / 2}\right\|^{-(1-t)} A \mathfrak{h}_{t} D \\
& =\left\|A^{1 / 2} C^{-1} A^{1 / 2}\right\|^{-(1-t)} B^{1 / 2}\left[\left(B^{-1 / 2} A B^{-1 / 2}\right) \mathfrak{h}_{t}\left(B^{-1 / 2} D B^{-1 / 2}\right)\right] B^{1 / 2} \\
& \leq\left\|A^{1 / 2} C^{-1} A^{1 / 2}\right\|^{-(1-t)}\left\|B^{-1 / 2} D B^{-1 / 2}\right\|^{t} K\left(m_{2}, M_{2}, t\right) B \mathfrak{q}_{1-t} A \quad \text { by (ii) of Lemma } 2.1 \\
& =\left\|A^{1 / 2} C^{-1} A^{1 / 2}\right\|^{-(1-t)}\left\|B^{-1 / 2} D B^{-1 / 2}\right\|^{t} K\left(m_{2}, M_{2}, t\right) A \mathfrak{h}_{t} B .
\end{aligned}
$$

Similarly, it follows that

$$
A \natural_{t} B \leq\left\|C^{1 / 2} A^{-1} C^{1 / 2}\right\|^{t-1}\left\|D^{-1 / 2} B D^{1 / 2}\right\|^{t} K\left(m_{1}, M_{1}, t\right) C \natural_{t} D .
$$

Therefore, we have

$$
\left\|\left(A \mathfrak{h}_{t} B\right)^{-1 / 2}\left(C \natural_{t} D\right)\left(A \natural_{t} B\right)^{-1 / 2}\right\| \leq\left\|A^{1 / 2} C^{-1} A^{1 / 2}\right\|^{-(1-t)}\left\|B^{-1 / 2} D B^{-1 / 2}\right\|^{t} K\left(m_{2}, M_{2}, t\right)
$$

and

$$
\left\|\left(C \mathfrak{h}_{t} D\right)^{-1 / 2}\left(A \mathfrak{h}_{t} B\right)\left(C \mathfrak{h}_{t} D\right)^{-1 / 2}\right\| \leq\left\|C^{1 / 2} A^{-1} C^{1 / 2}\right\|^{t-1}\left\|D^{-1 / 2} B D^{1 / 2}\right\|^{t} K\left(m_{1}, M_{1}, t\right)
$$

and this implies the desired inequality.

4. Operator power means

In this section, we extend the range in which the power means due to Lawson-Lim-Pálfia are defined. For this, we need the following Lemma:

Lemma 4.1. Let $X, Y, A \in \mathbb{P}$ and $1<t \leq 2$. Then

$$
d\left(X \mathfrak{h}_{t} A, Y \mathfrak{h}_{t} A\right) \leq(t-1) d(X, Y) .
$$

Proof. For $1<t \leq 2$,

$$
\begin{aligned}
d\left(X \natural_{t} A, Y \natural_{t} A\right) & =d\left(A \natural_{1-t} X, A \natural_{1-t} Y\right) \\
& =d\left(\left(A^{1 / 2} X^{-1} A^{1 / 2}\right)^{t-1},\left(A^{1 / 2} Y^{-1} A^{1 / 2}\right)^{t-1}\right) \quad \text { by (i) of Lemma } 3.1 \\
& \leq(t-1) d\left(A^{1 / 2} X A^{1 / 2}, A^{1 / 2} Y A^{1 / 2}\right) \quad \text { by (iii) of Lemma 3.1 } \\
& =(t-1) d(X, Y) \quad \text { by (i) of Lemma 3.1. }
\end{aligned}
$$

Theorem 4.2. Let $A_{1}, A_{2}, \ldots, A_{n} \in \mathbb{P}$ and a weight vector $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$. Then for each $1<t<2$, the following equation has a unique positive invertible solution:

$$
X=\sum_{i=1}^{n} \omega_{i}\left(X দ_{t} A_{i}\right) .
$$

Proof. We will show that the map $f: \mathbb{P} \mapsto \mathbb{P}$ defined by $f(X)=\sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right)$ is a strict contraction with respect to the Thompson metric. Let $X, Y>0$.

$$
\begin{aligned}
d(f(X), f(Y)) & \leq \max _{1 \leq i \leq n}\left\{d\left(\omega_{i}\left(X \natural_{t} A_{i}\right), \omega_{i}\left(Y \natural_{t} A_{i}\right)\right)\right\} \quad \text { by (ii) of Lemma } 3.1 \\
& =\max _{1 \leq i \leq n}\left\{d\left(X \natural_{t} A_{i}, Y \natural_{t} A_{i}\right)\right\} \quad \text { by (iv) of Lemma 3.1 } \\
& \leq(t-1) d(X, Y) \quad \text { by Lemma 4.1. }
\end{aligned}
$$

Since $1<t<2$, it follows that f is a strict contraction and hence f has a unique fixed point.

