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Can the target of RoboCup be attained ?

Masahiro Kosaka

HEW(Humanoids for Every Where) Research
mkosaka@dab.hi-ho.ne.jp

Abstract: Can the aggressive target which RoboCup referred
to as {Making the robot team which can Win human's World
Cup championship team by 2050} holds up be attained?. This
possibility was examined from two viewpoints. One is the
development speed of the artificial intelligence and the
realization possibility of artificial intelligence equal to a human
intelligence. Secondly a possibility that a soccer robot could be
more realized using the main devices which constitute a robot
was examined. It was concluded that the target which RoboCup
holds up could sufficiently be attained. Even if it did not expect
the emergence of the material or a device which is not yet seen,
like a dream, it was predicted that the humanoid having the
capability about the same as human was realizable by 2050
using the latest technology of the time. This humanoid
penetrates to comer of society and will contribute greatly to
realization of ideal society and happiness of mankind.

1 Introduction

The target which RoboCup referred to as "making the
robot team which can {Win human's World Cup
championship team with human's rule by 2050} holds up
is considered to be an extremely difficult target. It is very
interesting subject whether can this magnanimous target
attain sure enough or not. In order to make such a soccer
team by the robot, it is necessary to realize the humanoid
type robot which constitutes the team. The outstanding
capability than most people in physical strength,
cognition and judgment capability is required for a
soccer robot. It is understood that even realization of the
robot having the capability of the usual average human is
very difficult. Enormous difficulty will be expected in
realization of the robot with the capability which exceeds
human's capability. [s it realizable sure enough from now
on within 50 years?. This paper examined this possibility
from two viewpoints. One is the development speed of
artificial intelligence by the computer, and the realization
possibility of artificial intelligence having the same
capability of ordinary human. Secondly the main devices
which constitute a robot examined whether it was the
level which can realize a soccer robot. Consequently, it
was concluded that the target which RoboCup holds up
could sufficiently be attained.

2 Importance of clear and concrete target

The RoboCup initiative involves in the persons
concerned in the world, and becomes as big movements.
The clear and grand target said that a robot challenges
and wins to man's World Cup champion is held up in
2050. [1]-[8] The present engineering level is far low as
compared with the target. Also in RoboCup, engineering

level of vision recognition of a ball / player / field is
quite inadequate. Although vision recognition research
has a long history, it has stopped at such a low level. It is
imagined that one of these causes is that there was no
setup of a clear and concrete target in research and
development. Although it is thought that difficulty
follows on vision recognition in the environment where a
situation changes continuously, it is clear to the actual
robot that it cannot be used if it is not the technology
corresponding to such environment. It will be a reason
why the clear and concrete target are required in the
research and development. RoboCup initiative is the
suitable challenge field in which various component
engineering can vie to each other. The challenge which
sets up a clear and high target greatly accelerates
technical development. The U.S. Apollo Project is
proving this clearly. Much more people are wanted to
participate in these initiatives, to muster the wisdom in
the world, and to desire promotion of a robot's technical
development.

3 Technologies required for soccer robot

The key issue of soccer robot realization is the
development of “humanoid type robot”  with the body
and intellect equivalent to human. Various technology,
devices and material are needed for the realization. The
main thing is listed below.

- Vision cognitive capability that the situation of the field
can be grasped on real time.

- Derive the optimum solution of action which should be
taken to the next from a position and a motion of the
ally-and-oponent player and a ball in the field .

- Derivation of the control command to each part of the
body of operation based on the optimum solution.

- The tough body which it can runs or operate a ball by
foot based on a commander of operation.

- The small lightweight energy source supporting a long
and extreme motion.

That is, muster of the latest and wide-range technologies
are needed for realization of a soccer robot. They are
structure material, portable energy source, various
sensors, an actuators and servo control and a computer
hardware/software, artificial intelligence, and knowledge
engineering and so on. These component technologies
are not peculiar to a robot, and are used in many other
fields. Therefore, it is possible to utilize effectively for a
robot many component technologies which carried out
progress development in other fields. A computer and
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artificial-intelligence technology are the example of a
type. Moreover, it is used in fields other than a robot,
and the component technologies which is conversely
developed in a robot field and progressed can also be
contributed to development of the concerned field. The
application possibility to a robot is examined about such
technology below.

4 Emergence of physical capability

Physical abilities and mental abilities are very closely
related, and arguing about both independently will not be
proper. Although the force and movement speed which
each joint generates are the one aspect of physical
abilities, it will be far from sufficient to realize body
movement. In order to walk along a road, for example,
while avoiding a passerby and an obstacle, recognition
and understanding of surroundings are inevitably needed
at first place. Furthermore, derivation of body movement
by grasping one's present situation is advanced mental
abilities. Walking by two feet or grasping objects by
hands are generally understood that it is carried out by a
robot's physical capabilities. But ,in reality, ability is that
the most is based on knowledge and experience. For
example, exact recognition of the character of the
material of the place and a level difference of the ground
is executed by not mere vision capability but advanced
Jjudgment capability based on knowledge, and experience
of machine. In order to continue a walk, what posture
should be carried out and how to take down a leg is
Jjudged 100% based on knowledge of robots. Therefore,
it can be said that a walk is knowledge and is wisdom. It
is a premise, of course, to have firm and strong frame, a
forcible actuator, and exact and flexible control
capability. In order for a robot to derive required
correspondence such as the recognition capability, the
handling capability of the subject by fingers, and safe
and versatile locomotion capability in various
environment, comprehension capability of various
information, and to perform it correctly, it is necessary to
have the mental abilities about the same as human. It is
the same also in sensing, in vision and in hearing
capability. It is only possible to see and hear by excellent
ability of the brain. Although it is possible for the
primitive sensing organ, to detect sound pressure, light
intensity and a pattern of light, it is not possible to
comprehend speech or visual pattern. It is indispensable
to utilize an advanced brains capability.

S Form of robot body

5.1 Frame of robot body
In order to constitute a robot's frame, a light and tough
material like human's bone is demanded. For this

purpose, use of the various composite materials which
showed remarkable development in recent years is more
desirable than a
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single metal and/or single plastics. These are roughly
categorized to a metal composite material (MMC), fiber
reinforced plastics (FRP), and a ceramic composite
material. Since a metal composite material was
expensive, it was only being used in a space field or a
military field. However, it came to be used for
automobile engine, the gas turbine, etc. in recent years
due to it's cost reduction. In a robot field, probably there
is no requirement for super high durability to heat, and
thus the use of this material may be the subject of the
future from the reason of economical efficiency. Fiber
reinforced plastics (FRP) is the composite material
which being made plastics as the mother material and
reinforced with various fibers. There are various kinds in
FRP category. They are (1) Strengthened with Glass
Fiber GFRP(Glass Fiber Reinforced Plastics) (2)
Strengthened with Carbon Fiber CFRP(Carbon Fiber
Reinforced Plastics) (3) Strengthened with Aramid
Fiber AFRP (Aramid Fiber Reinforced Plastics) . These
FRPs are the lightweight and high tension structure
material. Due to the wide range of characteristic and
price, FRP is used in large quantities in the wide range
application area. The use of FRP has attained to very
large ranges, such as the space, aviation, automobile,
electric parts, engineering works, construction, and sport
goods. Although it must be careful of that there is
heterotrpicity ~and relatively law  heat-resistant
temperature of about 300 degrees C , it is considered the
most suitable structure material for the robot field.
Although the ceramic composite material is used for
space and medical components used for the living body,
it has also have many unsolved area and to expect them
to development of future research. Therefore, the use to
arobot field is a future subject.

5.2 Actuators
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The actuator equivalent to human's muscles is a device
indispensable to posture maintenance of a robot, a walk,
grasp of an object, movement, etc. Moreover, in order to
enable various operation, very many numbers are used.
The list was shown in Fig-2 with the outline about the
main existing actuators. It has the respectively different
characteristic and it is necessary to perform evaluation
from the viewpoint used for a robot. The result of five
stage evaluation of various actuators was shown in Fig-3
from this viewpoint.
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Fig-3 Evaluation result

Each evaluating point was added up simply and it
resulted as comprehensive evaluation. The electric motor
using electromagnetic force gained highest evaluation.
This matches actual feeling and considers appropriate
evaluation. An electric motor has the extensively wide
choice of output power from very small output of a
micromotor to a gigantic output, and has a feature of
high energy efficiency as well. It has also very wide
choice of external appearance form pencil shape to disc
shape. Moreover, highly precise and flexible control is
possible by the electric signal. Moreover, there is no
concern of an oil leakage and is consequently very clean.
The movement direction is also easily changeable from
rotation to linear, and not only the movement direction
but torque and speed can be chosen freely by selection of
a gear train further. If the output power range required of
a robot's actuator is taken into consideration, it will be
possible to realize the most by this electric motor, and it
will be considered to be the most excellent means.
Although there exist opinions which expects an
appearance of new actuators such as artificial muscles, it

is thought that an appearance of the device which has the
feature compete to an electric motor is not easy. Through
appreciation of the outstanding feature of the electric
motor, it important to promote realization of a robot
using this means as a robot actuator. Other various
actuators are considered to be used on a required aspect
of affairs taking advantage of each feature.

5.3 Energy source

The consumption energy of bipedal walk of human and a
walk of an animal were investigated, and the
consumption energy to various working operation of
human was investigated further. Moreover, the robot
battery weight required for operation continuously for 1
hour using various batteries is shown in Fig-4 .[9]{10]
Battery weight of the robot weighted 30kg required to
walk continuously for 1 hour is calculated about the kind
of various batteries. If it is the most efficient lithium-ion
battery, it will be good enough by the battery of 1kg or
less. Although there is the room of an argument what
percent of body weight is allowed for battery , if it is
assumed to be 10 - 20% (about 40% of man's weight is
skeletal muscle), it can walk continuously over 3 - 6

Walking

ironing 576 4.6 3.6 2.7 1.3

Walking 378 3 23 1.7 0.87

froning 288 23 1.8 1.3 0.67

Fig-4 Battery weight for 1 hour operation

If the computer equivalent to human's brains is assumed
to consume energy equal to that of actuators, the
duration hours by the same battery will be reduced by
half. A robot works in many cases by stopping from time
to time while staying in a fixed place not only in working
by always moving. In this case, it is also possible to gain
electric energy from outside such as a wall outlet. It is
possible to save consumption of a battery and to charge,
and it is also possible to extend practical duration hours
considerably. It is, consequently, quite possible even to
operate a robot with using the latest rechargeable battery
of the time. The argument in which it is not possible to
use humanoid type robot practically if a novel energy
source is not developed, is understood to be not right
direction.

5.4 Sensors

In order for a robot to cooperate and to work with
human , it is necessary to have a sensing device similar
to the various sense organs which human has. When the
cup etc. is held by hands and it makes it move, the
fundamental capability needed first is recognition of a




cup. By cooperation of various recognition technologies
such as shape and a color recognized by vision sensor,
a tactile sensing, if required, and with reference to
memory, it is necessary to recognize object correctly. It
is also possible to reach the same cognition result by
using a sensing organ completely different from human.
For example, it is also possible to recognize a cup by
touching only using a tactile sensor. However
recognition process will be completely differs from
aforesaid recognition process. Human usually performs
recognition for which it mainly depended on vision, and
is not used to recognizing a cup only tactually. Therefore,
it is expected that teaching a robot the recognition
process is with great difficulty. If the importance of
installing human's wisdom into a robot is considered,
and instruction efficiently, it would be very important to
use sensing devices similar to those of human as much as
possible. Fortunately an artificial sensing devices have
reached the level which can execute almost all human's
sensing organs with few exception. There are many
sensing devices showing much higher performance than
human. The microphone which can detect sound which
human's ear does not hear, and the image sensor which is
visible even in the dark place where human is not
possible to see, are the examples. There are some kind of
devices which must wait to future development and
improvement, such as a plane tactile and temperature
sensing device which is distributed over the whole body
corresponding to the skin of the human. If the various
feeling devices in which the present use is possible are
used, It will be, therefore, understood that sensor devices
required for a robot is realizable safely upon using
sensors based on the state-of-the-art technologies.

6 Emergence of artificial intelligence

6.1 Computers

The computer of robot can be realized by using newest
architecture and CPU, memory tip of the time. The
computer used for a robot will not be something
different from a usual computer fundamentally. It is a
common practice to use the latest computer technology
of a time. However, since massive calculation capability
is required of objective recognition by vision and control
of hand and foot in the case of a robot, distributed-
processing architecture which processes those processing
by independent separate computer may also be used.
Since a real-time operation will be the requisite, original
robot OS may be used. Usual computer technology is
effectively utilizable also about this OS. Since large
knowledge processing is needed in addition to
recognition or control of hand and foot, it is thought that
the language currently used in the artificial-intelligence
research field can be also effectively used. Moreover,
CPU architecture which specialized in the processing
knowledge may also be used. Walking by two feet or

grasping objects by hands are generally understood that
it is carried out by a robot's physical capabilities. But ,in
reality, ability is that the most is based on knowledge and
experience. For example, exact recognition of the
character of the material of the place and a level
difference of the ground is executed by not mere vision
capability but advanced judgment capability based on
knowledge, and experience of machine. In order to
continue a walk, what posture should be carried out and
how to take down a leg is judged 100% based on
knowledge of robots. Therefore, it can be said that a
walk is knowledge and is wisdom. It is a premise, of
course, to have firm and strong frame, a forcible actuator,
and exact and flexible control capability. In order for a
robot to derive required correspondence such as the
recognition capability, the handling capability of the
subject by fingers, and safe and versatile locomotion
capability in various environment, comprehension
capability of various information, and to perform it
correctly, it is necessary to have the mental abilities
about the same as human. It is the same also in sensing,
in vision and in hearing capability. It is only possible to
see and hear by excellent ability of the brain. Although
the details about a possibility that a computer will
acquire the capability about the same as human will be
discussed in section 8 of this report, the realization time
is predicted in general to be 2020 - 2040 year. The time
when the computer of the price becomes the capability
about the same as human was predicted under
supposition that the price of the computer which can be
carried in a robot is assumed to be 1,000 dollars.
Therefore, it may be far earlier than this that a more
expensive supercomputer becomes the capability about
the same as human .

6.2 Acquisition of knowledge

It is called a blockhead if a robot does not have wisdom.
There is it not to mention useful for human society but
quite dangerous existence. Therefore, in order to enable
behaving usefully, it is the serious subject of future robot
research how a robot is made to acquire wisdom. There
are several means shown in Fig-5 for acquiring wisdom
by robot .Among them, human has been using the means
1 and 2 over many years and accumulating experience
very abundantly. However, this method has low
efficiency and is required also for prolonged patience.
The efficiency of knowledge acquisition is not only low,
but one's knowledge being acquired and accumulated by
years of efforts is facing the serious problem of
disappearing with the man's death. Although circulation
of written knowledge has been drastically improved by
invention of the printing technology of Gutenberg, the
efficiency of succession was very low and the generation
which follows the next needed to be redone from very
beginning which is zero. On the other hand, a robot can
use the means 3 and 4 effectively,” and® has the




conspicuous feature in that the knowledge can be poured
into another robot at high speed through proper
communication channel. However detailed argument of
knowledge processing such as how to store and handle
knowledge by machine and a knowledge computer are
left to the specialist of the field, the following
correspondence being required of a robot, for enabling
such knowledge acquisition and circulation.

1) A robot's frame structure, architecture and language of
a computer must be standardized.

2) Mechanical structure and logic composition of a robot
are similar with human.

The request of the first term shows that a transplant and
circulation of the knowledge between the robots with
different body composition or logic composition are
difficult. The knowledge or the skill ,for example, for
overcomes the level difference of floor which acquired
by bipedal walking robot is hardly useful to the robot of
wheel movement obviously. Also in knowledge
processing, it is the same and the first requirement is
indispensable to mutual practical use of knowledge. It is
easily imagined

Method Contents
1.Teaching Feaching by human or robot who have acquired knowledge
alrcady or knowledge scever.
2.Learning Acquue know ledge by self fesrning mimicry, trial/esror,
reinforced learning.
3. Instill and store |inject kuowledge via UF from haman et rabot who have

acquired knowledge already and store in the robot brain

d.nstil momentary [Acquire knowledge via VF from human of robot who have
acquired knowledge atready or knowledge server but not
store int the robot brain

Fig-5 Acquisition of knowledge

to be quite difficult in transplanting application software
between computers with different OS or a language. Use
of emulation technology is possible, and it is imperfect
and also takes time. Therefore, the application of
emulation technology may be limited. Realization of the
robot with capability equivalent to human is considered
as an actual problem by rapid progress of a computer
technologies. However, it must be only potential
capability, and finally grow up to a humanoid which can
demonstrate the capability level with human after
acquisition of various knowledge like cognitive
capability , judgment capability, and various athletic
abilities . It is called a BLOCKHEAD if a robot does not
have wisdom. There is it not to mention useful for
human society neither quite dangerous existence.
Therefore, in order to enable behaving usefully, it is the
serious subject of future robot research how a robot is
made to acquire wisdom. It is indisipensably important
to teach robot and to learn by himself. The knowledge
acquired by one can be poured into another robot at high
speed through proper communication channel. The
technique of knowledge acquisition of a robot will be
reformed revolutionary and it will supercede over

knowledge acquisition of human. The second request is
conditions important when man teaches a robot , or a
robot learns himself by mimicry for acquiring knowledge.
Although situation will be different if it becomes the
phase where a robot can acquire knowledge by himself
without help of human, learning from human will be
most powerful means for acquiring knowledge at least
for the time being. This requirement is indispensable,
when instill new wisdom into a robot or skill is taught,
and when a robot imitates operation of human is to learn
and gain new action or skill. It would be difficult or
almost impossible for instilling knowledge into the robot
with which logical system and a thinking system are
completely different from human. Similarly it is very
difficult to instill the skill which human has to the robot
with which body system is totally different. How it is
possible to instill the skill which gained by manipulating
five fingers to the robot of three fingers?. Since the
knowledge stored in the robot goes back and forth across
time and space, a robot's knowledge is expanded quickly,
and as a consequence it will be a matter of time when
total knowledge of the robot exceeding that of human!.
Furthermore, even if the knowledge which one robot
holds is restricted by the storage capacity or operation
capability, support of the enormous amount of
knowledge can be obtained through a network from
another robots and/or servers out of a robot. That is, if
the global networks which are quickly developed
recently, such as the Internet, are utilized, it is possible to
utilize even global knowledge and the total amount of
the wisdom which a robot can utilize substantially is
infinite. Thus, since knowledge can circulate across time
and space, the intelligence which was excellent in all
ages and countries can be utilized freely. It expands even
quickly ignited by birth of the new existence called robot
in this way, and the wisdom will show explosion, which
is called "Big Bang of Wisdom!" .