Definition 4.3. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right) \in \mathbb{P}^{n}$ and a weight vector $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$. For $t \in(1,2)$, we denote by $P_{t}(\omega ; \mathbb{A})$ the unique positive invertible solution of

$$
X=\sum_{i=1}^{n} \omega_{i}\left(X দ_{t} A_{i}\right) .
$$

For $t \in(-2,-1)$, we define $P_{t}(\omega ; \mathbb{A})=P_{-t}\left(\omega ; \mathbb{A}^{-1}\right)^{-1}$, where $\mathbb{A}^{-1}=\left(A_{1}^{-1}, \ldots, A_{n}^{-1}\right)$. In fact, $X=P_{t}(\omega ; \mathbb{A})$ is the unique positive invertible solution of $X=\left(\sum_{i=1}^{n} \omega_{i}\left(X \mathfrak{\natural}_{-t} A_{i}\right)^{-1}\right)^{-1}$ and $X^{-1}=\sum_{i=1}^{n} \omega_{i}\left(X^{-1} \mathrm{\natural}_{-t} A_{i}^{-1}\right)$ if and only if $X^{-1}=P_{-t}\left(\omega ; \mathbb{A}^{-1}\right)$.
Remark 4.4. Let $t \in(1,2)$. Put $f: \mathbb{P} \mapsto \mathbb{P}$ defined by $f(X)=\sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right)$. By Theorem 4.2, f is a strict contraction for the Thompson metric and by the Banach fixed point theorem

$$
\lim _{k \rightarrow \infty} f^{k}(X)=P_{t}(\omega ; \mathbb{A}) \quad \text { for any } X \in \mathbb{P}
$$

Similarly, the map $g(X)=\left(\sum_{i=1}^{n} \omega_{i}\left(X \natural_{-t} A_{i}\right)^{-1}\right)^{-1}$ is a strict contraction for the Thompson metric and $\lim _{k \rightarrow \infty} g^{k}(X)=P_{-t}(\omega ; \mathbb{A})$ for any $X \in \mathbb{P}$.

For $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right) \in \mathbb{P}^{n}, M \in B(H), \omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ and for a permutation σ on n-letters, we set

$$
\begin{aligned}
& M \mathbb{A} M^{*}=\left(M A_{1} M^{*}, \ldots, M A_{n} M^{*}\right), \quad A_{\sigma}=\left(A_{\sigma(1)}, \ldots, A_{\sigma(n)}\right) \\
& \hat{\omega}=\frac{1}{1-\omega_{n}}\left(\omega_{1}, \ldots, \omega_{n-1}\right)
\end{aligned}
$$

We list some basic properties of $P_{t}(\omega ; \mathbb{A})$ for $t \in(-2,2) \backslash[-1,1]$.

Proposition 4.5. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right) \in \mathbb{P}^{n}$, a weight vector $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ and let $t \in(-2,2) \backslash[-1,1]$.
(i) $P_{t}(\omega ; \mathbb{A})=\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{t}\right)^{1 / t}$ if the A_{i} 's commute;
(ii) $P_{t}\left(\omega_{\sigma} ; \mathbb{A}_{\sigma}\right)=P_{t}(\omega ; \mathbb{A})$ for any permutation σ;
(iii) $P_{t}\left(\omega ; M \mathbb{A} M^{*}\right)=M P_{t}(\omega ; \mathbb{A}) M^{*}$ for any invertible M;
(iv) $P_{t}\left(\omega ; \mathbb{A}^{-1}\right)^{-1}=P_{-t}(\omega ; \mathbb{A})$;
(v) $\sum_{i=1}^{n} \omega_{i} A_{i} \leq P_{t}(\omega ; \mathbb{A})$ for $t \in(1,2)$;
(vi) $P_{t}(\omega ; \mathbb{A}) \leq\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{-1}\right)^{-1}$ for $t \in(-2,-1)$;
(vii) If $m \leq A_{i} \leq M$ for $i=1, \ldots, n$ and some scalars $0<m \leq M$, then $m \leq$ $P_{t}(\omega ; \mathbb{A}) \leq m^{1-t} M^{t}$ for $t \in(1,2)$ and $m^{-t} M^{1+t} \leq P_{t}(\omega ; \mathbb{A}) \leq M$ for $t \in(-2,-1)$;
(viii) For $t \in(1,2), P_{t}\left(\omega ; A_{1}, \ldots, A_{n-1}, X\right)=X$ if and only if $X=P_{t}\left(\hat{\omega} ; A_{1}, \ldots, A_{n-1}\right)$.

Proof. Proofs from (i) to (iv) are similar to those of [13].
(v): Put $X=P_{t}(\omega ; \mathbb{A})$ for $t \in(1,2)$. Since $\alpha T+(1-\alpha) I \leq T^{\alpha}$ for all $\alpha>1$ and positive invertible T, we have $(1-t) A+t B \leq A \mathfrak{h}_{t} B$ for $1<t<2$ putting $T=A^{-1 / 2} B A^{-1 / 2}$ and multiplying $A^{1 / 2}$ on both sides, see [9, pp.123]. Therefore it follows that

$$
X=\sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right) \geq \sum_{i=1}^{n} \omega_{i}\left((1-t) X+t A_{i}\right)=(1-t) X+t \sum_{i=1}^{n} \omega_{i} A_{i}
$$

and hence $X \geq \sum_{i=1}^{n} \omega_{i} A_{i}$.
(vi): Put $X=P_{t}(\omega ; \mathbb{A})$ for $t \in(-2,-1)$. Since $X=\left(\sum_{i=1}^{n} \omega_{i}\left(X^{-1} \natural_{-t} A_{i}^{-1}\right)\right)^{-1}$, it follows that

$$
X^{-1}=\sum_{i=1}^{n} \omega_{i}\left(X^{-1} \mathfrak{\natural}_{-t} A_{i}^{-1}\right) \geq \sum_{i=1}^{n} \omega_{i}\left((1+t) X^{-1}+(-t) A_{i}^{-1}\right)=(1+t) X^{-1}-t \sum_{i=1}^{n} \omega_{i} A_{i}^{-1}
$$

and hence $X \leq\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{-1}\right)^{-1}$ for $t \in(-2,-1)$.
(vii): Put $X=P_{t}(\omega ; \mathbb{A})$ for $t \in(1,2)$, and $X \geq \sum_{i=1}^{n} \omega_{i} A_{i} \geq m$. Hence we have

$$
X=\sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right) \leq \sum_{i=1}^{n} \omega_{i}\left(m \natural_{t} A_{i}\right)=\sum_{i=1}^{n} \omega_{i}\left(m^{1-t} A_{i}^{t}\right) \leq m^{1-t} M^{t}
$$

by (i) of Lemma 2.1. Similarly, put $X=P_{t}(\omega ; \mathbb{A})$ for $t \in(-2,-1)$, and $X \leq\left(\sum_{i=1}^{n} \omega_{i} A_{i}^{-1}\right)^{-1} \leq M$. Hence we have

$$
X^{-1}=\sum_{i=1}^{n} \omega_{i}\left(X^{-1} \natural_{-t} A_{i}^{-1}\right) \leq \sum_{i=1}^{n} \omega_{i}\left(M^{-1} \natural_{-t} A_{i}^{-1}\right)=\sum_{i=1}^{n} \omega_{i}\left(M^{-1-t} A_{i}^{t}\right) \leq M^{-1-t} m^{t}
$$

and $m^{-t} M^{1+t} \leq X$.
(viii): For $1<t<2, P_{t}\left(\omega ; A_{1}, \ldots, A_{n-1}, X\right)=X \Longleftrightarrow X=\sum_{i=1}^{n-1} \omega_{i}\left(X \natural_{t} A_{i}\right)+\omega_{n} X \Longleftrightarrow$ $X=\sum_{i=1}^{n-1} \frac{\omega_{i}}{1-\omega_{n}}\left(X \natural_{t} A_{i}\right) \Longleftrightarrow X=P_{t}\left(\hat{\omega} ; A_{1}, \ldots, A_{n-1}\right)$.
Theorem 4.6. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right) \in \mathbb{P}^{n}$ such that $0<m \leq A_{i} \leq M$ for some scalars $0<m \leq M$ and a weight vector $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$. Let $1<t \leq s<2$. Then

$$
d\left(P_{t}(\omega ; \mathbb{A}), P_{s}(\omega ; \mathbb{A})\right) \leq \frac{s-t}{(2-s)(2-t)}\left[t \Delta(\mathbb{A})+\log K\left(m / M,(M / m)^{t}, t\right)\right]
$$

where the generalized Kantorovich constant $K(m, M, t)$ is defined by (1) and $\Delta(\mathbb{A})=$ $\max _{1 \leq i, j \leq n}\left\{d\left(A_{i}, A_{j}\right)\right\}$ denotes the d-diameter of $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$.

Proof. Put $X=P_{t}(\omega ; \mathbb{A})$ and $Y=P_{s}(\omega ; \mathbb{A})$. Since $m \leq A_{i} \leq M$ for $i=1, \ldots, n$ and $m \leq$ $X \leq m^{1-t} M^{t}$, we have $m / M A_{i} \leq X \leq(M / m)^{t} A_{i}$ and $m / M A_{i} \leq A_{j} \leq M / m A_{i}$ for $i, j=$ $1, \ldots, n$. It follows from [18, Proposition 4] that $K(m / M, M / m, t) \leq K\left(m / M,(M / m)^{t}, t\right)$ for $1<t<2$. By Theorem 3.3, it follows that

$$
\begin{aligned}
d\left(X, A_{j}\right) & =d\left(\sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right), \sum_{i=1}^{n} \omega_{i} A_{j}\right) \\
& \leq \max _{1 \leq i \leq n}\left\{d\left(X \natural_{t} A_{i}, A_{j} \natural_{t} A_{j}\right)\right\} \\
& \leq \max _{1 \leq i \leq n}\left\{(t-1) d\left(X, A_{j}\right)+t d\left(A_{i}, A_{j}\right)+\log K\left(m / M,(M / m)^{t}, t\right)\right\} \\
& =(t-1) d\left(X, A_{j}\right)+t \Delta(\mathbb{A})+\log K\left(m / M,(M / m)^{t}, t\right)
\end{aligned}
$$

for $j=1, \ldots, n$ and hence we have

$$
d\left(X, A_{j}\right) \leq \frac{t}{2-t} \Delta(\mathbb{A})+\frac{1}{2-t} \log K\left(m / M,(M / m)^{t}, t\right)
$$