7 'When soccer robot appears ?

The robot drawn by Karel Capek in 1920 is going to
appear to us. An appearance of the humanoid robot
which has capability similar to human is not in the dream.
It is possible to predict the appearance of robot from
speed of development of the computer technology which
is supported by microelectronics. An appearance of a
robot is not the fairy tale of the future but the talk of the
surprisingly near future. It would be quite natural to
predicts the appearance time of the robot with the
capability about the same as man from development of a
computer and artificial-intelligence technology. By
wonderful progress of microelectronics known for the
law of Moore, the improvement in computer capability
and the fall of price are progressing rapidly. As a result,
the calculation power per unit cost is improving at
surprisingly high speed. H. Moravec and R. Kurzweil




had performed investigation of the calculation power per
1,000 dollars which is the price considered to be
permitted as a robot's computer, and future prediction to
the humanoid robot. Moreover, using the result of
human's nerve physiology, the estimation of human's
amount of memory and logic operation power were
performed. The comparison with a computer to human
was discussed.[11]-[14]

The short-term prediction to the year 2020 is shown in
Fig-6.

R.Kuzwei

3OUT T00TMips Siwmand
Z wr {
Z ITMips Apes, Monkey
?a ! |
2
&
A :
g- 1006 100GMips Mouse:
o«

10G .

3GWMips Reprile, Lizal

T 106G ]

160M "~ Insects, Spider

o0 204 06 0B W B2 '1e ‘te (18 20

R i (13

Fig-6 Forecast of Computing Power (Shot term)

If it considers that ability of various kinds of body
operation and recognition, is governed by brains
capability, the robot having the brains about the same as
human will be appropriate to predicting that the
recognition capability and physical ability about the
same as human. Kurzweil and Moravec predicted that it
comes to have capability of human at year 2020 and year
2040 ,each respectively. The target referred to as that
robot soccer will challenge the World Cup champion in
2050 has enough validity, and it is thought that it will be
attained.

If it is simple work, a robot of having ability less than
human can work at our home. The humanoid robot will
penetrate to society early from the above-mentioned
prediction. Moreover, use of the computer which
exceeds 1,000 dollars in the early stages of introduction
should also be permitted, and early introduction is
predicted also. It should be interpreted that the time
when robot is equipped with the capability about the
same as human as the time which robot is playing an
active part in society in large quantities. It is predicted as
that to which a certain amount of market has risen in
year 2010. The time of about 50 years passed from
IBM701 computer in 1952, 24 years after sale of Apple
11, 30 years after Intel 4004 which is the first microchip.
When the development speed of the latest computer is
considered, 1 can never think optimistic prediction of
year 2020 which Kurzweil predicts. Taking into
consideration of the factors already described, robot's
introduction will be much earlier than generally expected.
The humanoids robot is approaching to just next corner
is not an overstatement.

8§ Conclusion

This possibility was examined from two viewpoints. One
is the development speed of the artificial intelligence and
the realization possibility of artificial intelligence equal
to a human intelligence. A possibility that a soccer robot
could be more realized using the main devices which
constitute a robot was examined. It was concluded that
the target which RoboCup holds up could sufficiently be
attained. Realization of the soccer robot is realizing the
robot which is equal to realize human symbiosis robot as
well. Realization of a ubiquitous robot coexisting with
human in every corner of our society, and plays an
important role. Moreover, this robot carries out a huge
contribution to our society. Therefore, RoboCup is the
great challenge to realization of human beings' dream.
Target achievement is possible if it is tackled with our
best effort. 1 personally believed in the contribution of
[RoboCup Project] to the happiness of mankind will far
greater than that of  [Apollo Project].[15]
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Abstract

[By the year 2050, develop a team of fully autonomous
humanoid robots that can win against the human world
soccer champions] Can the aggressive target which
RoboCup holds up be attained? .This possibility was
examined from two viewpoints. One is the realization
possibility of the artificial intelligence similar to human.
Secondly a possibility of realizing a soccer robot by
using main devices which constitute a robot was
examined. Consequently, it was concluded that the target
which RoboCup holds up could sufficiently be attained.
Without expecting the appearance of the material like a
dream, or a device which is not yet seen, it was predicted
that the humanoid having the capability about the same
as man was realizable by 2050 using the latest
technology of the time. The humanoid advances to every
corner of society and will contribute the happiness of
human being and realization of the ideal society.

1 3C®ic

199 7H#4HRTOH—ERELLK RoboCup 7
OYary MIFELFRREZRT, HROBEFREN
BE<OZMT 2, HRARNREHTR>TND,
RoboCup M8V 2t KR BEEIL, ThER I N
TEBEITI, S0 BEEHSOERENBREINT
W5, AFwX Tl RoboCup DEFRZRED . K&
HESHL., SEAMTTOREEZE LD,

Yaer City(Country)
Nol 1997 Nagoya(Japan)
No2 1998 Paris(France)
No3 1999 Stockholm(Sweden)
No4 2000 Melbourne(Australia)
No5 2001 Seattle(America)

No6 2002 Fukuoa/Pusan(Japan/Korea)
Fig-1 History of RoboCup

2. RoboCup 0EZ

RoboCup IEHM R EEMET M SEET BHEERD
(BREH] D BREAOIELIZBUTELE
RS2 s EkE28EET 2 [OofRy b2

TFAR] OfENEBSRR oI~ RIEHT
5B, 2050FFTICT—IVRIvTF¥ >
A o F—LiBoaRy NF—LEED, B
EHOHEELTEY, LEEHENEAMEDO
Ay b (Ea—< /1 R) OEREZEBELTWD,
AB#2EEEFEL TEHT S, Wb MLEF
20Ky bl OEHIZH - EHEERMMDOZIE
FICIEBI & B A5 5,

2. 1 BB OHERERIEE

HEEREHM LAV, FOBEICHE L TEMIUK
WHEDTHD, DRy TICBANTR=I/T LA
Y—/7 4 =)V ROERERHIL. FEEER T
FORVWRRTH S, INFTEMROEERH
DEFREZHERNSE., ZOLIRELVICEE
5 TWB OISR FRIC EAREHEDREMN M-
DTN ERBET S, A TRENET
LEBETOHEERBICIIEEN RS B3
M. FORRRBEICHIST 2EM TR B
FEOORY MIEERTERNWI EEFHSNTH
5, EHREMEND TR, WAl EANBEZ
EDHERBNLERFALTH S, HETEN
HEZZRELTOF¥ LI ¥Eo7ROE
EZRDETHR<, HEREERWICIET S
T EVIRESEASEEEA L T WS, RoboCup ¥d T 2050 4F
ETRABOT—IV Ay TEBEF—LIZ. BD
ORyw hF—L&ED) EEDHEREEZED
THED., TOEZEOERRBEHEICTMT 5F
WNAJEETH B,

2. 277 0—ANST TUS— 3
M

Y E ORI ANR. TOEENMOZDITHE
HAEIN20NHBICEEINTVWAHENRD B,
bbb 7 ) r—a ARMTRITIVIR S 2
W, BRAZHEICTREICL> THEDFRDT
DS OB BN REIC RS, ko
T “KiCE->TAIGETWE” EEDRITZBET
AEINTE S,




REODERFEMOBEHEICNbONhSZ &<, Y
ERICERERFENRREINS, FAET7 42—V
RAOY Y H—R—)IVOR&HEZBEICTEDOTH
T, TOBHOBREOEREMZ2ZRT IR,
BT UETHIATIC L DEERBFERICH D0
B, BEESCL —Y—E—AIc X 5 HIER
WZEALED, WEME S 2 blLE5bES
BIZXoTHERDIEMHE. NOMBHICEMNZERT
LHEBURETH D, HETLT “EoH—Fa”
MEHRINDEIIRD, T-WERBLRE BN
THEMZ A BRFERTHETZEEDIT, F0O
FIEICRAWTIEZOR Yy hOFDHESZIERAI NS,
Tiabb IS I—HHEAT “AHmE" NERX
NDRITRD. MnLGEEIMEICEREHZOD
By T WO DT, FNE2HEWMABETHRYOD
FENTENTIROEE THECHNZERTE
BEITIED, Tabb BHOBEMERHEIIFRD
ZEEEBESTEICRS

Research Orientation

Technology Driven ~—  Application Driven

Seeds Driven —  Needs Driven

Research Driven —  Market Driven

Fig-2 Application Oriented Research

2. 3BmFELH

MEICaARTF 0 a  BEIgRELZN, L0ER
HbH DN, RETRAERBESFIIRVNEBNETF
N—=23 2 iZR%, MERENLBEBOLETH S
U. BAREZSIE TREl S 2 E 135S 2 2RI I H#E
T BEE 112725, RoboCup 13F D HENY
A—T4—IVRTHO, TITEMIEMENS
ORy ME, #HE#EEITZo0Ry hOERICE
BEORMNBEBDTH S, £z RoboCup TiEI R
Va—LZRFFICHEEL. HEirRARINBEHE
AIZ-O>TBD., ENRHEEMERBAEES N
HBILDEERETHD, HENT—ALND
HENSITEICHEWERIEThENEEZ 3,

Features

1 Setup Clear and Aggressive Target
2 Seek for not Seeds but Needs Oriented Research

3 Open and Competitive Promotion

Fig-3 Features of RoboCup Project

3 RoboCup iRy MEALADITE
RoboCup D HHID—DIIAMEFKEL, HEicE
MDoORy hEERTLEZETHE., Yuh—EF
SEHRITGENRETIEH T 20Ky b OBFFEH
i3, HETEHZIREETZO0RY hOERIC
EHEEBRTSHDOTHD, “ANAEZEDIA
" 7ROFE TORBIIHEEZENICUNE-LEI
HE L 72Wolclkx, “O—=)L RAw TEBF—
LT, BoOoRy hF—LZEED” EED
RoboCup 5t T D EEIZ AN QEEBEIRN
e TH B, =5iIcOhy NOFEM, TxRIVF—
B, a>Ea—%., NTHHE - - 7z EEEWEA
TEHOEFETHD, ZoHEZELC TESINE
F 3R THRIAEWEESI RN D 5.

Project RoboCup Apollo
© Robot soccer x Man reach to the -
player c.af workak Moon can not help
Features | OWF SOtet- ~our life directly.
O Repercussion .
effect can be O Repercussion
. effect can be large.
Contribut Direct and Indirect and
ion Enormous Large

Fig-4 Contribution to Mankind

4 BMERZENSHBEEREA
R=IZRUT)INLUENS T4 =)V REZEDE>
720, HFEOTEEENTIT—IAR—)ZTa
—h¥aDicidoRy MEFICHL T, FEI
HH L TENCHENERSIN S, o0 Ry
MIFEEY D72 WEHR G TLMBEITE 20,
Whwwad [FiEHT] OREHTHoz. T Tt
FEX/R B, BART I F 2T —F 0 —RlH
B EEMERNZEMN TH o7z, MmEE
XE—%5—¢EHAL, UDIDATHITEEHRLE
FlodH oD, ERECLRBIRESNWT TR T
B0, BRZETOLRNSCEHOEZTOSB
HbE2DBEREL D, T TIRAELOERZ
R, BB LED, BoRBEEZELLERL T,
SERZEOLDITENTHDHAENERIIFET
Holz. LMLEBNSYyh—Ohy MIFEICE
WOBHRPLESOLBRL E2RHL. RODEFL
WITEh Z BB ICHINT T 2 B E R RN ERE NS,
9725 RoboCup D Ry MIFEMER K D EH
MICHBEERICXRE I TR W RThER 5
mn, ANERETRIEFY ZAO0RY M, £
OITHZEE L THET 2 DITHREERTH D,
BRERINTH 2. P00 Ry MIBHESR
S BRI N ENTH DD, REITHR L 25



ZRHTARHEAENNRKZETDHRIITAD.
BRENCITHRENFR E OF R ETOFEICRS,
OL3kcoRy NOREEEEEELTH
RoboCup D7 7O —FIXIEHEENZDHDTH S
To

g

o
<

£a
=

g
<
Al

—> Control Weight (%)
3

-1
B

—> Year

Fig-5 Change of Ruling Power

5 TRy MR E N THIBEDFFR O EE
ORy MO HEO—D 13RI L DITA
BINEADEEHEE>7=ORY hE2EBITLIHETDH
%, RoboCup D HEDLEEBIENILT Y I—
ORy h2EZETHD. HUEZHKEBETHS, &
OORy MIBEKEENICHE L TENZHEZEH
ABMENRHY, ORy MIRIZIATAHR AL
HIEE DI EET D,

kw2 nORy MIESIC SREOH, T
HO, ABicE->TEREZAD, BBREBEDRR
WEETH D, HENZTIEENH > ThH<
EHTET, BOEZHBAOEFZBATETD
@B RATD. MIARBWETRS. FRER K
OBERBEEZRE, REOBEESCEIIITANT
e/ HEEC L > TERINTWS, T7bbO
Ry FOWEIIALHERAREDODDTH S,
(A > FR] Tl [(FREF> A
fe] oEBEBEIRTNERSRN,

1700 ~f-mmmmmmmm e
18th century R
1800 —bommmmee- Energy :‘evohmon . l{);.
Body without Brain
19th century
L ?
1900 ~p-wmomoon Knowledge Revelution {!‘
20th century Brain without Body f::
o ! 7
o ;
2000 - ---oomeeene = " 5L
21st centu EY Rob.ot Revelution
™z Brain with Body
2100 Lo ...