By Lemma 4.1, we have

$$
\begin{aligned}
d(X, Y) & =d(Y, X)=d\left(\sum_{i=1}^{n} \omega_{i}\left(Y \natural_{s} A_{i}\right), \sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right)\right) \\
& \leq \max _{1 \leq i \leq n}\left\{d\left(Y \natural_{s} A_{i}, X \natural_{t} A_{i}\right)\right\} \\
& \leq \max _{1 \leq i \leq n}\left\{d\left(Y \natural_{s} A_{i}, X \natural_{s} A_{i}\right)+d\left(X \natural_{s} A_{i}, X \mathfrak{\natural}_{t} A_{i}\right)\right\} \\
& \leq \max _{1 \leq i \leq n}\left\{(s-1) d(Y, X)+(s-t) d\left(X, A_{i}\right)\right\} \\
& \leq(s-1) d(X, Y)+(s-t)\left[\frac{t}{2-t} \Delta(\mathbb{A})+\frac{1}{2-t} \log K\left(m / M,(M / m)^{t}, t\right)\right]
\end{aligned}
$$

and hence we have $d(X, Y) \leq \frac{s-t}{2-s}\left[\frac{t}{2-t} \Delta(\mathbb{A})+\frac{1}{2-t} \log K\left(m / M,(M / m)^{t}, t\right)\right]$.

Theorem 4.7. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\mathbb{B}=\left(B_{1}, \ldots, B_{n}\right)$ such that $0<m_{1} \leq A_{i} \leq M_{1}$ and $0<m_{2} \leq B_{i} \leq M_{2}$ for $i=1, \ldots, n$ for some scalars $0<m_{1} \leq M_{1}$ and $0<m_{2} \leq M_{2}$. Then for each $1<t<2$

$$
d\left(P_{t}(\omega ; \mathbb{A}), P_{t}(\omega ; \mathbb{B})\right) \leq \frac{t}{2-t} \max _{1 \leq i \leq n}\left\{d\left(A_{i}, B_{i}\right)\right\}+\frac{1}{2-t} \log K_{1}(t)
$$

where $K_{1}(t)=\max \left\{K\left(m_{2} / m_{1}^{1-t} M_{1}^{t}, m_{2}^{1-t} M_{2}^{t} / m_{1}, t\right), K\left(m_{2} / M_{1}, M_{2} / m_{1}, t\right)\right\}$.
Proof. For fixed $t \in(1,2)$, put $X=P_{t}(\omega ; \mathbb{A})$ and $Y=P_{t}(\omega ; \mathbb{B})$. Since $m_{1} \leq X \leq m_{1}^{1-t} M_{1}^{t}$ and $m_{2} \leq Y \leq m_{2}^{1-t} M_{2}^{t}$, we have $m_{2} / m_{1}^{1-t} M_{1}^{t} X \leq Y \leq m_{2}^{1-t} M_{2}^{t} / m_{1} X$ and $m_{2} / M_{1} A_{i} \leq$
$B_{i} \leq M_{2} / m_{1} A_{i}$ for $i=1, \ldots, n$. Then it follows from Theorem 3.3 that

$$
\begin{aligned}
d(X, Y) & =d\left(\sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right), \sum_{i=1}^{n} \omega_{i}\left(Y \natural_{t} B_{i}\right)\right) \\
& \leq \max _{1 \leq i \leq n}\left\{d\left(X \natural_{t} A_{i}, Y \natural_{t} B_{i}\right)\right\} \\
& \leq \max _{1 \leq i \leq n}\left\{(t-1) d(X, Y)+t d\left(A_{i}, B_{i}\right)+\log K_{1}(t)\right\} \\
& =(t-1) d(X, Y)+t \max _{1 \leq i \leq n}\left\{d\left(A_{i}, B_{i}\right)\right\}+\log K_{1}(t) .
\end{aligned}
$$

Remark 4.8. As $t \rightarrow 1$ in Theorem 4.7, we have $K_{1}(t) \rightarrow 1$. Since $P_{1}(\omega ; \mathbb{A})=$ $\sum_{i=1}^{n} \omega_{i} A_{i}$ and $P_{1}(\omega ; \mathbb{B})=\sum_{i=1}^{n} \omega_{i} B_{i}$, this corresponds to $d\left(\sum_{i=1}^{n} \omega_{i} A_{i}, \sum_{i=1}^{n} \omega_{i} B_{i}\right) \leq$ $\max _{1 \leq i \leq n}\left\{d\left(A_{i}, B_{i}\right)\right\}$, see [12, Lemma 2.4].