Fig-6 Brain with Body

—FEEZ [(ORy Mg & [ATHEEDZE)
BREL TWBEEEDLIZEERNERTH S,
HMEOBERIEIFETH D, SBREVYG - EHE,
BHNBLETH D, RAOBBEEORILT—<D
ST - B S B ZOBRIZASHATH S, OR
w FAY SKREDH KRBV EDIZH, @ED
+47t . EHICEATHRENERICEETDH
%, MEOHADBERERE S 1EFF 20N
whs THD, ORy MFIALHENREOXEZ
BTARYO [FR2H-LHEE] KD, A
BRI O Ry P EEDEHOHEER/T (AT
RO 2L O WA BEIT/AED, RoboCup
W E 2O B FOZERTH S I,

Field Main Activity
Robotics _ Mechanical, Control and
Research Application with slight Al

Knowledge, Language and
Cognition with slight
Mechanics

Fig-7 Main Field of Robotics and Al Research

6 FHrEEROIRRE

1960 FEftic 2y — b LAETEATRY ~ ORI
ORy MO EFOERLEITRIEER
BRFRBEGEREELTOAE, LELEBRSEZD
BTEOBERIEBRICZ> TALL . &EOTR
v NEBRESANOEERN L ORNRERPHFES
MDD TRV ORBIRTH D, ZOERZE
W AIE ST ABVNANKEREEIZIIRS D,
ERO%EITEATHRN, BEIINENE DN
EHEEBERL TWEWETHA I,

Al
Research

. Observation

Side bservat o by
another side

Academy -- Industry always ask for instant

remedy and does not comprehend
needs of long term research
Industry always ask for instant
remedy and does not comprehend
needs of long term research

Industry -- Academy can not supply
tomorrow business we have to
help ourselves

Academy fails to show future
vision and road map of robotics
Fig-8 Academy and Industry




ZDEDBBEMMN < EiE ORNCER /AR
BERETHIENESINS, RALRBENEEN
2EIATHD, EHEANVBHEININGZ
kL. BEHNAGBREICRITAHEIIFEOHEEEZR
HDT R TH2, ZOHBAIIZORY Mzko
TEDHBERNET TS 200 [FRkEY 3
>] . FOERAMM->TO [B—Kv v ] &
REL. TNZHSNICTEIENEETH S, %
T INET AT I XLPNMER L TERAAER
THOAMENDD, TR L7 HT I X LADE
BELED, £ELWEAIEREL TWAEANH
Do EMIRDOIFROEYE TR SN 5HEWN
BEWIOE, ISFEEESIERKDFELTH S, 2D
(fFkETa ] BXY [o—R<w 7] MK
TRWENFREEERORHZELZL TWDE
ROFEREEDNS, RoboCup 13 Z DEITHBNT
BHRBED a v 2B THEI N TWBEEIL,
LEEMBICEA TRHREREZEITNEETH S,

7 RoboCup D&
ANBENOREHEOEMMAHFHEIN TS S AR
AoRy by ORHICHRBEENLRETSN/ZS
N, T 5ITF OEBITITIMRD TIRIL W2 B 0
MENMBEE DT 2RO BENRHERT
#EHE L TU% RoboCup AHEIIE I ICHFARTOY
7 b TH%, K<THROFHHEEEEBEINSMN,
ANENOEBORESIZBNTENMNT L2217
“Super Big Project” T& %, Z#1% RoboCup DYt
DEETUL, —HFIUTfHE L T RoboCup DE
DENFEL TS, LT ORI TRETL
2, BERBHEEL “FHEZERICLER T
ISR EROBANEN EESETH D, LI
HIRANTz KD 1 BEED R L # P 72 i 5E E R
OMENARAIRTH B, LMLRNST 4 —)VR
WERLY 9y H—FR =)l ORHLEER 5L NEH
ENRHD | . EWPFFEOREE & JENWFEES %
DR R RAEZE DIHIEE DS ANRD TAH
RWENRERTHAS. TS5 DHFEENEKE
ICHDMHDITEEIZL RV T v TONAl g E Bbn
%, ZENDIZNDIE, BEICHT BEFR—
VAR LTVHENFEREEZ NS,
RoboCup DEAFMI A, FHiKEBITENZOR Y
hEBIETRBIREHRTHZH, FARKFICYYh
—T—LADWRLDHIREERTIELHTHH 5,
ZD® “GHUIMETIIRL., BERCTER
W7 EOFMEEZTBEREEC TS, Wb
W5 IERIROSMADIR <, FITITHEHITH
PHBEBRTHD TWBEABEZN, 5—DIF
RoboCup i HEZMEDETSEEZRHEICL TV D
HAH D, FHICI2Ea—% ETOMBRULEF

DDA THREITES T, BEEESBRVWES
Hiskz W, EEDBRSMANOBEOENEED
Nz, LiMrLiansory b OEBRITITHENS
SDEDHEERBRTHOIBEEEADERKEDA
HEE DSEIAFI R TH S, 7245 RoboCup
DEFBEED N EZZEOVHL TNWEDTH S,
A& OBREILY v 71 —LIS D RoboCup L AF 2 —
A —hEE, BEITRoboCup a3 —3
CTHENES THSETE A ZE> TY
5, LMWL A T & ORGSR NEN
NZBEHBRENVEETHA S,

8 ta—~ /1 RU—ZJ D&k

ABH#EDORy hEROKRBIAEILX. AMEOR
v hEHEDHDEL TEDEERIETH S,
HRRThoz0., 4BBETH-Z0. B
HH L DERREB/NIY A Zooky T, BE
WH4 DEBET—HICEE 5 EOEKRERDOE
IR TH D, EHICAMII ADEa—< /A
RORFITIILRORENES N, TEHLTHR
WS AR XooRy NEEBRTIENE
BThb, THYIZooRy kB A —FT
L5ONHENTH B, AFD/S—hF—ELTD
Ea—< /A4 RDNHEOHDIZ/RAD EL TS
ZERIREMLUTHESENFETH S, HITH
ZMBETDREN THIE, TR ORy b %
EE T2 HIIBREOHMZARICT IS IZER
T3, FRHAEHEZ2T 50Ky MIRES
BFBITIE, 2ooORy MIHE, d#EEzE0LDS
WHRZADMNEE O METH S, KIIBRELD
WHEEOHLMIFEDOER TR, ORy hD
HEOEHTH S, FELINTLMETORY b
DHEER, HWTEONOEHEDD > -EAE
HiEHE R EZREL. TNET Ty hR—
LELTZED LCEERE ZTURABRECAL
Hpez B8 L T [FRZR S ZHEE] OFEBHNHE

% Head O >

. Neek
o Signal from Sensors
runl
oty
*
7 1
i

Fig-9 Standard Robot Body



WWTHFRICTELARBZEAZENTENTD
A MFEERBAICINEE N ETH S, TRy
N B EOEWEDIRMEM ST HIE. A TIFEE
OBEERENELS Y, ORy b OHEEDHZEIE
REEMICHEET D H O EEBbhbib,

9 HFEOER
aYEa—FORERESRICID. AREREFED
ez EFOORy FORBBHEOHBELLT
BEan TV, LMALZNTIH ETHIBTER
F1THD. ELWRMAENHIWEES, ROEHE
SEERE N 2HE L THD TAM S EOREN Z2H
T oENHRS, MEREEL TRV ORY
MInbws (REOL) ThHs, TIUIARIZ
Lo THERAREZAN, KIMIZRD TRRLFE
TTHH 5, HAFPLEENOR Y Mo > TEIZ
HRIHMNBEERETHLOFHLUTHS, ORYy
NI 2 ST BT Fig-10 R T E D RFE
N5,

Methoé - C(mtents

1.Teaching Teaching by human or robot who have acquired knowledge

already or knowledge server.

2.Learning Acquire knowledge by self learning mimicry, trial/error,
reinforced learning.

3. Instill and store [Inject knowledge viaI/F from human or robot who have
acquired knowledge already and store in the robot brain.

4 Instill momentary Acquire knoﬁ-‘lcdge via I/F from human or robot who have '
acquired knowledge already or knowledge server but not

store in the robot brain.

Fig-10 Knowledge Acquisition by Robot
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Abstract

Two frameworks of hidden Markov modeling
for multi-agent systems and its learning pro-
cedure are proposed. Although couple of vari-
ation of HMM have been proposed to model
agents and their interactions, these models are
not handle changes of environments, so that it
is hard to handle behaviors of agents that act
in dynamic environments like soccer. The pro-
posed frameworks enables HMM to handles en-
vironment directly inside of state transitions. I
first investigate a model that handle the envi-
ronment in the same state transition of agent
itself. In this model, the derived learning pro-
cedure can segment environment according to
the tasks and behaviors the agent is perform-

_ing. I also investigate a more structured model

" in which environment, agent, and another agent
are treated as separated state transitions and
coupled each other. For this model, in order to
reduce the number of parameters, I introduce
“symmetricity” among agents. Moreover, I dis-
cuss relation between reducing dependency in
transitions and assumption of cooperative be-
haviors among multiple agents.

1 Introduction

When we train an agent or a team of agents (learner) to
imitate behaviors of another agent or team (demonstra-
tor), we must determine a framework to model agents
or teams. Hidden Markov Model (HMM) is a popular
candidate for this purpose. Because the behaviors of in-
telligent agents are complicated and structured, however,
we should apply HMM carefully.

Suppose that we write a code of a reactive soccer agent
by hands. We may write the following code for it:

while(true) {
if ({is my role a passer 2)) {
if ({is a recewver near ?)) {
{kick the ball to the receiver f); ...

(change my role to receiver.); }
else if ({find dribbling course?)...

else if ((is my role a receiver 2)) {
if ({find an open space?)) {
(move to the spacel) }... }
else ... }

As shown in this example, situations {environment and
agent’s internal states) are segmented into finite states
like “is a receiver near? and “find dribbling course?.
These segmentations are vary according to agent’s role
or intention. In this example, “is a receiver near? is
not used when the agent’s role is “receiver”. In the con-
text of the imitation learning, it is important to estimate
what kind of segmentation of environment a demonstra-
tor is using. The difficulty of the segmentation of en-
vironment is that the segmentation should change ac-
cording to agent’s current intention. This means that
segmentation of environment should be acquired in the
same time of learning intentions in the context of imita-
tion learning.

In addition to it, when agents interact with each other,
it is necessary to assume a kind of structure of states in
HMM. In the above example, whole situations are classi-
fied into states according to roles of agents (“passer” and
“receiver”) and status of the environment (“is a receiver
near? and so on). Because it is difficult to acquire such
structure through learning, it is better to use HMM in
which states are structured suitably. In this case, we
must pay attention the learning performance and rea-
sonabilities of the structure.

In this article, I propose frameworks of HMM that
can segment environment interaction between agents ef-
fectively through learning. In the following sections,
I introduce a integrated HMM of agents and environ-
ment for learning of segmentation of environment in Sec-
tion 2, and framework of HMM to represent interaction
of agents in Section 3.
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Figure 1: Agent HMM.

2 HMM for Agents in Dynamic
Environment

2.1 Agent Model

In general, an autonomous agent is modeled as a Merly-
type HMM (shown in Figure 1(a)), that is, the agent’s
behaviors are decided by the following manner:

e The agent has finite internal states.
e The internal state transites in a discrete time step.

e The next state (s{*+1)) is determined only by the
previous state (s{*).

e The agent’ action (a{*+1)) is selected by the current
state transition (s —s{+1)),

This formalization lacks the effect of interaction between
the agent and the environment. So, we introduce the
following assumption:

e The internal state and the environment has a prob-
abilistic relation.

This means that the environment (e{*?) can be deter-
mined by the internal state (s) under the probabilistic
relation (Pr(e®|s®)). In other words, the changes of
the environment can be handled as a Moore-type HMM
(Figure 1(b)).

In summary, an agent and its environment can be
defined as a following Moore-Merly-type HMM (MM-
HMM).

Agent= (S,A,E,P,Q,R,W>;

where S = {s;} is a set of internal states, A = {a;} is
a set of action symbols, E = {e;} is a set of environ-
ment symbols, P = {p;; = Pr(j#1i®)}i,j € S, vt} is
a probability matrix of state transitions, @ = {g¢;;(a) =
Pr(a+D|i8) j¢+1)|5 5 € S,a € A,Vt} is a probabil-
ity tensor of actions for each transition, R = {r;(e) =
Pr(e|i®)|i € S,e € E,Vt} is a probability vector of
environment for each state, # = {m; = Pr(i{®)} is a
probability vector of initial states, and (t) on the right
shoulder of a variable indicates time ¢.

2.2 Learning Algorithm

Suppose that a learner can observe a sequence of demon-
strator’s actions {a‘!...a{T)} and changes of an envi-
ronment {e{?)...e{T?}. The purpose of the learner is
estimate an HMM that can explain the given action and
environment sequences most likely.

For this HMM, the forward (af*(j)) and backward
(beta® (1)) probabilities are given by the following re-
cursive formulas.

i1 (e{0) ; t=0
a(j) = Z oV (1) piiqi (@) (e®) ;  otherwise

€S

1 ;o t=(
BUG) = 3 pija @)y (B (G) 5 othe

ieS

Using these probabilities, extended Baum-Welch algo-
rithm to adjust p;;, ¢;;(a), r:(e) and m; are derived as

follows:
> £, 4)

tla(t)=a

> €416, )

t

> €9, 5)

t

Pij & S amna
’ > NG
i

> A0
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gij(a)

ri(€) W T~ 7 O%)
t
where
€0 = 0Py 6)
" P(at*), e(*)|Agent)
8 (5) ol (7)) (j)

P(af*, e{*)|Agent)

2.3 Segmentation of Environments

When the above learning succeeds, the learner gets a
suitable HMM, whose state transition reflects both of the
internal intentions of the demonstrator and segmentation
of the environment. In the HMM, each state corresponds
a combination of an intention and a segmentation for it.
In other words, the representation of the intention and
the segmentation are mixed in a set of states. While
such representation is enough to imitate demonstrator’s
behavior, it will be still useful to know how the acquired
HMM segments the environment.

The segmentation of the environment can be repre-
sented by a probability function Pr(s|e) where e is an
environment data and s is an internal state of HMM.
This probability can be calculated by the following equa-
tion:

Pr(e|s)Pr(s) _Ts (e) Pr(s)
Pr(e) Pr(e)

Using this equation, we can know how the acquired
HMM segments the environment.

Pr(sle) =
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2.4 Experimental Result

In order to show the performance of the proposed
method to acquire separation of environments, I con-
ducted the following experiments.

2.4.1 Ex.1: Discrete World

In the first experiment, we use a linear block world
shown in Figure 2. An agent is moving in the world using
dash and turn actions. When the agent turns, the agent’s
direction flips between left and right. When the agent
dashes, the agent’s position moves forward according to
its direction. The step size of a dash action varies 1 to 3
randomly.

The task of a learner is to acquire the rule of another
agent (demonstrator) who behaves as described below.
A learner can observe the demonstrator’s position (=
environment, {e?}) and action ({a®}) in each time ¢.
We suppose that the demonstrator behaves according to
the following rules:

e If the position is in the left/right turning zone (mar-
gin of the zone is 3) and the direction is left/right,
then turn.

e Otherwise, dash.

The main point of this experiment is that whether the
learner can acquire the correct segmentation by which
the turning zone will be represented explicitly in the
state transition, because the concept of the turning zone
is unobservable to the learner. Also, estimation of the
dash step size is also important, because it defines how
the world (environment) should be segmented in order to
simulate it by an HMM. Note that demonstrator’s direc-
tion is not observable. This means that the learner needs
to acquire the representation of the direction through the
learning.

In addition to it, the learning of general HMMs is
not guaranteed to reach the global optimal solution: the
adaptation may fall down to a local optimum. Therefore,
we executed the above learning procedure using differ-
ent initial parameters 100 times, calculated the average
of the likelihood of given example sequences, and select
the best one as the result.

Figure 3 shows the result of the experiment. In this
figure, (a) shows possibilities of environment symbols (eg
---€g) for each state (so ...s7). Each box corresponds
to Pr(e;]s;) whose value is denoted the size of black area

in the box. For example, in the sq¢ line of boxes, columns
of e5 and eg have significant values and both values are
relatively equal. This can be interpreted that es and eg
are grouped in the same state sg, because the environ-
ment is estimated es or eg equally when the HMM is in
state sg.

Similarly, Figure 3-(b) shows possibilities of states for
each environment symbol, whose value Pr(s;le;) is de-
noted black area of each box. For example, the eg line
has two columns of s; and s5 who have relatively the
same significant possibilities. This can be interpreted
that eg can correspond to two states, s1 and ss, equally.

We can extract the following points from this result:

e The acquired HMM segments the environment into
4 regions, {eg,ei,e2}, {er,es,eo}, {es,es}, and
{es, es}. The first two regions correspond the “turn-
ing zone” defined inside of the demonstrator. Rest
of the two regions have the same length, 2. This
value correspond the average step size of dash com-
mands. These results means that the acquired
HMM represents both of the rules of agent behavior
and dynamics of the environment.

e Each environment symbol corresponds two states.
This means that the HMM recognizes the (unob-
servable) direction of the demonstrator by doubled
states for each environment.

2.4.2 Ex.2: Continuous World

The second experiment is a continuous version of the
previous experiment. In this experiment, the demon-
strator’s position (e) is a continuous value instead of a
discrete symbol. The rule of the demonstrator’s behav-
ior is the same as the previous one. The length of the
world L is 25.0 and step size of a dash varies 5.0 to 15.0
randomly.

Figure 4 shows the acquired Pr(e|s) and Pr(sle) af-
ter the learning. In these graphs, the probabilities are
plotted as follows:

o Pr(els) is plotted as a set of probability density
functions of environment value, g;(e) = Pr{e|s), for
each state s.

o Pr(sle) is plotted as a set of changes of probability
of each state, fs(e) = Pr(s|e) = Pr(e|s)Pr(s)/Pr(e),
according to environment value.

In the figure, (a.1) and (a.2) show the result when the
number of HMM’s states is 8, and (b) shows the result in
the case of 14. From (a.1) and (a.2), we can find that the
HMM segments the environment in the similar way as
the discrete case of the previous experiment as follows:

e Two turning zones at the both ends of the world are
segmented clearly.

o There are two corresponding states for the most of
the environment value. This means that the HMM
represents the direction of movement by the two
states.
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Figure 4: Result of Ex.2:

We also can find an additional features from these
graphs: There are 4 peaks (State A-D in (a.2)) in the
middle of the environment in the graph, and, A and B
(or C and D) are relatively overlapped with each other.
This means that the two states A and B (or C and D)
indicate difference of the direction of the movement as
mentioned above. While two states are overlapped com-
pletely in the first experiment, however, peaks of A and
B (or C and D) are shifted. As a result, the segment
point of the environment in each direction are different.
For example, the segment point * is about 13 in the case
that the direction is right (the case transition is B —D),
and it is about 11 in the case of left (C —A) 2 This
means that the segmentation of the environment is not
fixed for all agent’s internal states, but varies depend
on them. The structure of the segmentation are stable
when we use more states in the learning. For example,
when we use 14 states to learn the same task, the HMM
can acquire the similar segmentation of the environment
(Figure 4-(b)).

In order to show that the proposed method can acquire
segmentation of environment flexibly, we conducted the
following experiment. We introduce an additional Falf
turning zone in the middle of the world, in which the
demonstrator turns in the probability 0.5 . The detailed
rule in this turning zone is as follows:

e If the demonstrator’s direction is right and the posi-
tion is in the left hand side of the half turning zone,
then turn in the probability 0.5.

o If the direction is left and the position is in the right
hand side of the zone, then turn in the probability
0.5.

Figure 5 shows how the segmentation of the environ-
ment (Pr{s|e)) changes by using the various numbers of
states. As shown in this result, many states are used to
represent turning zones, especially the half turning zone
(the center area of the world). We can see when the
number of state increase, the HMM assign many states
to segment the turning zones, especially the half turn-
ing zone. This is because that the conditions to decide
demonstrator’s behaviors are complex and use detailed
information about the environment.

2.5 Discussion: Environment as Output

The proposed method looks little bit strange because it
handles environment as output from states rather than
as input to state transitions. Input-output HMMs seems
more reasonable to model relations between agents and
environments, in which the environment is treated as
input to state-transitions [Bengio and Frasconi, 1995,
Jordan et al., 1997a]. There are the following different
points between these two methods:

¢ When we handle the environment as input, we can
apply the HMM for planning. Suppose that initial
and goal situations of environment (e/®) and e(™)

la crossing point of probabilities of two states.
2The transition B —D and C —A are extracted from probabil-
ity matrix of state transition of the trained HMM.



Figure 5: Changes of Segmentation (Pr(sle)) by the
Number of States (in Ex.2)

Action Sequence

Sensar Sequence

(a) Agent and (b) Two Agents and
Environment Environment
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are given. Then, the planning can be formalized as
follows:

To get the most likely path of state
transitions that maximize the probability
Pr(ef®, e{T)| Agent).

When the environment is handled as output like the
proposed method, we can seek the most likely path
simply using well-known algorithm like Viterbi’s
one. On the other hand, we need an additional sim-
ulator or inverse model of environment when the
environment is handled as input.

e When we use continuous value for input of HMM, we
need to use gradient ascent to learn the parameters
in a cycle, which requires more computation power.
On the other hand, in the proposed method, we can
apply the one-shot adaptation algorithm derived in
Section 2.2.

3 Symmetrically Coupled HMM

3.1 Symmetricity Assumption

In Section 2, we handle environment and agent’s inten-
tion by a single HMM. However, the number of states
increases exponentially when the agent has more com-
plex intentions. This is significant when HMM handles
interactions among agents. In this case, we will face
generalization performance problem. As the number of
states or learning parameters increase, the huge number
of examples are required to guarantee the generalization
performance. In order to avoid this problem, I introduce
symmetricity assumption among agents as follows:

symmetricity assumption

Every agent has the same rules of behavior. In
other words, every agent shares the same state
transition rules with each other.

To reflect the above assumption in HMM, first, I divide
the internal state into two states, environment state se
and agent state s,, and form a coupled HMM as shown
in Figure 6-(a). In this model, sensor data e{*) and action

commands a® are determined by environment states s&




and agent states sﬁ.t) respectively. Transitions of both

states are determined as follows: The next environment
state s& is determined according to the current en-
vironment and agent states {sg), s )}. The next agent
state sf,t+1> is determined according to the current agent
state and the new environment {sg ),ng)}. Then I in-
troduce the second agent who cooperates with the first
agent as shown in Figure 6-(b). In this coupling, both
state transitions becomes affected by the second agent
state §§t). This is summarized as the probabilities of

state transitions as follows:

Pr(s{*x) =
Pr(s{+|x)

Pris{EH 16l o0, 50)
Pr{s{EH 0160, 50, o)

In order to complete the state transition for Figure 6-
(b), we must consider about transitions of the second
agent state 5,. Here, I apply symmetricity assumption
for the second state transition, that is, the probabilities
of state transitions of the second agent are determined
by the same one of the first agent state transitions. The
most naive implementation of this assumption is that
the probabilities are described as follows:

Pr(§§t+1)|*) o Pr(§f:+1)]§§t>, sé(‘t),sgﬂ))
= Pr(s{t = 5i+1)|
sét) — gi(:),gz(it) = Sg)’sét+1))

This formulation is valid when both agents share the
same environment state. In general, however, two agents
may have different environment state inside of them, be-
cause the environment state in this formalization is a
kind of internal world state that each agent has. Such a
situation is not avoidable especially when the sensor data
e®) is represented from the viewpoint of each agent. In
order to overcome this problem, I propose a symmetri-
cally coupled HMM (sCHMM) shown in Figure 7. In this
model, the second agent has its own environment state

5 Using this, the transition of ES ? are represented as

follows:
Pratt ) |x) = Pr(sith) = st

£ = 50,50 = o0, o) = 5,

where the transition of the second environment state 5
follows:

PrsftVls) = Pr(s{H) = s+
{0 = 0,0 = 50,500 = o)

3.2 Formalization and Learning Procedure

I summarize the sSCHMM agent as the following tuple:
Agent = (Se, Sa,E, A, P, P,,Q,, Qa7 Te, 7ra> s

where Sa = {sai} and Se = {sei} are sets of states for
agent and environment respectively, E = {e;} is a set
of sensed environment symbols, and A = {a;} is a set
of agent action symbols. Pe = {peijuili € Sev,j,k €
Sag,Vt} and Pa = {pajkim|j, k € Sag,m € Sev,Vt} are

Figure 7: Symmetrically Coupled HMM.

probability tensors of state transitions of environment
and agent, Q. = {gei(€)|i € Se,e € E,Vt} and Q, =
{gaj(a)|lj € Sa,a € A,Vt} are probability tensors of is
observed symbols of environment and actions, and mwe =
{Tei = Pr(séo) =1)|i € Se} and 7, = {7aj = Pr(sﬁ,o) =
§)|l7 € Sa} are probability vectors of initial states of
environment and agent. Each element of P, Py, Q,,
and @, represents the following probability.

Deijkl
Pajkim Pr(s = m | sas D = j, 520%7D = k,s{ =1
Gile) = Prie® =e|sf =i)

gaj(a) = Pra® =a| s =4)

We can derive a learning procedure for sSCHMM as
shown below. Suppose that sequences of sensor infor-
mation {e*)}, agent’s own actions {a{?}, and other’s
actions {a‘*)} are observed (0 < t < T). We can cal-
culate agent’s own forward and backward probabilities,

al(?m and ﬁf;;c respectively, as follows:

( 7Tel7ra1n7ranQ(lmn) (W<0))
; t=0
() o
U = > ag'k1>P(ijk)(lmn)Q(lmn)(W(t>)
(i3k)
L ;  otherwise
(1
; t=T-1
®
e = > Plsjiy (i) Qimemy (WD) A
(Imn)
{ ;  otherwise
where
P(ijk)(lmn) Peijkl * Pajklm ° Pakjln
Quiy(WH) = Q) (e,a™,a®)

gei(e®) - gaj(@®) - qar(@*)

In the same way, other’s forward and backward prob-

= Pr(sfe1t> =1| sg—l) =14, 82800 =4, a1 o |



abilities, a,mn and g, g4 respectively, can be calculated:

ijk

( 71‘el'ﬂ'zfnfnwanQ(lnm)(I/_V(O))
; =0
Z d§z;1)P(ikj)(lnm)Q([nm)(W<t))
(ik3)

i =

;. otherwise

; t=T -1
Z P(zkj)(lnm)Q(lnm (W<t+1>)ﬁ<t+1 ’

(Inm)
; otherwise

H{t
ﬁ§k)]‘ =

\

where W= {8 g o)} and &* is the sensor infor-
mation received by the second agent. Using these proba-
bilities, we can adapt transition and output probabilities
Deijkls Pajklm; Gei, dej as follows:

Deijkl € Zzp(ijk)(lmn)

Zi Zn P(ijk)(lmn)
Zipeijkl

ei(e) ZZZZQ(U@(C,G,@)
7 k a @

gaja) ZZZZQ(:‘%)(&G,&),
i k e a

Pajklm

where
(t) =t
5 2ot S(iinymny T 20t §(<zi:j)(lnm)
(¢7k)(Imn) —1) _{~1)
Zt ’Yijk + Zi ’Yzl\.]
(1
> k) {8
A W = V(U + 2w =w Vikg
Quiry(W) = I o
2o VTR + 37 Vi
(2
o -1 ¢
Eimumm = i Piityamm Quumm (W BE
(£} . ={t=1) x At
Sakiynm) = g P(ikj)(l"m)Q(lnm)(W<t))ﬁ((lr)zm)
(t) — {t
’Y(lmn) - lmn)ﬁ(ZZnn)
() T
’y(lnm) - élnm)ﬁ (Inm)

3.3 Discussion: The Number of Parameters in
the Model

As mentioned before, the number of parameters in HMM
is an important factor for generalization performance of
learning. In the case of coupled HMM, especially, the
number of parameters increase exponentially. Actually,
if we use the model shown in Figure 6-(b) without sym-
metricity assumption, the number of parameters in the
state transition is

1Sel® 1Sal™ + N |Sel [Sa] ¥ *!

where IV is the number of agents This is alrea,dy reduced
from the number of parameters (|Se||Sa|™ )? in the case

we represent the same model using single HMM. Com-
pared with this, symmetrically coupled HMM has fewer
parameters as follows:

ISel? 1Sal™ + 1Se| |Sal ¥

In addition to it, the symmetricity assumption increase
the virtual number of examples. Eq. 1 and Eq. 2 mean
that the same HMM is trained by using both pairs
of {e®,a®} and {&,al?} for a given observation
{e),at® )}, As a result, the generalization perfor-
mance of learning is improved by the virtually doubled
examples.

It is, however, true that an sCHMM still has too many
parameters for real applications. Therefore, it is mean-
ingful to introduce additional assumptions to reduce the
number of parameter. Fortunately, in the case of coop-
erative interaction in the multi-agent systems, we can
pick-up reasonable assumptions as follows:

e “no ezplicit communication” assumption: In the
formalization of sCHMM, the transition of the agent
state is affected by the previous states of other
agents. This means that agents use explicit com-
munication with each other. In the case of human
cooperative behaviors like real soccer, on the other
hand, we do not use so much explicit communica-
tion, but model others via sensor information in-
stead. In such case, the transition of the agent state
can be represented as follows:

PrsfH1) = Pr(s{H0 s, sf41)

In this case, the total number of the parameters is
reduced to:

|Sel* 1Sal™ +1Sel 15al’

e “filtering” assumption: Usually, when we write a
code of agent behavior, we classify states systemat-
ically. For example, in the code shown in Section 1
states are grouped by agent’s roles (agent states)
first then branched by world status (environment
states) second. This can be represented by the fol-
lowing manner in the transition of HMM:

Pr(stD]s) = Pr(stVsiH1) . Pr(s{H1|sd)

In this case, the number of parameters are reduced
to:
|Sel” 1Sal™ + 1Sel 1Sal + [Sal ™"

e “shared joint intention” assumption: During a co-
P g

operation of multiple agents each agent believes that
all agents share the joint intention. This means that
each agent believes that other agents will behave as
it wants. In this case, the transition of environment
states can be represented as follows:

Pr(s{+Vx) = Pr(s{T[s$, 58
This will reduce the number of parameters to:

1Se” 1Sal + 1Se 1Sal ™




Note that this assumption can not be applied with
the “no explicit communication” assumption, be-
cause the sCHMM is reduced into a simple CHMM
like Figure 6-(a) that does not reflect cooperation
among agents.

3.4 Related Works

Brand Et al. [Brand, 1997, hidden Markov models
for complex action recognition, 1996] proposed coupled
HMM and its learning method, in which several HMMs
are coupled via inter-HMM dependencies. Jordan Et al.
[Jordan et al., 1997b, Ghahramani and Jordan, 1997,
Jordan et al., 1999] proposed factorial HMM and hidden
Markov decision trees. Both of works mainly focused on
reducing the complexity in EM processes. Even using
these HMMs, the complexity of calculation of a naive
implementation increase exponentially, so that it is hard
to handle the large number of states. They use mean
field approximation or N-heads dynamic programming to
reduce the cost of the approximation of posterior prob-
abilities. However, they does not focused on symmetric-
ity in agent-interactions and generalization performance
problem.

These methods can be applicable to our model. Ac-
tually, a naive implementation of learning method de-
rived in the previous section costs O(T'N*M?), which is
too huge for dynamical application like soccer. Above
methods will reduce the cost into O(TN2M), which is
reasonable cost for real application.

4 Concluding Remarks

In this article, we proposed two frameworks to learn be-
haviors of multi-agents in dynamic environment using
HMM. The first framework handles agent’s environments
as output of HMM rather than as input. As the result,
the acquired HMM represents segmentation of environ-
ment explicitly in the states. The explicit segmentation
leads the following features to the HMM:

e HMM can be used planning of agent’s behavior
working in a dynamic environment.

e Flexible segmentation can improve generalization
performance of the learning.

The second framework is conducted to represent in-
teraction of multi-agents and environments. In order to
avoid the explosion of the number of parameters, I in-
troduced symmetricity assumptions among agents, and
propose symmetrically coupled HMM (sCHMM) and its
learning procedure.

There are the following open issues on the proposed
method:

e The cost of calculation increase exponentially when
structures of agents and environments become com-
plicated. In order to reduce the complexity, sev-
eral techniques like mean field approximation and
N-head dynamic programming should be applied to
these models.

e The incremental learning will suit to acquire high-
level cooperative behaviors. We may be able to re-
alize the step-by-step learning using dependency of
the initial parameters.
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Abstract

In this paper, we present a real-time decision mak-
ing method for a quadruped robot whose sensor and
locomotion have large errors. We make a State-
Action Map by off-line planning considering the
uncertainty of the robot’s location with Dynamic
Programming (DP). Using this map, the robot can
immediately decide optimal action which mini-
mizes the time to reach a target state at any states.
The number of observation is also minimized. We
compress this map for implementation with Vec-
tor Quantization (VQ). The total loss of optimality
through compression is minimized by using the dif-
ferences of the values between the optimal action
and the others.

1 Introduction

In Sony Four-Legged Robot League, self-localization with
insufficient sensor information and unreliable locomotion is
an important problem(1, 2]. Moreover, to localize itself, the
robot must swing its head to look for landmarks because the
robot’s camera has a narrow visual field. It is required to keep
the frequency of this “off-ball” observation behavior as small
as possible to cope with the dynamic changing situation. Asa
result, the robot is required to judge whether it should swing
its head to look for landmarks or execute a walking action.
The simplest criterion for the judgement is to adapt a fixed
threshold of the location’s uncertainty [3], but there are many
situations in which the robot can decide its action without
precise self-localization results. Thus, the time for taking ob-
servation behavior, or the observational cost, is an important
factor to deal with uncertainty of the SONY Legged Robot.

Mitsunaga et al. proposed a decision making tree that gives
consideration to the observational strategy based on informa-
tion criterion[4]. The tree is made from the large experimen-
tal teaching data ,which contain the information of the motion
Planning and the probability distribution models of sensing
and locomotion. In order to apply larger problems, however,
the decision making architecture should once analyze these
two kinds of information separately.

Our approach to the real-time decision making method
deals with;

- Modeling uncertainty in the robot’s locomotion and obser-
vations using uniform distribution;

- adopting Dynamic Programming [3, 6] for motion plan-
ning in discrete state space;

- enlarging the state space of planning (configuration space)
s0 as to include the uncertainty parameters; and

- compressing the off-line calculated information using Vec-
tor Quantization.

The robot’s locomotion models and observation models are
taken into consideration respectively in the process of Dy-
namic Programming ,which guarantees the optimality. By the
expansion of the state space to include uncertainty parame-
ters, the observational cost can be computed in the frame-
work of DP. At the same time, the on-line calculation can be
reduced by referring the off-line calculated database as far as
the memory permits.

From another point of view, an effective design of reflec-
tive behavior has been proposed by Hugel er al.[7]. They
connected sensor information and locomotion sequences so
that the robot can push the ball toward the goal effectively.
But their design is highly sophisticated just in the sense of
the designer’s empirical intuition. Our framework realizes
the similar behavior as [3, 4, 7], but is based on the automatic
design that covers the whole state space. So the idea of the
architecture can be applied to the larger problems more easily.

In section 2, the task in the Legged Robot League is spec-
ified. Section 3 outlines the proposed real-time motion de-
cision method. In Section 4,5, and 6, the implementation of
the method to the task is described. In Section 7 and 8, the
proposed method is evaluated in the computer simulation and
the experiment, respectively.

2 Task and Assumption

The task is to approach the ball from the proper direction so
as not to attack the own goal.

- There are eight discrete walking actions and one observa-
tion action.

- The walking actions yield large odometry errors.

- The six unique landmarks are placed around the field.

- The measurement of distance to the landmark contains
large errors. A distance is always measured larger than
the actual distance because of our image processing algo-
rithm’s property [11.

- The robot does not recognize the landmarks while walking
towards the ball (it just tracks the ball).

- The relative position of the ball can be measured precisely.

- The robot recognizes the landmarks by the observation be-
havior, which is to swing its head horizontally 180[deg].




The state of the robot and the ball can be represented by
the next five variables, which are shown in Fig.1.