5. Monotonicity of power means

In this section, we consider the monotonicity of $P_{t}(\omega ; \mathbb{A})$ for $1<t<2$. Before this, in the case of $n=2$, we consider an explicit form of $P_{t}(1-\alpha, \alpha ; A, B)$ for $1<t<2$ and moreover a positive solution of

$$
\begin{equation*}
X=(1-\alpha)\left(X \mathfrak{\natural}_{t} A\right)+\alpha\left(X \mathfrak{h}_{t} B\right) \quad \text { for } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

The solution of (2) is $X=A m_{t, \alpha} B=A^{1 / 2}\left((1-\alpha) I+\alpha\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t}\right)^{1 / t} A^{1 / 2}$. Indeed, put $C=A^{-1 / 2} B A^{-1 / 2}$ and $Y=\left((1-\alpha) I+\alpha C^{t}\right)^{1 / t}$. Then it follows that

$$
\begin{aligned}
(1-\alpha)\left(X \mathfrak{h}_{t} A\right)+\alpha\left(X \mathfrak{\natural}_{t} B\right) & =A^{1 / 2}\left((1-\alpha)\left(Y \mathfrak{\natural}_{t} I\right)+\alpha\left(Y \mathfrak{\natural}_{t} C\right)\right) A^{1 / 2} \\
& =A^{1 / 2}\left((1-\alpha) Y^{1-t}+\alpha Y^{1-t} C^{t}\right) A^{1 / 2} \\
& =A^{1 / 2}\left(Y^{1-t}\left((1-\alpha) I+\alpha C^{t}\right)\right) A^{1 / 2} \\
& =A^{1 / 2} Y A^{1 / 2}=X .
\end{aligned}
$$

It is known that the solution $X=A m_{t, \alpha} B$ for $\alpha \in[0,1]$ is nondecreasing for $t \in \mathbb{R}$, see [11, Theorem 5.21]. However, in the case of $n \geq 3$, we have the following order relation:
Theorem 5.1. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right) \in \mathbb{P}^{n}$ such that $m \leq A_{i} \leq M$ for $i=1, \ldots, n$ and some scalars $0<m \leq M$. Then for each $1<t \leq s<2$

$$
\begin{equation*}
(m / M)^{\frac{t(s-1)}{2-s}} P_{s}(\omega ; \mathbb{A}) \leq P_{t}(\omega ; \mathbb{A}) \leq(M / m)^{\frac{s(t-1)}{2-t}} P_{s}(\omega ; \mathbb{A}) \tag{3}
\end{equation*}
$$

To prove Theorem 5.1, we need the following two lemmas. The following lemma is the complement of the Löwner-Heinz inequality:

Lemma 5.2. ([14, Lemma 2.2]) If $Y \leq X$, then $X^{p} \leq\left\|X^{p / 2} Y^{-p} X^{p / 2}\right\| Y^{p}$ for $0<p<1$.
Lemma 5.3. For $1<t<2$, define $f(X)=\sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right)$ where A_{i} are positive invertible operators and ω is a weight vector. Let X, Y be positive invertible operators such that $m_{1} \leq Y \leq M_{1}$ and $m_{2} \leq X \leq M_{2}$ for some scalars $0<m_{i} \leq M_{i}(i=1,2)$. Then

$$
Y \leq X \quad \Longrightarrow \quad f(X) \leq f(Y) \leq\left(M_{2} / m_{1}\right)^{t-1} f(X)
$$

In particular, f^{2} is monotone, that is, if $Y \leq X$, then $f^{2}(Y) \leq f^{2}(X)$.

Proof. The assumption $Y \leq X$ implies $f(Y)=\sum_{i=1}^{n}\left(Y \natural_{t} A_{i}\right) \geq \sum_{i=1}^{n}\left(X \natural_{t} A_{i}\right)=f(X)$ by (i) of Lemma 2.1. Put $X_{i}=A_{i}^{1 / 2} X^{-1} A_{i}^{1 / 2}, Y_{i}=A_{i}^{1 / 2} Y^{-1} A_{i}^{1 / 2}$ for $i=1, \ldots, n$. Since $X^{-1} \leq Y^{-1}$, we have $X_{i} \leq Y_{i}$ and it follows from Lemma 5.2 and $0<t-1<1$ that

$$
Y_{i}^{t-1} \leq\left\|Y_{i}^{(t-1) / 2} X_{i}^{-(t-1)} Y_{i}^{(t-1) / 2}\right\| X_{i}^{t-1}
$$

for $i=1, \ldots, n$ and hence

$$
Y \natural_{t} A_{i} \leq\left\|Y_{i}^{(t-1) / 2} X_{i}^{-(t-1)} Y_{i}^{(t-1) / 2}\right\| X \natural_{t} A_{i} .
$$