- The robot’s pose on the coordinate of the field: (x,y,0).
z-axis is parallel with the touch line, y-axis is parallel with
the center line.

- The ball’s relative position from the robot: (r, ¢). r denotes
the distance between the robot and the ball. ¢ denotes the
direction of the ball from the robot.
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Fig. 1: Five variables for the state’s representation.

Without sufficient observation, the precise pose (z,y, 0) of
the robot can not be obtained. Therefore the state of the robot
should be expressed by probability density functions.

3 Real-Time Decision Making

From the above-mentioned discussion, real-time decision
making methods are required to meet following properties:

1 automatic design which can discuss optimality, not based
on empirical hand-coding

2 low computational cost

3 ability to express the observational cost and the uncertainty
of the pose information

To meet the first characteristic, we adopt Dynamic
Programming[5], which is widely used to solve the optimal
control problems. The low computational property means
that the robot ERS-2100 has 32MB RAM and its calculation
speed is equivalent to the 200MHz PC. The Behavior Maps
are too large to implement on the robot. In order to compress
the Behavior Maps, we apply Vector Quantization (VQ) [8].

The aspects of uncertainty and observational costs are most
important in this paper. The uncertainty can be considered as
variables of the state space [9].

3.1 Motion Planning with Dynamic Programming

Let z € X C R" denote the state vector and u € U C
R™ denote the control input vector. The system dynamics in
discrete time is expressed as follows:

Try1 = Flzr, ux]- 1)

The deterministic control policy is given by u; = m(xx).
The purpose of the optimal control problem is to find the op-
timal policy * () that maximizes

S =Y"7_. Rlzk,ul, )

where R[x, ux] is the immediate evaluation function of each
state and control input pair and T is the time step until the task
ends.

In the navigation task, the state vector consists of ¢ =
(x,y, 0). In this research, the state vector includes the ball in-
formation. Thus = = (z,y, 6,7, ¢) has five dimensions. We

substitute discrete s and a for « and wu, respectively. Here,
S and A are the set of discrete states and actions. The Bell-
man equation in discrete time and space (without the discount
factor) can be formulated as follows:

V*(s) = maxq y_, Pl [Réy + V*(s)], 3)

ss’

Q*(s,a) = max, Y., PL/[R%, + maxe Q*(s',a’)], (4)

where P2,

denotes the transition probability from state s to
s’ by taking action a, and R%,, denotes the immediate eval-
uation given to the state transition from s to s’ by taking ac-
tion a. The optimal state-value function V*(s) denotes the
expected evaluation which is given after state s, by taking ac-
tions under the optimal policy 7*. The optimal action-value
function Q*(s, a) denotes the expected evaluation after tak-
ing action a at state s, in the same way. This discrete time
and space DP approach is applied to the navigation task in

Legged Robot League[10].

3.2 Planning Optimal Behavior Under Uncertainty
When the motions are planned, the variance of pose estima-
tion and the observational cost should be taken into consider-
ation. Fig.2 shows an example where the variance of the pos-
ture estimation enlarges when the robot executes a walking
action. Fig.3 shows an example where the variance decreases
when the robot takes observation. )
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Fig. 2: A state’s transition on the occasion of the robot’s
movement.

L i
i
T
T

T T
T T
i T T
T T
T 1

T
TT
T
T

HHE

Fig. 3: A state’s transition on the occasion of a landmark
observation.

These factors can be formulated in the motion planning lit-
erature as follows:

(wk+1,¢k+1) = f/[(mk:¢k) s (’Utk,wk)], )

where 1) denotes the state variance vector and w denotes the
observational control vector. Thus, the optimal control prob-
lem can be solved in the expanded state space {x,¥|x €
X, € U}. Fig.4 shows the abstraction of the state tran-
sition in the expanded state space (x, ). The increase of
the variance in the original state space can be expressed as
the transition along the 1) axis which is indicated in the right
hand of the figure.

3.3 Compression of Map with Vector Quantization

The map should be compressed in order to implement on the
limited amount of robot’s memory. We apply Vector Quanti-
zation (VQ) as a data compression method. The map is dis-
torted through compression and the optimality of action data
is lost. We should pay attention not to maximizing the decode
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Fig. 4: The state transition in the expanded state space.
Table 1: The way of quantization.

# of elements Width of an element
T 28 100[mm]
y 18 100[mm]
7] 24 15[deg]
r 10 100[mm](near) - 600[mm],co(far)
¢ 12 15[deg]

rate but to minimizing the increase of the time to reach the tar-
get. Hence, we calculate the differences between the optimal
action and the others based on the value function, and utilize
it as a distortion measure.
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Fig. 5: When the robot takes a non-optimal action, the state-
value after the action becomes lower than the state-value after
the optimal action. We use this difference for the definition
of distortion measure.

4 Implementation 1: Dynamic Programming

4.1 Symbols definition

Firstly, we decide the definition of a state s and a set of all
states S. Some of states in S are the target states. We define
the set of them as S*. We quantize these parameters as shown
in Table 1 and Fig.6 so as to quantize the state space.

If we do not consider uncertainty of the self-localization
result, a state has five dimensions, and is represented as
Slig, iy, 19, ir, i) (i means 4th index of quantized 7). How-
ever, we add one more parameter ¢ which denotes the shape
of region in which the robot exists with high probability.
is quantized to a combination of some $c{iy, iy, %¢s, Which
are regarded as cuboids in the (z,y, 8) space (Fig.7). Since
a 1) represents only a shape, the area which the robot ex-
ists with high probability is represented as s;[iz, iy, 0, i)
We restrict the number of 9s to 811 though combinations of
cuboids are much more than 811 so as to save the amount of
calculation. We define 4y, so that the larger iy, is, the more the
number of ¢’s cuboids is. Eventually, we let a state Vs € S
have six indexes as siz, iy, 19,47, %4,95]. Then, the num-
ber of states N is 1177182720, and about 3% of them are
in §*. Hereafter, we often describe s[iz, iy, g, ir, i¢, iy] €
S, 8¢fig, iy, 16, 1yp) € S; and Splir, 1¢) € Sp as S;, S and Spi,
respectively.

Secondly, we define some symbols on actions. Our robot
has some fixed locomotion actions and a observation action.
A = {a;}i = 1,2,..., M} denotes the set of these actions.
Each action has the following attributes:

iy !
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Fig. 6: The robot’s position is divided into three-dimensional
grids, and the ball’s position is divided into two-dimensional
grids. The ball’s distance is divided irregularly since precise
distance information is not important when the ball is far from
the robot.

Fig. 7: A quantized ® consist of three-dimensional cuboids
in (z,y, §) space.

- The time consumption : R% (< 0). We regard a action’s
time consumption as negative reward. We assume that
VR% is independent of Vs € S.

- Region of the robot’s pose after taking a; at (z,y,0) =
(0,0,0): M (%6, 5+6,,0+8). (Z,7,0) denotes the
average and (0, dy,dg) denotes the maximum error. We
assume that the probability density of the robot’s existence
in the M9 is an uniform distribution. We assume that the
transfer amount is independent of the robot’s pose. We can
calculate M_*, which is the region of the robot’s pose after
a; at p, from M®. My’ is the basis when each transition
probability P37, is calculated. Table 2 shows these regions.

Table 2: Actions and Parameters of them

Action name M%[mm],[deg] R
[msec]
1:forward (70 £30,0£ 15,0+ 6) -768
2:backward (—40 £+ 40,0 % 15,0+ 6) -768
3:rightside (0420, —60 % 30,4 & 4) -896
4:leftside (0% 20,60 £ 30, -4 + 4) -896

5:rightforward
6:leftforward
7:rollright
8:roll_left
9:observation

(10£10,37.5+17.5,~14.5£6.5) | -832
(10 £ 10,375+ 17.5,14.5 £ 6.5) | -832
(35 15,~35 + 15,11.5 + 6.5) -832

(35+15,—35+ 15, ~11.5 £ 6.5) | -832
(0£0,0+0,0+0) 2800

Finally, we describe the policy and the state-value function.
A policy 7(s) gives an action. when a state s is given. State-
Action Map represents the optimal and deterministic policy
7*(8). A state-value function V7 (s) denotes value of a state
s under a policy 7(s). In our method, it means the expected
time to reach one of the target states from the state s. Espe-
cially, V*(s) denotes the state-value function under the opti-
mal policy 7*(s).

4.2 The calculation of g%,
With above symbols, the equation (4) is rewritten as

V*(s;) = maxg, Y1, P, [R% + V*(s;)] (Vai € A).(6)




Before we explain it, we should refer to the calculation al-
gorithm of Pgk . We can calculate Pgk; . by the next two
algorithms.

4.2.1 Calculation of Pose’s Transition

We do not treat stochastically the renewal of s;; after an
action ay, (we represent it as sp;* ) since s;; and spk are already
stochastic in themselves. Therefore, we choose one sfi" with
the next algorithm.

k1
do
D — (mmdaymd>0rnd) € Sria_
q — (xmdaymd’ ernd) = ij
Sck < 8¢ D q.
L+
loop sufficiently
S — {scll=1,2,... ,k}

sri «— the most proper s, to approximate Sy.

Tnd, Ymd and g are continuous random values. It takes 30
minutes to execute this algorithm about all , j sets by a Pen-
tium Il 866 MHz PC.

4.2.2 Calculation of Ball Position’s Transition
We define P2k, as the probability which the ball’s po-

8bi Spj
sition becomes sp; after an action ay from sp;. Pgk, is

8bi Sp;
calculated by the following algorithm. Y
ng—0 ((=1,2,...,N)
do
Ap — (Tmd; Ymd; Oma) € M
b — (Tmd; $md) € Sbj
b’ «— the relative b’s variation
when the robot moves Ap .
n, T+ Oif sy o0
loop sufficiently
N
o= D
Porisw — Mile
This algorithm does not take more than some seconds by the
previous PC. Eventually, we can obtain Pgk - as:

0 if s% # s,
P, ={ D% 7% ™

[25 1 Ak :
PSbiSbj if Sy = Sij

from these algorithms.

4.3 DP algorithm

We use the value iteration algorithm [6] to obtain the approx-
imation of the optimal policy 7*. The value iteration is rep-
resented as the following algorithm.

V(s) =0 (for all s).

Dim € as a small positive threshold

do

A0
for i=1 to N
if 31¢S*
v — V(si)

V(si) — maxg, 31y Pk [R% +V(s;)]
A —max{A,|v—V(sy)|}
end if
next

loop until A <e
m*(5i)  argmaxa, 3,11 Pk, [R* + V(s)]
(:=1,2,...,N)

This algorithm takes about two days.

5 Implementation 2: Compression of State-
Action Map based on Vector Quantization

We use Vector Quantization (VQ) [8] so as to compress the
State-Action Map 7*, since the data amount of 7* is about
500 MB and the robot does not have such a huge amount of
RAM. The maximum volume of data that can be transferred
to the robot is 16MB.

5.1 Definition of Vector

We explain the way representative vectors are made. At
first, we divide the map since the State-Action Map is too
large to be executed VQ all at once. We prepare sets of
states S} = {8liz, iy, 50,0000t iy = 27 — 1,27} VQ
is executed in each S’ independently. Next, we decom-
pose each S; into ordered sets, ie. S; = {Silk =
1,2,...,Ni}. Each of them corresponds to one vector for
VQ. We define S”ks as six-dimensional cuboids (Fig. 8),
ie. J”k = {s[zz,zy,zg,zr,z¢,z¢]|k(]) < iq < kg) (a =
1,2,...,6. 41 = ig,ip = iy,... %6 = iyp.)} (Vk,k’,a—>
kS) — kfjf = k'Y — k'9)). If we define £ as

¢= ZZ:z(ia - al) Hﬂ 1w i (wp = k{az - kfﬂ) ®)

and represent S} = {sfzj k)|€ =1,2,..., Ny}, we can re-
gard v = (W*(sgjk)),w*(sgjk)), N ( (Jk))) as a vector
which is used in VQ.

S S2 LN ]

Fig. 8: Model of the states’ division.

The decision way of w, (o = 1,2,...,6) should satisfy
that the same vectors are produced in S} as much as possible,
since it is favorable for VQ. We decide w, to minimize the
next entropy function:

1 Ns(v;
- ——](\'}f’“), ©)

where Ns(v;x) means the number of elements which are the
same with v, (it counts (v;;)). In our case, each S} has
2903040 states except for Shoel. We decide N; = 72 and
N = 40320. And we determine the appropriate wq (o =
1,2,...,6) respectively as for S} (j = 1,2,...,405).

L All states in S}y represent the state which the robot does not know its
pose. Therefore when the robot is a state in S}, the robot can do nothing
but a landmark observation. Hence, we do not need DP for S 4.



5.2 Definition of Distorsion

Next, we must define distorsion of any two vectors in the
vector space V; which the vectors vy, (k = 1,2,..., Ng)
belong to. We define the distorsion between Vv € V; and
Yw € V; as

D, w] = Y0, Dlve, we), (10)

where v, wy € A are the £th elements of v and w respec-
tively. Therefore, we must define the distorsion Dia,, an)
about Ym,n. Dlam,as] is calculated from the optimal
action-value function (4) as

Dlam,an] =

N e it (99, am)(@ (5Y), am) — Q* (899, a,))

Sis Yoty 0lr (), am] an

where, 8], B] is Kronecher’s Delta.

5.3 Execution of VQ )

We use Pairwise Nearest Neighbor (PNN) algorithm [11] to
choose an initial codebook C;, which belongs to SJ’-. Each
C; contains representative vectors ¢j; (1 = 1,2,..., Ne).
Each representative vector has the database of vectors vy
which are associated with it. We define sets of vectors which
are associated with a vector as the cluster R; = {v,ln =
1,2,...,Ng,}, and the represented vector as:

. Nr,
€; = arg ming, ij{ Dlw,v;] (w € V). (12)
Moreover, We define the distorsion-measure of R; as:

di = Y34 Dles, vil. (13)

PNN makes the number of representative vectors reduce
from the number of vectors in S]’- to IV, as the following way.

Rk = {’Ujk} (k = 1,2,... ,Nk), M Nk
do
(1,7) « argmin(q gy(dag — da — dg)
(Rij =R¢URj, R; #£ 0, Rj %@)
Ri R Rij
R; — 0

n
until n = N,

Here we improve these initial codebooks choosen by PNN.
We adopt Generalized Lloyd Algorithm (GLA) which is a de-
cent algorithm to refine a codebook iteratively. GLA min-
imizes the distortion as a result of iteration. We apply this
algorithm until the update of the codebooks does not happen.

6 Implementation 3: The on-line algorithm

The tasks of the on-line part are to recognize the current state
of the robot and to search an optimal action from the code-
books. We use Uniform Monte Carlo Localization (Uniform
MCL) [1] for self-localization, and for modeling of state tran-
sitions which are caused by the landmark observation action.
Simulations of Section 7 use this state transition models. In
experiments of Section 8, the robot specifies the current state
of the robot s; with Uniform MCL results. Uniform MCL
approximates the possible region in which the robot exists

with a lot of points in the space (z,y,6). When the points
crowd in narrow region, it means that the robot knows its pose
precisely. And the points are scattered all over the space, it
means that the robot does not identify its pose. We use the
points immediately to specify the current state at the experi-
ments.

After the former part specifies s, the latter part chooses
an appropriate action @ as following procedure.
1 Change the subscript from s to s3/=").
2 Choose a representative vector ¢;_;, from C;, by k.
3 4 « the £ th element of ¢;,;,

7 Simulation

7.1 Purpose and Conditions

" In this section, we inspect the efficiency of our method by

simulation. Especially, the results of following two cases
about judging whether to observe or not are compared in
order to verify the effectiveness of considering the self-
localization’s uncertainty. We compare following two cases.

1 Referring the map case: Compressed map is utilized for all
the decision making including the judgment of observation.

2 Threshold case: Fixed threshold for judgment is settled
on the width of the probability distribution of the robot’s
pose. The Compressed map without variance is used only
for choosing an optimal walking command.

The thresholds for judgment were fixed at (zw, ym, 6m) =
(600[mm], 500[mm], 60[deg]). Other conditions are settled
as follows.

- Initial conditions: Table 3 shows the initial positions of the
robot and the ball. The robot knows the initial positions
completely.

- Locomotion: The robot’s real pose is updated with random
error shown in Table 2. The absolute position of the ball
on the soccer field is fixed and the robot always knows the
relative position to the ball with no error. The robot updates
its estimating state according to the transition probability.

- Observation: The robot acquires the relative position to
landmarks with random errors.

- Terminative condition: In referring the map case, the task
is terminated when the robot’s estimating state belongs to
the terminative states. In using threshold case, it is termi-
nated when the robot’s estimating pose, supposing that the
estimating pose has no uncertainty, belongs to the termina-
tive states.

- Definition of the success cases: The robot actually reaches
a target position.

Table 3: Initial positions of the robot and the ball.

r{mm] | ¢ldegl | x[mm] | y[mm] | G{deg]
Sim.1 2100 30 -1000 -600 0
Sim.2 1800 0 1000 0 180
Sim.3 2100 60 1000 -600 90

7.2 Results and Discussion
We simulated 10 times on each case and initial conditions.
The results are shown in Table 4.

In the referring the map case, the robot succeeded to reach
the target position at all trials. This indicates that the calcula-
tion of DP converged and the distortion of the compressed




map was small enough. In the using the thresholds case,
there were some failures. This means that the robot should
observe much more. In the referring the map case, both the
average number of observation and the time to reach the tar-
get were smaller than using thresholds case. This means that
there were some cases that a observation was unnecessary and
the robot should walk in spite of the large uncertainty of the
robot’s pose. These results indicate that the robot observed
more effectively as a result of the off-line planning, which
considers the uncertainty of its pose, and that the robot could
reduce the time consumption to reach the target pose.

Table 4: The results of the simulations.

Referring the map case

Time[sec] | # of observation | Success rate
Sim.1 314 2.6 10/10
Sim.2 37.6 3.6 10/10
Sim.3 35.9 2.8 10/10

Threshold case

Time[sec] | # of observation | Success rate
Sim.1 34.4 4.0 10/10
Sim.2 41.5 4.6 8/10
Sim.3 38.6 3.6 9/10

8 Experiment

We implemented the described method and evaluated it by
experiments. The initial conditions are settled on the same as
the simulation. We judged success or failure according to the
position when the robot touched the ball at first time.

The results of the experiments are shown in Table 5. Note
that the average number of observation is smaller than that of
simulation. This is due to the quantization of the probabilistic
distribution of robot’s pose. The expansion of distribution
was delayed because Uniform MCL has superior ability to
represent the uncertainty of robot’s pose.

Flg 9 An ‘éxamplé 6f experiment..

Table 5: The results of the experiment.

Trial || Time[sec] | # of observation | Success rate
1 27.5 1.4 9/10
2 42.0 3.0 6/10
3 41.1 23 8/10

The total success rate was about 75%. The failure cases
were that the robot touched the ball unintentionally. These
were due to the mismeasurement of the ball, which was not

assumed in our model. One supposable approach to improve
the success rate is to calculate the transition probability of the
state that the ball is situated near the robot experimentally and
utilize it in DP calculation.

9 Conclusion and Future works

We took the uncertainty of the robot’s pose into account by
expanding the state space and designed a State-Action Map
with DP by off-line calculation. The map was compressed
with VQ in order to implement on the limited amount of
robot’s memory. We also defined the distorsion between any
two actions based on the action-value function. The total dis-
tortion of the map through compression was minimized as a
result. By the simulations and experiments, it was verified
that the robot observes the landmarks more efficiently com-
pared with the fixed threshold case.

In this paper, we calculated the average of the difference of
action-value function in order to save the amount of calcula-
tion of VQ. However, the difference of action-value function
depends on the state and the distorsion between two actions
should be calculated at each state. Therefore, the distortion
will be improved by directly utilizing the value of the action-
value function and by updating the value function occasion-
ally while VQ calculation.
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Abstract

Specific. mechanical devices have made pass
plays popular in RoboCup small robot league.
Pass plays make one game style, while dribble
plays make different game style. This paper de-
scribes preliminary experiments of maul play.
Multiple robots are cooperated to do maul and
to carry a ball. Strategic view of maul play is

also discussed.

1. Introduction

Pass a ball to a robot in an open space is an effective
strategy in soccer games. In Robot soccer, pass play as
one-of cooperations among agents/robots have clearly
observed at first in games of simulation league. In small
size league, top teams showed sometimes passes between
robots at 1999. From 2000, spectators recognize them
clearly as passes play between robots.

One of reasons that pass play has become common
in-small size league is that specific mechanical devices
are implemented. The devices makes ball handling such
as dribble, pass and shoot, easier than ball control by
bumping itself against a ball.

One of our team’s ideas is robots (even without spe-
cial devices) carrying a ball by cooperating themselves.
Fig. 1 shows the image of the cooperation play of three
robots. Robots carry a ball with holding the ball in the
center of them. The robots move keeping the formation,
as a result of the formation, it blocks the ball from op-
ponents’ attack. The play looks like maul play in rugby
not soccer [1).

In section2, preliminary experiments to implement
maul play by robots are discussed. Section 3 describes

robot B

@ @robot A
;"\.\’
o robot C
A‘\“‘

Figure 1: image of maul play by three robots

introducing maul play changes games styles.

2 Robot motion in formation

2.1 general schema of robot control

Using global vision system, each robot are controlled by
repeating the following steps during games.

Step 1: Sense objects on the field. The sensed data at
t; are a set of positions of a ball, teammate robots,
opponent robots and direction of teammates —

{ (ball_z;, ball y;),
(b b, ),k € (1o, B)),
(LY LE, .5}

where k is indicates numbers of team mate robots
and [ shows opponent team’s.

Step 2: Plan teammate robots’ motion at next step and
calculate the position and direction of teammate
robots at next time ;41—
{pre——xf“,pfre—yikﬂ,direztionf+1), ke (1,...,5)}

Step 3: Calculate robot control commands (parameters
of motors, or velocity of robots ,..etc),
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Figure 2: methods of position calculation

Step 4: Send them to robots.

2.2 comparison of position calculation methods

Robots’ movements in a form are demonstrated in Cor-
nell Univ.’s team [2]. They move each other and pass
a ball with keeping specified formations such as circle
formation.

The purpose of our robot control is to carry a ball. We
compare two methods to calculate positions of robots at
next steps (Fig. 2). The middle solid line in the figure
shows a planned trajectory of the midpoint of robots.

The dots on the trajectory indicate the point at ¢;.

method 1: Positions and directions of robots are cal-

culated independently from the trajectory.

method 2: Position and direction of a robot (the robot
is called a leader) are calculated at first. The other
robot’s position and direction are calculated from
the leader robot.

The two methods are equivalent in a simulated world,
however, they give different results in a real world where
a robot may not move as commands, or the images may
not be grabbed clearly. The right figure in Fig. 2 shows
a case that the leader robot is stacked at t;. Then the
other robot must stay there to hold a ball between them
and not go as in the left figure.

We did two experiments:

experiment 1: Two robots move from a goal to the
other goal keeping the space between each other e-
qual.

experiment 2: Two robots move in a circle which cen-
ter is the center of the field. Fig. 3 shows the initial
layout of robots.

The robots which size is 10cm square are controlled
based on images grabbed by a global camera. The image

Figure 3: initial layout of robot

size is 480 x 640 dots and the length between dots is
about 5 mm. Our vision system processes the images at
30 frames per a second. The robot’s speed is changed
from 20 cm/s to 60 cm/s. The command are sent to
robots per 20 times per a second.

Table. 1 shows the result of robots’ movements about
a few seconds. The periods are equal for method 1 and
method 2 , while are different for speeds condition. The
left figure in each column shows the mean distance be-
tween robots or between a robot and trajectory. The
right figure shows the standard deviation of them. It
says that method 1 is better that method 2 at low speed,
and they become equal at high speed.

2.3 discussion

In order to move three robots as shown in Fig. 1 and
not to drop a ball behind them, the gap between robot
B and C should be less than the size of robot A, and
robot A should follow robot B and C within the size of
a ball.

In a case of 20cm/s speed, the displacement per a com-
mand transmission is 1em which correspond 2 dots. The
displacement is also the same order as the deviation in
Table. 1.

These consideration leads that an image grabbing de-



Table 1: Distance between robots or between robot and trajectory

vice with more.than 480 x 640 dots and more frequent

communication are required to implement maul play.

3 Using maul play as one of team
strategies

Although the maul play requires precise control of robots
to carry the ball to a goal, it blocks the ball from op-
ponent’s attack and holds it safely. This provides a new
and attractive aspect on planning strategy.

3.1 algorithm of forming maul formation

A basic algorithm to form maul formation consists of
1. rank robots with distance from the ball,

2. controls robots to positions shown in Fig. 1 accord-
ing to distance rank.

In forming the formation, it is desirable that robot
A comes:first from own goal side not to shot own goal.
And the other robot B and C gather around robot A and
follow it.

3.2 implementation of maul formation as

strategy

At present, our team strategy are described as combina-
tion of a set of rules and potential field method [3). Maul
play can be used as two ways to attack to the opponent
goal and defend by holding the ball. It seems to be d-
ifficult to represent two aspects, attack and defence, as
simple sum of each aspect’s field.

;4 Conclusion

Maul play is one of cooperation plays of robots, and
gives a birth a new play style of games. Preliminary
experiments shows that implementing maul play requires
_to control robot with more precision than usual.

Experiment 1 Experiment 2
speed 20cm/s 40cm/s 60cm/s 20cm/s 40cm/s 60cm/s

method | robot-robot || 20.80 | 3.78 | 26.15 | 7.35 | 25.77 | 3.26 |/ 20.21 |2.70 |18.77 |2.26 |16.47 [2.95
1 robotl-tra. || 10.39 | 1.86 | 13.29 | 3.97 | 12.94 | 1.66 | 10.10 |1.33 {9.51 |1.16 |9.55 |0.59
robot2-tra. || 10.53 | 1.98 | 13.65 | 4.05 | 13.01 |1.62 | 10.19 |1.46 [9.66 |1.38 |11.22 |4.06

method | robot-robot || 22.32 | 1.47 | 24.79 | 3.78 | 25.22 |4.88 || 27.58 |4.07 |17.03 |2.48 |16.20 |2.95
2 roboti-tra. || 10.10 | 0.14 | 10.16 | 0.24 | 10.54 |0.72 |/ 10.13 |0.19 |9.74 |0.37 |9.55 |0.58
robot2-tra. || 12.57 | 1.23 | 15.81 | 3.58 | 15.91 | 4.53 || 17.68 |4.09 |861 |2.16 |11.47 }4.00

unit [cm] left is mean, right is standard deviation.

We are now tuning the robot control parameters and
developing algorithms how to form a maul formation and
make use of it at games.
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Abstract

In the physical multi-robot systems in Robo-
Cup, it is very important to raise the robust-
ness of vision system, and to give an optimal
feedback in order to control a robot to reach
the goal point and generate the action under
the team strategy. In this paper, we propose
two new methods. One is a fast image process-
ing method, which is coped with the spatial
variance of color parameters in the field, to ex-
tract the positions of robots and ball in 1/30sec.
In the labeling algorithm in this method, the
separation problem in the interlace format im-
age is solved. Another one is a path genera-
tion method in which the robot approaches the
goal by changing its direction convergently. By
using these two algorithms, the real time pro-
cessing system which can generate a stable path
under a low quality input image is realized.

1 Introduction

In the physical multi-robot systems in RoboCup(1},[2], it
is very important to raise the robustness of vision system
and to give an optimal feedback in order to control a
robot to reach the goal point. From the viewpoints of
image processing, there are some technical problems to
be solved; for example, (1)since a golf-ball used in small-
size league is sphere with dimples, color parameters, r-,
g-, b-values, are not constant by shading in the region
of the ball in the image, and (2)lighting condition is not
the same even in a field of the game, furthermore, (3)it
becomes difficult to extract a moving object because the
object would appears as separated split patterns in an
interlace format image.

On the other hand, from the viewpoints of process-
ing time to control robots, (1)calculation time should
be short because all objects such as a ball and robots
move at high speed, and (2)a small size input image is
desirable, however, the quality of image is getting low.

In this paper, we propose two new methods. One is a
fast image processing method, which is coped with the

spatial variance of color parameters in the field, to ex-
tract the positions of robots and ball in 1/30sec. In the
labeling algorithm in this method, the separation prob-
lem in the interlace format image is solved. Another
one is a path generation method in which the robot ap-
proaches the goal by changing its direction convergently.
By using these two algorithms, the real time processing
system which can generate a stable path under a low
quality input images is realized. ‘

In the sections 2 and 3, we explain new image process-
ing method and labeling algorithm, and path generation
algorithm with some experimental results; respectively.

2 Image Processing Systeni

In the samll size robot league, an image obtained from a
camera installed on ceiling is usually processed to get the
position and the direction of each'robot‘and the position
of a ball. We also use such image. Since we use an off-
the-shelf camera and frame grabber, it is necessary to
develop an image processing-algorithnwhichiworks well
for low quality images. In this section, we discuss such
an algorithm. Throughout this section, we use a word
D’ for the identification number of each robot and a
word ‘object’ for an object region such as a ball, color
markers and team markers in-the’image.

2.1 System configuration

We show a configuration of our image processing system
in figure 1. We use the VideodLinux as a driver of frame
grabber. First, the frame grabber gives the yuv-image
(YUV422). Then, search range is calculated by using
history information: For the search range, the segmen-
tation algorithm is applied in-order to extract the seg-
ments of the object, where the segment is'a connected
component of pixels which have the color value of speci-
fied range. The extracted segments are merged.-to make
a candidate of object by using a-labeling algorithm. Fi-
nally, for the candidates of the object, the size and the
location in the image are tested to identify whether it is
the true object or not.

Since we use an off-the-shelf ‘camera and frame grab-
ber, it is difficult to get sharp images. An example of
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Figure 1: Image processing system

blurred boundary

 Blue Marker . unexpected scan line

Figure 2: Example of grabbed image

1e ~
n grabbed image is shown in figure 2. In the figure, a
T boundary of the object area is blurred and an unex-

pected scan line is contained. For such an image, the
above system should work well. To make a system be
robust, we developed a new labeling algorithm which is
discussed in sec. 2.3

2.2 Color image segmentation for object
extraction

In our system, we should detect 6 colors to iden-
tify objects; i.e. 1 color for ball (Cy), 2 for team
markers(Cs,C3), and 3 for ID markers (C4,C5,C6). In
the color segmentation process, the system classifies each
pixel into one of 6 color clusters Ci(i=1,2,...,6) or the
other.

.:This process utilizes a color image segmentation algo-
g- rithm developed by CMU(3)]. In the algorithm, 32 differ-
od ent colors can be segmented simultaneously. Thus, we

assigned 5 different colors for 1 color cluster, which can
absorb the subtle color variations of the object caused
by the lighting condition. In this way, the image is seg-

mented.
2.3 Labeling algorithm for ob ject extraction

Next step is the labeling process for the segmented im-
age. By this process, a candidate of object is extracted.

Coordinates & 105 & Diccctions

¢ Coordinetes & s & Directions

Since robots and ball move at high speed, conventional
labeling algorithm or method doesn’t work well for in-
terlace format image. Even though there is a method
which processes either of even or odd field of an image,
it sacrifices the resolution. Independent processing for
even and odd fields makes it difficult to unify the results.
Therefore, we developed a new labeling algorithm,- di-
agonal alternate spread labeling ~, which can cope with
the interlace format image which has blurred objects of
moving robots. We show a summarized algorithm here.
In the following, i, k denote the scanning parameter for
the z coordinate and j,! for y coordinate. For the sym-
plicity of explanation, it is assumed that the image is
binary and an object is black.

2.3.1 Algorithm
diagonal alternate spread labeling

Step0 Let A and B be a set of pixels, respectively, and put
A= ¢, B = ¢. Let num be a label number, and put
num = 0.

Stepl Scan the image. If a black pixel (¢,7) which is not

labeled is found, put it into the set A.

Step2 Do the following.

1) For a pixel (7, 7) in the set A, if it is not labeled,
label it with num. Then, search the following 8
pixels.

For each pixel, if it is black, put it into the set B.

2) For a pixel (k,!) in the set B, if it is not labeled,
label it with num. Then, search the following 4
pixels.

For each pixel, if it is black, put it into the set A.
3) Repeat Step2 while new black pixels are gotten.

Stepd Increment num and repeat Stepl and 2 while there
are unlabeled black pixels.

We show a labeling example in figure 3.

2.3.2 Effectiveness of the proposed labeling
algorithm

This algorithm can detect line segments, where each
of them appears by every two lines, as one object as
shown in figure 3. This solves the interlace problem of
alternate appearance of black and white lines when the
object moves. Using this algrithm, a 4 cm ball with the
maximum speed of 240 cm/sec can be detected. If the
ball moves over the maximum speed, it is completely
separated into 2 objects in the image.

This algorithm has another unique characteristics that
a line segment of length n and width 1 (pixel) would be
n pieces of independent objects of size 1 (pixel), because




This is an example of segments recognized as one object.
The number added to the pixel is a processing order in
Step2 of the labeling algorithm. Since the scan is sequential,
the first pixel of an object is always the upper left pixel
which is numbered 1.

Figure 3: An example of labeling

alb blc
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a a c
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This is an example of object that each pixel is recognized as
a different object. Black pixels are a candidate of object,
however, each pixel is labeled with different alphabet
(a,b,...,i}. White pixels with alphabet show that they are
searched in step 2 in conjunction with the black pixel with
the same alphabet. (Labels d,..,i is omitted here.)

Figure 4: An example of labeling to a straight line

the search to the horizontal and vertical directions occurs
after the search to the diagonal directions in Step 2. An
example is shown in figure 4. This algorithm works well
for a blurred boundary of object shown in figure 5, since
the system would delete small size(pixel size) objects as
noises by a simple thresholding.