Also, by the Araki-Cordes inequality [11, pp.67], we have

$$
\begin{aligned}
& \left\|Y_{i}^{(t-1) / 2} X_{i}^{-(t-1)} Y_{i}^{(t-1) / 2}\right\| \leq\left\|Y_{i}^{1 / 2} X_{i}^{-1} Y_{i}^{1 / 2}\right\|^{t-1} \\
& =r\left(\left(A_{i}^{1 / 2} Y^{-1} A_{i}^{1 / 2}\right)\left(A_{i}^{-1 / 2} X A_{i}^{-1 / 2}\right)\right)^{t-1} \\
& =r\left(X Y^{-1}\right)^{t-1}=\left\|X^{1 / 2} Y^{-1} X^{1 / 2}\right\|^{t-1} \leq\left(M_{2} / m_{1}\right)^{t-1}
\end{aligned}
$$

Therefore, we have

$$
f(Y)=\sum_{i}^{n} \omega_{i}\left(Y \natural_{t} A_{i}\right) \leq\left(M_{2} / m_{1}\right)^{t-1} \sum_{i}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right)=\left(M_{2} / m_{1}\right)^{t-1} f(X) .
$$

Proof of Theorem 5.1 Put $f(X)=\sum_{i=1}^{n} \omega_{i}\left(X \mathfrak{h}_{t} A_{i}\right)$ and then $P_{t}(\omega ; \mathbb{A})=\lim _{k \rightarrow \infty} f^{k}(X)$ for any $X \in \mathbb{P}$. Since $X \natural_{t} A_{i}=X \natural_{t / s}\left(X \natural_{s} A_{i}\right)$, it follows from $0<t / s \leq 1$ that

$$
\begin{aligned}
f(X) & =\sum_{i=1}^{n} \omega_{i}\left(X \natural_{t} A_{i}\right)=\sum_{i=1}^{n} \omega_{i}\left[X \not \sharp_{t / s}\left(X \natural_{s} A_{i}\right)\right] \\
& \leq \sum_{i=1}^{n} \omega_{i}\left[\left(1-\frac{t}{s}\right) X+\frac{t}{s}\left(X \natural_{s} A_{i}\right)\right] \\
& =\left(1-\frac{t}{s}\right) X+\frac{t}{s} \sum_{i=1}^{n} \omega_{i}\left(X \natural_{s} A_{i}\right) .
\end{aligned}
$$

If we put $X_{0}=P_{s}(\omega ; \mathbb{A})$, then we have

$$
f\left(X_{0}\right) \leq\left(1-\frac{t}{s}\right) X_{0}+\frac{t}{s} \sum_{i=1}^{n} \omega_{i}\left(X_{0} \natural_{s} A_{i}\right)=\left(1-\frac{t}{s}\right) X_{0}+\frac{t}{s} X_{0}=X_{0} .
$$

Moreover, we have $m \leq X_{0} \leq m^{1-s} M^{s}$ and $\left(m^{1-s} M^{s}\right)^{1-t} m^{t} \leq f\left(X_{0}\right) \leq m^{1-t} M^{t}$. By Lemma 5.3, it follows that

$$
f^{2}\left(X_{0}\right) \leq\left(\frac{m^{1-s} M^{s}}{\left(m^{1-s} M^{s}\right)^{1-t} m^{t}}\right)^{t-1} f\left(X_{0}\right) \leq(M / m)^{s t(t-1)} X_{0}
$$

Since f^{2} is monotonic, we have

$$
\begin{aligned}
f^{4}\left(X_{0}\right) & \leq f^{2}\left((M / m)^{s t(t-1)} X_{0}\right)=(M / m)^{s t(t-1)(1-t)^{2}} f^{2}\left(X_{0}\right) \\
& \leq(M / m)^{s t(t-1)(1-t)^{2}+s t(t-1)} X_{0}
\end{aligned}
$$

Inductively we have

$$
f^{2 k}\left(X_{0}\right) \leq\left[(M / m)^{s t(t-1)}\right]^{\frac{1-(1-t)^{2 k}}{1-(1-t)^{2}}} X_{0}
$$

As $k \rightarrow \infty$, we have the desired inequality $P_{t}(\omega ; \mathbb{A}) \leq(M / m)^{\frac{s(t-1)}{2-t}} P_{s}(\omega ; \mathbb{A})$.
Similarly, if we put $Y_{0}=P_{s}(\omega ; \mathbb{A})$ and $g(X)=\sum_{i=1}^{n} \omega_{i}\left(X \bigsqcup_{s} A_{i}\right)$, then we have the LHS of (3) in Theorem 5.1.

6. Positive linear maps

In this section, we consider an information monotonicity of $P_{t}(\omega ; \mathbb{A})$ for $1<t<2$. Though the Ando inequality $\Phi\left(A \sharp_{t} B\right) \leq \Phi(A) \sharp_{t} \Phi(B)$ holds for any positive linear map and $t \in[0,1]$ (see [1]), the reverse holds in the case of $t \in(1,2)$:
Lemma 6.1. Let Φ be a positive linear map on $B(H)$ and $A, B \in \mathbb{P}$ such that $m A \leq B \leq$ $M A$ for some scalars $0<m \leq M$. Then

$$
\Phi\left(A \mathfrak{h}_{t} B\right) \geq \Phi(A) \mathfrak{h}_{t} \Phi(B) \geq K(m, M, t)^{-1} \Phi\left(A \mathfrak{h}_{t} B\right) \quad \text { for } 1<t<2
$$

where the generalized Kantorovich constant $K(m, M, t)$ is defined by (1).
Proof. We may assume that Φ is strictly positive. For $A, B>0$, put

$$
\Psi(X)=\Phi(A)^{-1 / 2} \Phi\left(A^{1 / 2} X A^{1 / 2}\right) \Phi(A)^{-1 / 2}
$$

and hence Ψ is a unital positive linear map. By the Jensen inequality [11, Corollary 1.22, Corollary 2.12]

$$
\begin{equation*}
K(m, M, t) \Psi(X)^{t} \geq \Psi\left(X^{t}\right) \geq \Psi(X)^{t} \quad \text { for } 1<t<2 \tag{4}
\end{equation*}
$$

Therefore, it follows that

$$
\begin{aligned}
\Phi(A)^{-1 / 2} \Phi\left(A \natural_{t} B\right) \Phi(A)^{-1 / 2} & =\Phi(A)^{-1 / 2} \Phi\left(A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}\right) \Phi(A)^{-1 / 2} \\
& =\Psi\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t}\right) \\
& \geq \Psi\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} \\
& =\left(\Phi(A)^{-1 / 2} \Phi(B) \Phi(A)^{-1 / 2}\right)^{t}
\end{aligned}
$$

and we have $\Phi\left(A \natural_{t} B\right) \geq \Phi(A) \natural_{t} \Phi(B)$. Similarly, by using (4), we have the RHS of Lemma 6.1.

The operator power means $P_{t}(\omega ; \mathbb{A})$ for $t \in(0,1]$ have an information monotonicity, see [12, Proposition 3.6]. In the case of $t \in(1,2)$, we have the following slightly modification:

Theorem 6.2. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ and a weight vector ω. Let Φ be a unital positive linear map. For each $1<t<2$
$K\left((m / M)^{t}, M / m, t\right)^{\frac{-1}{t(2-t)}}(m / M)^{\frac{t-1}{2-t}} \Phi\left(P_{t}(\omega ; \mathbb{A})\right) \leq P_{t}(\omega ; \Phi(\mathbb{A})) \leq(M / m)^{\frac{t(t-1)}{2-t}} \Phi\left(P_{t}(\omega ; \mathbb{A})\right)$, where $\Phi(\mathbb{A})=\left(\Phi\left(A_{1}\right), \ldots, \Phi\left(A_{n}\right)\right)$ and the generalized Kantorovich constant $K(m, M, t)$ is defined by (1).

Proof. Put $X=P_{t}(\omega ; \mathbb{A})$ and $f(Y)=\sum_{i=1}^{n} \omega_{i}\left(Y \natural_{t} \Phi\left(A_{i}\right)\right)$ for any $Y \in \mathbb{P}$. Since Φ is unital, we have $m \leq \Phi(X) \leq m^{1-t} M^{t}$. Since $f(\Phi(X))=\sum_{i=1}^{n} \omega_{i}\left(\Phi(X) \natural_{t} \Phi\left(A_{i}\right)\right)$, we have $\left(m^{1-t} M^{t}\right)^{1-t} m^{t} \leq f(\Phi(X)) \leq m^{1-t} M^{t}$. It follows from $f(\Phi(X)) \leq \Phi(X)$ that $f^{2}(\Phi(X)) \leq(M / m)^{t^{2}(t-1)} f(\Phi(X))$. Hence we have

$$
f^{3}(\Phi(X)) \leq f^{2}(\Phi(X)) \leq(M / m)^{t^{2}(t-1)} \Phi(X)
$$

Inductively it follows that

$$
f^{2 k-1}(\Phi(X)) \leq\left[(M / m)^{t^{2}(t-1)}\right]^{\frac{1-(1-t)^{2 k}}{1-(1-t)^{2}}} \Phi(X)
$$

and as $k \rightarrow \infty$ we have

$$
P_{t}(\omega ; \Phi(\mathbb{A})) \leq\left[(M / m)^{t^{2}(t-1)}\right]^{\frac{1}{1-(1-t)^{2}}} \Phi\left(P_{t}(\omega ; \mathbb{A})\right)=(M / m)^{\frac{t(t-1)}{2-t}} \Phi\left(P_{t}(\omega ; \mathbb{A})\right) .
$$