2.4 ID recognition
2.4.1 ID recognition method

In our system, the image processing module recognizes
the ID and the direction of each robot. Fach robot has a
black and white plate on its top as shown in figure 6. In
the image, the plate region is detected as an object by
the image processing module. By measuring the sector
of white region, the ID of robot can be decided. To do
so, we prepare the reference table. The size of the table
is 40 or 44 entries! , that is suited for the size of the

! The size of a table is changed according to the situation, be-
cause the field size in the image changes with the camera arrange-
ment in the hall.

As a result of the characteristics of frame grabber, blue
color appears near a field boundary. The color segmentation
algorithm detects it as a candidate segment.

Figure 5: An example of labeling to a straight line

Figure 6: ID plate

robot in an image. The reference table consists of entry
number, angle, z and y distance from the center of the
plate as shown in table 1.

This table is applied to the plate object as shown in
figure 7. The image processing module detects a cen-
ter of the object and tests the value of pixels which are
pointed by the table entries. The module saves the en-

try number corresponding to the point that the pixel

value changes from white to black(it is No.8 in fig.7),
and saves the number of pixels whose color is white. In
addition, RoboCup rule allowes ID plate to attach other
color markers other than black and white, we have set
up all markers other than black which is recognized as
white by thresholding. It is not difficult to decide this
threshold.

This processing is applied to each robot. The ID is
obtained by counting the number of pixels judged to be
white, and the direction of the robot is given by the table
entry corresponding to the pixel whose value changes
from black to white.

2.4.2 Resolution and Verification

Since the reference points are arranged on the circle,
the ID decision does not depend on the direction of the
robot. The angle resolution is about 8 degree(=360/44).
And this processing is operated only once to each robot,
so the processing time is negligible.

Table 2 shows the accuracy of direction calculation.



Figure 7: Applying the reference table to the robot
object

Table 1: ID reference table

First 11 entries of the 44 entries table are shown.
Entry No. | Angle | X distance | Y distance
0 0 -8 0
1 7 -8 -1
2 14 -8 -2
3 24 -7 -3
4 30 -7 -4
5 38 -6 -5
6 50 -5 -6
7 58 -4 -7
8 65 -3 -7
9 75 -2 -8
10 83 -1 -8

Table 2: Calculated direction

Calculated direction | freq.
172 165
180 731
188 96
196 8

Measured 1000 times.
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Figure 8: Path generation system

In the experiment, a robot was placed in the horizontal
direction and the angle was measured 1000 times. From
the table, it is clear that 73% of the calculation give the
right direction, 26% give the direction with the error of
+8°.

3 Path Generation

Although we have designed the image processing system
with angle resolution of 8 degree so far, the accuracy is
not enough to control the direction of the robot. Inac-
curacy of the direction should be absorbed in the path
generation system.

The path generation system generates and evaluates a
path from a current position to a target position, where
the target position is given by the strategy system[4].
Moreover, since our robot has only 2 wheels, there is a
constraint to control the direction.

Taking account of these conditions, we have designed
a path generation system.

3.1 System Configuration

A path generation system consists of a path generator,
a path evaluator, an auxiliary target point generator, a
simple predictor, and a velocity generator, as shown in
figure 8. This system works as follows,

1. The path generation system receives the target posi-
tion, the robot direction and the action {stop, shoot
etc) at the target position from a strategy system.

2. The path generator generates a working path by
using a curvature control variable and sends it to the
path evaluator. The path evaluator evaluates the
working path from a required time to arrive at the
target position and from a possibility of violating
RoboCup soccer rules.

3. Determine an advancing direction of a robot based
on an evaluation result.

4. If there is an obstacle on the path or if robot direc-
tion at the target does not satisfy the given direc-
tion, the auxilialy target point is added for avoiding
collision or for satisfing the direction at the target.
Then, a new path is calculated again.

5. The new path is evaluated again.



6. Iterate step 3 - 5 by modifing the curvature control
variable, and get an optimal path.

7. The velocity generator generates the velocities of
wheels which move on the optimal path.

8. The simple predictor corrects the velocities of
wheels to compensate the delay of processing time
of image processing system. The corrected velocities
are sent to the robot through a radio system.

3.2 Path generator

Since our robot has two wheels, the degree of control
freedom is two and the control of direction is limited.
Considering this and the fact that the target position
where each robot should go changes from hour to hour,
it is realistic to genarate a path which the robot ap-
proaches the target position by asymptotically chang-
ing his direction. We call this a direction converging
path generation. Figure 9 shows the paths generated
by this method. In the figure, paths are superimposed
on the field image. Each double circle with a number
is a current position of our robot and the end point of
each path is a target position. The target position with
triple circle is a ball. The dotted circles are opponent
robots. If opponent robots stand on the generated path,
subtargets are put near the opponents to avoid collision.
In the case, the robot goes to the subtargets at first and
then goes to the target. The robots number 2 and 3
have a subtarget and the robots number 0 and 1 do not.
The goal keeper (number 4) does not move in this fig-
ure. Note that the path is generated only to determine
the velocity for next At time step? . The path is newly
generated every At time step.
Our path generation algorithm is given as follows.

stepl Let p(= (z,y)), (v, vr), u be position, velocity (of
left and right wheels) and forward direction vector
of a robot, respectively. Let ¢ be the current time.
Calculate the curvature k and robot velocity v =
wter See literature [5] for detail.

step2 Get a goal position p’ = (oz,0y). This is given by
the strategy algorithm.

—
stepd Let pp’ be a vector directed from the current po-
sition to the goal position and let # be an angle

between vectors pp’ and u.

step4 Give a curvature at the time ¢ + At by Kpew = 0 X
ng/Ra, where R4 is a constant and n, is a variable
depending on subgoal(s). (This equation generates
a path which has a large curvature at first and a
small as approaching to the goal. See fig. 9.)

step5 Putting dr = 1/k~1/Knew, calculate a velocity vari-
ation of robot |dv| = |S/dr|, where S is a constant.
Let v, (k) be a maximum robot speed when a curva-
ture & is given. Give new velocity by vnew = v +dv
if Unew < Um{Knew), otherwise by vpew = v — dv.
Then, calculate a new position at the time t + At.

2 Image processing speed determines the At. In our system,
At = 33msec.

Figure 9: An exapmle of path generation

step6 Calculate repeatedly the steps from step! to steps
and check whether the path reaches the given goal
or not. (Fig. 9 shows the result of this calculation.)
If the path reaches the goal, it is OK. If not (if
over M times repeated), recalculate these steps by
changing the constant R 4 until the path reaches the
goal. This computation gives the robot velocity of
next At time period.

4 Concluding remarks

In this paper, we proposed a fast and robust image pro-
cessing method which is coped with the variance of color
parameters in the field and a new labeling algorithm, ” di-
agonal alternate spread labeling algorithm”. It was clari-
fied experimentally that these method and algorithm are
very effective and robust to extract moving objects up to
240cm/sec without any condition that it is an interlace
format image or not.

We also show the path generation algorithm in which
the robot approaches the goal by changing its direction
convergently. By using these two algorithms, real time
system of 1/30sec is realized.

Although our system installed these algorithms works
well in real time, but there are remaining issues. As is
improved to be robust for spatial variance, it is necessary
to examine and improve the image processing algorithm
to be more robust for time variance of lighting condition
of the game field. And, it is also important to refine the
angular precision of each robot to decrease calculation
error. These are our future subjects.
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Abstract

The conventional reinforcement learning ap-
proaches are difficult to handle the policy alter-
nation of the opponents because it may cause
dynamic changes of state transition probabili-
ties of which stability is necessary for the learn-
ing to converge. This paper presents a method
of multi-module reinforcement learning in a
multiagent environment, by which the learning
agent can adapt itself to the policy changes of
the opponents. We show a preliminary result
of a simple soccer situation in the context of
RoboCup.

1  Introduction

There have been an increasing number of approaches to
robot behavior acquisition based on reinforcement learn-
ing methods. The conventional approaches need an as-
sumption that the environment is almost fixed or chang-
ing slowly so that the learning agent can regard the state
transition probabilities are consistent during its learning.
Therefore, it seems difficult to apply the reinforcement
learning method to a multiagent system because a pol-
icy alteration of the other agents may occur, which dy-
namically changes the state transition probabilities from
the viewpoint of the learning agent. RoboCup provides
such a typical one, that is, a highly dynamic, hostile en-
vironment, in which an agent has to obtain purposive
behaviors.

There are a number of work on reinforcement learn-
ing system in a multiagent environment. Asada et al.
[1] proposed a method which estimates the state vectors

representing the relationship between the learner’s be-
havior and those of other agents in the environment using
a technique from system identification, then reinforce-
ment learning based on the estimated state vectors is
applied to obtain the optimal behavior policy. However,
this method requires re-learning or adjustment of learn-
ing agent’s policy whenever the other agents change their
policies, even if they switch their policies back which the
learning agent has already adjusted before. This prob-
lem happens because one learning module can maintain
only one policy.

A multiple learning module approach would provide
one solution for this problem. If we can assign multi-
ple learning modules to different situations in which the
each module can regard the state transition probabilities
are consistent, then the system would provide reasonable
performance. There are a number of work on the multi-
learning module systems.

Singh (2, 3] has proposed compositional Q-learning in
which an agent learns multiple sequential decision tasks
with multi learning modules. Each module learns its own
elemental task while the system has a gating module for
the sequential task, and this module learns to select one
of the elemental task modules. Takahashi and Asada [4]
proposed a method by which a hierarchical structure for
behavior learning is self-organized. The modules in the
lower networks are organized as experts to move to dif-
ferent categories of sensor value regions and learn lower
level behaviors using motor commands. In the mean-
time, the modules in the higher networks are organized
as experts which learn higher level behavior using lower
modules. Each module assigns its own goal state by it-
self. However, there are no such measure to identify the

situation that the agent can change modules correspond-



ing to the current situation.

Sutton (5] has proposed DYNA-architectures which in-
tegrate world model learning and execution-time plan-
ning. Singh [6] has proposed a method of learning a hi-
erarchy of models of the DYNA-architectures. The world
model is not for the identification of the situations, but
only for improving the scalability of reinforcement learn-
ing algorithms.

Doya et al. [7] have proposed MOdular Selection and
Identification for Control (MOSAIC), which is a modular
reinforcement learning architecture for non-linear, non-
stationary control tasks. The basic idea is to decompose
a complex task into multiple domains in space and time
based on the predictability of the environmental dynam-
ics. Each module has a state prediction model and a
reinforcement learning controller. The models have lim-
ited capabilities of state prediction as linear predictors,
therefore the multiple prediction models are required for
the non-linear task. A domain is specified as a region in
which one linear predictor can estimate sensor outputs
based on its own prediction capability. The responsibil-
ity signal is defined by a function of the prediction er-
rors, and the signals of the modules define the outputs of
the reinforcement learning controllers. Haruno et al. I8,
9] have proposed another implementation of MOSAIC
based on multiple modules of forward and inverse mod-
els.

In this paper, we propose a method by which multiple
modules are assigned to different situations and learn
purposive behaviors for the specified situations as re-
sults of the other agent’s behaviors. We show a prelimi-

nary result of a simple soccer situation in the context of
RoboCup.

2 A Basic Idea and An Assumption

The basic idea is that the learning agent could assign one
reinforcement learning module to each situation if it can
distinguish a number of situations in which the state
transition probabilities are consistent. We introduce a
multiple learning module approach to realize this idea. A
module consists of learning component which models the
world and an execution-time planning one. The whole

system will follow these procedure simultaneously.

e find a model which represents the best estimation
among the modules,

e update the model, and

o calculate action values to accomplish a given task
based on DP.

As a preliminary experiment, we prepare a case of ball
chasing behavior with collision avoidance in the context
of RoboCup. The problem here is to find the model
which can most accurately describe the opponent’s be-
havior from the view point of the learning agent. It may
take a time to distinguish the situation, then, we put an

assumption.

e The policy of the opponent might change match by
match but is fixed during one match.

3 A Multi-Module Learning System

Environment

Figure 1: A multi-module learning system

Fig.1 shows a basic architecture of the proposed sys-
tem, that is, a multi-module reinforcement learning one.
Each module has a forward model (predictor) which rep-
resents the state transition model, and a behavior learner
(policy planner) which estimates the state-action value
function based on the forward model in the reinforce-
ment learning manner. This idea of combination of a
forward model and a reinforcement learning system is
similar to the H-DYNA architecture [6] or MOSAIC [7,
8, 9]. In other words, we extend such architectures to
an application of behavior acquisition in the multi-agent
environment.

The system selects one module which has the best es-
timation of the state transition sequence by activating a
gate signal corresponding to a module and by deactivat-
ing the goal signals of other modules, and the selected
module sends action commands based on its policy.

3.1 Predictor

In this experiment, the agent recognizes a ball, a goal,
and the opponent in the environment. The state space
of the planner consists of features of ali objects in or-
der to calculate state value (discounted sum of the re-
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Figure 2: An architecture of a module

ward received over time) for each state and action pair.
However, it is impractical to maintain a full size state
transition model for real robot applications because the
size of state-action space becomes easily huge and it is
really rare to experience all state transitions within the
reasonable learning time.

In general, the motion of the ball depends on the goal
and the opponent because there are interactions between
the ball, the goal, and the opponent. However, the pro-
portion of the interaction time is much shorter than that
of non-interaction time. Therefore, we assume that the
ball motion is independent from the goal and the op-
ponent. Further, we assume that the opponent motion
from the viewpoint of the agent seems independent from
the ball and the goal positions and to depend on only the
learning agent’s behavior even if the opponent’s decision
may depend on the ball and/or the goal positions. If
the system has maintain the forward models of the ball,
the goal, and the opponent separately, the each models
can be much compact and it is easy to experience almost
state transition within reasonable learning time.

Fig.2 shows an architecture of one module in our sys-
tem. As mentioned above, the module has three forward
models for the ball, the goal, and the opponents. We es-

timate the state transition probability 7 po

for the triplet
of state s, action a, and next state s* using the following
equation:

ﬁ:s’ = 73’;”5' : ,ﬁ;sgs' : ﬁ‘gs"s’ ) (1)

where the state s € S is a combination of three states in
the ball state space % & %S, the goal state space % € 95,
and the opponent state space % € 95. The system has
not only the state transition model but also a reward
model 7@‘;3,.

We simply store all experiences (state-action-next
state sequences) to estimate these models. According
to the assumption mentioned in 2, we share the state

transition models of the ball and the goal and the re-
ward model among the modules, and each module has
its own opponent model. This leads further compact

model representation.

3.2 Planner

Now we have the estimated state transition probabilities
P2, and the expected rewards R®

o %y, then, an approxi-

mated state-action value function Q(s, a) for a state ac-

tion pair s and a is given by
Q(s,a) = 275;15, [7@25, + ymax Q(s’,a')} . (2)
a
S,

where P2, and RY, are the state-transition probabili-
ties and expected rewards, respectively, and the ~y is the

discount rate.

3.3 Gating Signals

The basic idea of gating signals is similar to Tani and
Nolfi’s work [10] and the MOSAIC architecture {7, 8,
9]. The gating signal of the module become larger if the
module does better state transition prediction durihg a
certain period, else smaller. We assume that the mod-
ule which can does best state transition prediction has
the best policy against the current situation because the
planner of the module is based on the model which de-
scribes the situation best. In our proposed architecture,

the gating signal is used for following purposes:
1. gating the learning of prediction models
2. gating the action outputs from modules

We calculate the gating signals g; of the module ¢ as

follows:
el\Pi

gi = Z] e/\pj

where p; is the occurrence probability of the state transi-
tion from the previous state to the current one according

to the model 1.

4 Experiments

We have studied preliminary experiments so far. The
task of the learning agent is to catch the ball while it

avoids the collision with the opponent.

4.1 Setting

Fig.3(a) shows a picture in which the mobile robot we
have designed and built. A simple color image processing
(Hitachi IP5000) is applied to detect the ball area in the
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image in real-time (every 33ms). The state space is con-
structed in terms of the centroid of the ball and the op-
ponent on the image (Fig.3(b)). The driving mechanism
is PWS (Power Wheeled System), and the action space
is constructed in terms of two torque values to be sent
to two motors corresponding to two wheels (Fig.3(c)).
These parameters of the robot system are unknown to
the robot, and it tries to estimate the mapping from sen-
sory information to appropriate motor commands by the
method.

The opponent has a number of behaviors such as
“stop”, “move left”, and “move right”, and switch them

randomly after a fix period.
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Figure 4: An example sequence of the gating signals

4.2 Result

First of all, we let the learning agent have models to
those behaviors of the opponents. The learning agent be-
haves randomly while it gathers the data of the ball and
the opponent image positions and builds up the mod-
els of them. Next, the learning agent tries to estimate
the opponents behavior through the sequence of the ob-
servation. Fig. 4 shows an example sequence of the
opponent’s behavior estimation while the learning agent
is stationary and the opponent behaves randomly after
a fixed period.

5 Conclusion

In this paper, we proposed a method by which multiple
modules are assigned to different situations and learn
purposive behaviors for the specified situations as results
of the other agent’s behaviors. We have shown a prelim-
inary result of a simple soccer situation in the context of
RoboCup.