Conversely, since $K\left((m / M)^{t}, M / m, t\right)^{-1} \Phi(X) \leq f(\Phi(X))$, we have

$$
K\left((m / M)^{t}, M / m, t\right)^{-1}(M / m)^{t(t-1)} \Phi(X) \leq f^{2}(\Phi(X))
$$

Since f^{2} is monotone, it follows that

$$
\begin{aligned}
f^{3}(\Phi(X)) & \geq f^{2}\left(K\left((m / M)^{t}, M / m, t\right)^{-1} \Phi(X)\right)=K\left((m / M)^{t}, M / m, t\right)^{-(1-t)^{2}} f^{2}(\Phi(X)) \\
& \geq K\left((m / M)^{t}, M / m, t\right)^{-1-(1-t)^{2}}(m / M)^{t(t-1)} \Phi(X) .
\end{aligned}
$$

Inductively, we have

$$
K\left((m / M)^{t}, M / m, t\right)^{-\frac{1-(1-t)^{2(k-1)}}{1-(1-t)^{2}}}\left[(m / M)^{t(t-1)}\right]^{\frac{1}{1-(1-t)^{2}}} \Phi(X) \leq f^{2 k-1}(\Phi(X))
$$

for $k=1,2 \cdots$ and as $k \rightarrow \infty$

$$
K\left((m / M)^{t}, M / m, t\right)^{\frac{-1}{t(2-t)}}(m / M)^{\frac{t-1}{2-t}} \Phi\left(P_{t}(\omega ; \mathbb{A}) \leq P_{t}(\omega ; \Phi(\mathbb{A})) .\right.
$$

Remark 6.3. As $t \rightarrow 1$ in Theorem 6.2, we have $K\left((m / M)^{t}, M / m, t\right)^{\frac{-1}{t(2-t)}}(m / M)^{\frac{t-1}{2-t}} \rightarrow 1$ and $(M / m)^{t^{2}(t-1)} \rightarrow 1$. This corresponds to $P_{1}(\omega ; \Phi(\mathbb{A}))=\sum_{i=1}^{n} \omega_{i} \Phi\left(A_{i}\right)=\Phi\left(\sum_{i=1}^{n} \omega_{i} A_{i}\right)=$ $\Phi\left(P_{1}(\omega ; \mathbb{A})\right)$.

Acknowledgement. The authors would like to express their cordial thanks to the referee for his/her valuable suggestions.

References

[1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203-241.
[2] K.V. Bhagwat and R. Subramanian, Inequalities between means of positive operators, Math. Proc. Camb. Phil. Soc., 83 (1978), 393-401.
[3] R. Bhatia, On the exponential metric increasing property, Linear Algebra Appl., 375 (2003), 211-220.
[4] R. Bhatia, Positive Definite Matrices, Princeton Ser. Appl. Math., Princeton University Press, Princeton, NJ, 2007.
[5] R. Bhatia and J. Holbrook, Riemannian geometry and matrix means, Linear Algebra Appl., 413 (2006), 594-618.
[6] G. Corach, H. Porta and L. Recht, Convexity of the geodesic distance on spaces of positive operators, Illinois J. Math. 38(1994), 87-94.
[7] M. Fujii and R. Nakamoto, A geometric mean in the Furuta inequality, Sci. Math. Jpn., 55 (2002), 615-621.
[8] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent developments of Mond-Pečarić method in operator inequalities, Monographs in Inequalities 4, Element, Zagreb, 2012.
[9] T. Furuta, Invitation to Linear Operators, Taylor\&Francis, London, 2001.
[10] T. Furuta and Y. Seo, An application of generalized Furuta inequality to Kantorovich type inequalities, Sci. Math., 2, (1999), 393-399.
[11] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[12] J. Lawson and Y. Lim, Karcher means and Karcher equations of positive definite operators, Trans. Amer. Math. Soc., Series B, 1 (2014), 1-22.
[13] Y. Lim and M. Pálfia, Matrix power means and the Karcher mean, J. Funct. Anal., 262 (2012), 1498-1514.
[14] Y. Seo, On a reverse of Ando-Hiai inequality, Banach J. Math. Anal., 4(2010), 87-91.
[15] Y. Seo, Generalized Pólya-Szegö type inequalities for some non-commutative geometric means, Linear Algebra Appl., 438 (2013), 1711-1726.
[16] A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc., 14(1963), 438-443.
[17] T. Yamazaki, Riemannian mean and matrix inequalities related to the Ando-Hiai inequality and chaotic order, Oper. Matrices., 6 (2012), 577-588.
[18] T. Yamazaki and M. Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2 (1999), 37-50.

Department of Mathematics Education, Osaka Kyoiku University, Asahigaoka, KashiWara, Osaka 582-8582, Japan

E-mail address: yukis@cc.osaka-kyoiku.ac.jp

[^0]: 1991 Mathematics Subject Classification. 47A63, 47A64.
 Key words and phrases. Power mean, operator geometric mean, positive operator, Thompson metric.