Currently, we are struggling with implementation the
proposed method into one to one match, two to two, and
50 on. We hope we can show more interesting results at
the symposium.
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Abstract

A robot must know its surroundings when it
carries out the given tasks with cooperation.
In this paper, we compares three kinds of self-
localization methods, proposes a method suit-
able for the robot with only one monocular
camera system based on the comparison, and
shows how to make the environment map. The
environment map is constructed using local vi-
sual information of each robot, describes the
situation of the soccer field and is used to ac-
complish the cooperative behaviors. With the
environment map, we can realize the coopera-
tive behavior, that is, each of our robots stays
at the favorable position in strategy, instead of
running after the ball and being bunching up
together.

1 Introduction

It is indispensable that each of robots knows its sur-
roundings such as the position of the ball and goals when
the robots carry out cooperative tasks. It is rather hard
for each of robots to get and keep the information on its
surroundings separately if the robot has only one video
camera with the limited viewing angle. On the other
hand, it is necessary that a robot keeps its own posi-
tion to estimate the arrangement of objects and share
it among its teammates. There are many studies on
self-localization and sharing information. For example,
CS Freiburg Robotic Soccer Team [1] uses the method
based on a laser range finder (LRF) for self-localization.
The method acquires the distance to objects using LRF,

makes the line segments, matches them against an model

of the soccer field. Recently, many of the middle size
RoboCup teams introduced omni-directional camera, sys-
tems, and are utilizing the system to recognize the ob-
jects in the soccer field such as lines and goals [2] - [8].

We looked for the suitable self-localization method for
our robotic soccer players which has only a monocular
camera with the limited viewing angle when we designed
and assembled them, because we needed the method to
make the accurate environment map.

In the next section, we give an overview of the archi-
tecture of our robotic soccer players. Sect. 3 focuses on
the comparison of three self-localization methods and
our method constructed based on the comparison. In
Sect. 4, we describe the method of making the environ-
ment map by integrating the visual information of each
robot. In Sect. 5 we conclude.

2 Architecture of Our Robots

The components of our robots are the commonly used
products, and the architecture of the robots is similar to
that of the other teams. But, on designing our robots,
we adopted the following concepts.

- They should have the powerful processing units suf-
ficient for image processing, a sense-plan-do loop
and a control of a mobile base,

- All the tasks of the system should act like objects
working independently so that we can easily develop
and improve the system.

- All the tasks of the whole multi-robots system
should communicate with each other in a seamless

way.

For the first prerequisite, we composed our robot with

an image processing board for getting visual information,

e ad



a mobile base unit (platform) including a controller for
controlling its movement, and an industrial single board
computer for other tasks such as recognition of its sur-
roundings, planning its behaviors and the communica-
tion with other robots. For the latter two prerequisites,
we adopted the PVM (Parallel Virtual machine) library
[9] which constructs a virtual parallel computer on vari-
ous computers connected to a LAN.

Each of our robot is composed of a control unit and
a mobile base unit (a robot platform) (See Fig. 1). The
control unit includes an image processing part and a sys-
tem control part. The former part is equipped with an
image processing board and executes image processing
to detect and localize objects in the soccer field. The
latter part is equipped with an industrial single board
computer and works for recognizing the circumstances
around the robot, planning its behaviors, transmitting
commands and communicating with other robots. We
use TRIPTERS-mini manufactured by JSD as the mo-
bile base unit. It is a mobile robot with one steering
wheel, two driving wheels, a control unit and 8 ultra-
sonic sonar (US) sensors. It is equipped with a 16 bit
CPU (NEG, V25) for controlling wheels and sensor units.
The CPU comimunicates with the control unit via RS-
232C interface. It acts as the controller of the primitive
actions ordered by the control unit, and sends US sensor
data when the control unit requests them.

Our robot mounts the sensory system, including a
video camera and US sensors. The video camera (Sony,
EVI-D30) has a motorized pan-tilt-zoom unit and has
the 60 degree horizontal field of view. It sends NTSC
video signal to the image processing board (Hitachi, IP-
5005BD) which converts the video signal to 256 by 220
color digital image, and extracts and measures objects
in every 66 msec. 8 US sensors are used for detection of
the neighboring objects like the ball and the wall, and
measurement of the distance to them. US sensor data
are mainly used for collision avoidance.

The following tasks work with the system control part
in a robot (Fig. 2). The task MAP runs in one of our
robots.

- COG : recognizes the environment around a robot,
and communicates with other robots,

- PLAN : makes behavior plans, and sends commands
to other tasks,

- TRANS : controls mobile base unit,
- CAMERA : controls EVI-D30,

! CPU board Serial Port f—f__—L\idf:amcr
N : P

| w-50058D }
o .
Wireless LAN

Player

Figure 2: Configuration of Tasks

- IP
results,

. controls IP-5005BD and manages processing

- PARA : controls PC’s parallel ports,

- MAP : makes the environment map.

We use Linux as its operating system, and PVM for
managing multi-processes. The average time to execute

one Sense-Plan-Do loop is 66.7 msec.

3 Self-Localization

Our robot records the initial position given at the start-
ing point, and updates by odometry, that is, using the
values obtained from the rotary encoders attached to the
driving wheels of the mobile base unit. It determines the
initial position using one of the following methods in ac-
cordance with its condition. The first one is the method
that utilizes three landmarks known their positions pre-
viously like goals and corners, and the second one is the
method that utilizes the range data of US sensors and .
local visual information.

Odometry is reliable in the RoboCup soccer field un-
less the robot is disturbed. But, it is possible that the
robot suffers from disturbances which makes its odome-
try inaccurate. In such a case, the robot examines the
accuracy of its estimated position by using the position
obtained by the self-localization. If the accuracy of the
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Figure 3: Self-localization (Method 1).

estimated position is no longer reliable the robot uses a
self-localization method, and corrects it.

We evaluated three typical self-localization methods in
order to develop the suitable method for our robots. We
did not use the methods based on matching line segments
because of their processing tirhe, nor used the methods
utilizing the apparent size in an image frame because
they need the actual size of the objects.

The followings are the results of the evaluations.

3.1 Method 1

This method is a popular one to estimate the position
using landmarks (Fig. 3 (a)). For example, Nakamura et
al. [8] uses this kind of method.

1. A robot, whose position is to be estimated, selects
three landmarks which are not colinear, and mea-

sures the orientation from the robot.

2. Tt chooses two sets of two points out of the land-

" marks, and makes two circumscribed circles. Each
of the circles includes two points of the set and the
robot.

3. One of the intersections of two circles is the position
of the robot.

We evaluated the precision of this method. We used
the soccer field which is half the size of the field of the
RoboCup middle size league. See Fig. 4.

In the first experiment, we chose both of the blue side
goal posts and the left corner post of the blue side as
the landmarks. The result of the experiment is shown in
Table 1. In the second experiment, we chose the right
post of the blue goal, the right corner post of the blue
side and the left corner post of the yellow side as the
landmarks, so that the including angles are large. The
result of the experiment is shown in Table 2. F;, the
position of the robot, is depicted in Fig. 3 (b). The row

o 200
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Y .
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Figure 4: The Field Used in the Experiment

A x shows the average estimation errors in x coordinate,

and the row A y shows those in y coordinate.

Those results shows that the estimation error grows
larger as the robot leaves the landmarks more in the
distance. This is because the included angle made by
two lines each of which connects the robot and one of
the landmarks becomes acute as the robot leaves the
landmarks, the error of its position calculated using the
coordinates in an image gets worse, and it becomes diffi-
cult to distinguish the coordinates observed at different
positions. Thus the robot must search for the landmarks

as near as possible when it utilizes this method.

In the second experiment, the errors tend to be small
at several positions than those of the first one. But the
robot needs at least two image frames to know the di-
rections of landmarks because it is difficult to put the
landmarks needed for the localization in a single image
frame. Though the robot can use two sets of the land-
marks with large included angle by moving the camera
and the body, the accuracy of the estimated position gets
worse. We must choose the appropriate method for se-
lecting landmarks that tades off the aquisition time and

the accuracy.

[8] uses this kind of method in
their autonomous robots with an omnidirectional cam-

Nakamura et al.

era. They reported the experimental result that the
average estimation errors were 284 mm in x direction,
292 mm in y direction and 15° in orientation. We must
halve those values to compare with our results becaus of
the size of our field. The average errors of their report
are better than our results. It is because a robot with
an omnidirectional camera can select the landmarks ap-
propriate for the localization in a single image frame.
But we think that our method which searches the land-
marks actively is a realistic solution for the robot with
a monocular camera provided that the acquisition time

does not degrades its behaviors seriously.



Table 1: The result of the first experiment of method 1.
The estimation errors are shown in [mm].

| PL P2 P3 P4 P5 P6 P7 P8 PY

Ax|147 33 75 508 2 252 761 332 648
Ayl 33 12 18 29 2 44 17 12 188

Table 2: The result of the second experiment of method
1. The landmarks were chosen in order to make the
angles as large as possible. The estimation errors are

shown in [mm)].

|P1 P2 P3 P4 P5 P6 P7 P8 P9

Ax| 8 77 250 28 3 159 4
Ayl 19 143 27 3 106 124

34 82
0 137 563

3.2 Method 2

This method uses the distances and orientations of the
two landmarks. This method makes two circles using
them, gets the intersection of the circles, and determines
the position. This method is more favorable than other
methods in the point that two landmarks tend to be ob-
served in a sigle image frame, and the robot does not
need to move its camera or itself to find out the land-
marks. This method is similar to Jamzad et al. [11] and
Bandlow et al. [12].

The method consists of the following steps. The symbols
are shown in Fig. 5.

1. The coordinates of two landmarks, A and B, are

extracted from an image frame.

2. The distances d(OA’) and d(OB’) are estimated,
where ’ means the projection of a point to the prin-
cipal axis of the camera. O denotes the position of
the robot.

(a) ay and by, the y coordinates of those landmarks,

are taken from the image frame.

(b) d(OA’) and d(OB’) are calculated using a, and
by, respectively. A predefined function which

converts a y coordinate to the distance is used.

(¢) 6, and 8, are calculated using a, and b,, respec-
tively, where 6, is the angle made by the principal

axis of the camera and the line segment OA.
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Figure 5: Self-Localization (Method 2)

Table 3: The result of of Method 2. The estimation
errors of A x and A y are shown in [mm], and those of
A is shown in [°].

| PL P2 P3 P4 P5 P6

Ax]193 32 168 293 122 241
Ayl195 83 274 104 93 20
Af 1 4 1 2 5 2

(d) The distances d(OA) and d(OB) are calculated

using the following equation.

()
where, X is OA or OB.

3. Two circles are defined using the coordinates of the
goal posts and their distance. The radius of one of
them is d(OA), and its center is at A. The radius
of the another one is d(OB), and its center is at
B. The coordinates of the robot is detemined as

Though each of

the circles intersects at two points, it is possible to

the intersection of those circles.

choose the true position because the false one lies
outside the field.

4. The orientation v of the robot is calculated using
6y and d(PB), where d(PB) is the distance from B
to P which is the projected point of B to the line
which is parallel to the goal line and passes through

0. .
provecd i —1 Attt 3
v = @) + sin <OB> (3)

Table 3 shows the experimental result of Method 2.
The average errors are worse than those of Method 1.
The reason for the errors is that the resolution is insuf-
ficient for determining the distance like d(OA).
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Figure 6: Self-Localization (Method 3)

Table 4: The result of of Method 3. The estimation
errors of A x and A y are shown in [mm].

{ Area 1l Area 2 Area 3

Ax| 109 277 747
Ayl 150 212 318

3.3 Method 3

This method uses the directional information observed
at two points. A robot obtains the orientation angles to
two landmarks at each point. The method requires the
accurate movement because the distance of movement [,
is used to the localization. We referred the formulation
of Egami et al. [10).

This method consists of the following steps. The sym-
bols are shown in Fig. 6 (a).

1. The orientations to both of goal posts, #; and 6,,
are calculated at P;.

2. The robot moves to P, apart from P; by L mm.

3. The orientations to both of goal posts, 63 and 6,
are calculated at P.

4. The orientations, the distance between the goal post
W and L are used to calculate the position.

Table 4 shows the experimental result of Method 3.
The areas are shown in Fig. 6 (b). The distance L was
changed corresponding to the area to keep the measured
angle large enough. L was 1000 mm in the area 1 and 2,
and 1500mm in the area 3. The average errors are large
because the angles observed do not show the significant
difference. To reduce the error, it might be necessary to

. enlarge L or use more observing points.

Based on the results of those experiments, we adopted
the method that usually uses the position obtained by
odometry, and uses the estimated position obtained by
using the landmarks searched actively when the odome-
try becomes unreliable. By this method, we could reduce
the estimation error of self-localization.

4 Environment Map

The environment map describes the field and the posi-
tions of objects such as a ball, goals and robots, and
is updated almost periodically. It is made by integrat-
ing the visual information of teammates, and then dis-
patched to each of them. It is similar to the Global Map
of Gutmann et al. [1]. With it, our robot can know the
situation outside its view, and the problem of occlusion
is reduced very much. Moreover, robots become more
intelligent so that each of them can stay at the favor-
able position in strategy, instead of following the ball
and being bunching up together.

4.1 Make of Environment Map

" The algorithm of making the environment map consists

of the following steps (Fig. 7).

1. A robot which acts as a map maker plots the self-
localized positions obtained from its teammates on
the map (Fig. 7 (a)).

2. The positions of the objects like the ball and op-
ponents are added to the map (Fig. 7 (b)). The
positions of objects obtained from teammates must
be translated to the world coordinate frame of the
map, because the positions are epressed in the local
coordinate frame.

3. The position of the ball is determined using the
gravity center of the multiple points of the ball.

4. The positions of opponents are determined using a
nearest neighbor method. The resultant clusters are
ranked according to the number of points belonging
to the cluster, and the candidates of the opponents
selected based on the rank (Fig. 7 (c)).

Fig. 7 is an example of this method. There are two
balls in Fig. 7 (b), which appear due to the estimation
errors of two teammates. An object nearby one of the
teammates is the virtual opponent made by estimation
error, too. Those false objects are eliminated in Fig. 7

(¢).



Figure 7: Steps of Making a Map. (a) Teammates are
plotted. (b) The ball and opponents are plotted using
the local visual information. (¢) Those are determined
by eliminating false objects.

Table 5: Estimation error of the environment map. Val-
ues are shown in [mm].

\ ball opponents

Ax| 53 69
Ayl 65 88

4.2 Experiment of Making the Environment
Map

In the experiment, several arrangements of objects are
used to make the environment map. Fig. 8 (a) is an ex-
ample of the arrangements, and Fig. 8 (b) is the map
obtained using the proposed method. The robot at the
left side is not shown in the map because it can be seen
by none of the teammate robots. The rest of the robots
are plotted on the map. The estimation errors of the ob-
jects are good enough to recognize the situation of the
field (Table. 5). The average period which includes re-
questing the information of self-localization, calculation
and transmitting the map was 180msec, and its stan-
dard deviation was 29 msec. The average period of one
cycle of Sense-Plan-Do loop is about 100 msec, so that
the environment map is updated at the rate of once per
two cycles of the loop. This implies that our method has
the accuracy enough for planning cooperative behaviors.

The positions of not only teammates but also oppo-
nents could be known by integrating the visual informa-
tion of each robot, and moreover the problem of occlu-
sion could be reduced. However, when an object dis-
appears from the map, the interpolation between image
frames used in our method did not give sufficient estima-

tion. We must improve it by introducing another method

(b) estimated arrangement

Figure 8: Result of an Experiment.

like a method based on Kalman filtering (Gutmann et al.
[1]), or a method using probability distribution.

It is difficult to make the environment map at the
specified time because the imaging time of the image
from each robot is not same. Gutmann et al. [1] adopted
a method which synchronizes it by using the time code,
but still we think it is very difficult to synchronize at the

deviation within several mili seconds.

5 Conclusions

A robot must know its surroundings when it carries out
the given tasks with cooperation. In this paper, we com-
pared three kinds of self-localization methods, proposed
a method suitable for the robot only with a monocular
camera system, and showed how to make the environ-
ment map. The most part of these methods was devel-
oped referring to the methods which had already been
reported. We adopted a self-localization method that
chose landmarks which were the most suitable for know-
ing the own position actively, and estimated the position.

The self-localization and the making map we proposed
are reasonable methods, though these takes much time
to determine the position because those uses the monoc-
ular camera with the restricted viewing area. Though
the precision of estimated position could be improved

by choosing the suitable landmarks, the error arose in



the position apart from the landmarks, and was equal to
the size of the robots. To solve this problem, we think
we must enlarge the size of the image to increase the res-
olution and reduce the calibration error of the camera.

The latency due to the acquisition of the local visual
information in each robot and the making the environ-
ment map influences the response speed of a robot. But,
it can be thought that our method is practically enough
for playing in the middle-size league, because the error
due to the synchoronous deviation and the latency due
to image processing are smaller than the error of the po-
sition estimation by image processing. Of cource, the
reduction of those errors should be solved as a future
subject.

At present, we realised a role sharing using the envi-
ronment map, that is, each of our robots can stay at the
favorable position in strategy, instead of following the
ball and being bunching up together.

We are planning to realize the effective pass work, in-
troduce the learning algorithm which obtains the ad-

vanced behaviors, and so on, as the future work.
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