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Abstract

This paper presents a new approach that local-
izes Non-Line-of-Sight (NLOS) targets in un-
known indoor environments. Sensors used in
the approach are an auditory sensor, an visual
sensor and sensors for Simultaneous Localiza-
tion and Mapping (SLAM). The visual sensor
localizes a target when the target is on its Line-
of-Sight (LOS), but it is also used to recognize
the environment and localize itself in conjunc-
tion with the SLAM sensors. The auditory sen-
sor localizes the target even if the target is not
on the LOS of the visual sensor. In order to
localize a NLOS target in an unknown environ-
ment, the proposed approach extracts and ana-
lyzes the first-arrival diffraction signal and the
first-arrival reflection signal. The estimation is
performed within the Recursive Bayesian Es-
timation (RBE) framework where observations
of the visual and auditory sensors are each con-
verted into an observation likelihood. The abil-
ity of the proposed approach was experimen-
tally validated in a controlled indoor environ-
ment.

1 Introduction

Indoor environments where humans stay and work are
typically so complex with many structures or obstruc-
tions that the Line-of-Sight (LOS) region is significantly
limited. Here is an example conversation that you could
have when you are in such a Non-Line-of-Sight (NLOS)
environment:

A: ”Where are you?”.
B : ”I am here”.
A: ”I am getting close. Where are you?”.
B : ”I am here”.
A: ”I found you!”.
If the target person is communicative, humans search

for and find the target person who is not in the Field-
of-View (FOV) by estimating the location of the sound.

Audition is used not only as a means of communication
but also as a sensor for target localization, and is as im-
portant as vision due to such multi-functional capabili-
ties. Robotic audition, if the NLOS localization is made
possible, becomes a useful tool for both the co-robots
and people who are blind.

Past work on the localization of a NLOS target has
been conducted in three different ways. The first ap-
proach, forming a Wireless Sensor Network (WSN), lo-
calizes the target by measuring the intensity of the trans-
mitted signal at each wireless receiver and fusing the
measurements of all the receivers under the LOS assump-
tion [2, 4, 17, 27, 13, 7, 8]. Radio signals are commonly
used since sound signals reflect excessively and do not
create unique signal intensity. The approach is easy to
install, but the accuracy depends on the validity of the
LOS assumption [3, 18, 20, 10].

In the second approach, Time-of-Arrival (TOA) infor-
mation of the received signal is used for target localiza-
tion. The approach most commonly utilizes acoustic sig-
nals due to their slow speed compared to that of radio
signals. The majority of sound localization challenges
have been however focused on the direction of sound
rather than its position due to complexity of sound wave
propagation [25, 21]. For a NLOS target, Mak and Fu-
rukawa [14] located it by using the diffraction character-
istics of low-frequency sound though the time of sound
generation, which is often unknown, must be informed
beforehand.

The last approach enhances the NLOS target local-
ization numerically [15, 5, 6]. The approach localizes
the target by updating and maintaining its probabilistic
belief in the framework of Recursive Bayesian Estima-
tion (RBE) and processing observations as likelihoods.
In the use of an optical sensor, the event of “no de-
tection” is converted into an observation likelihood de-
scribing no probability that the target exists. While the
no-detection information is still useful, the belief, how-
ever, becomes highly unreliable unless the target is re-
discovered within a short period after being lost. Takami
et al. [24, 23] incorporated a stereo auditory sensor such
that the NLOS target can be detected using positive in-
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formation accordingly. Their approach however needs to
collect acoustic cues of the environment in advance. It
is not applicable if the environment is unknown.

This paper presents an extensive approach that lo-
calizes NLOS targets in unknown indoor environments.
Sensors to be implemented in the proposed approach are
an auditory sensor, an visual sensor and sensors for Si-
multaneous Localization and Mapping (SLAM). The vi-
sual sensor accurately localizes a target when the tar-
get is on its LOS, but it is also used to recognize the
environment and localize itself in conjunction with the
SLAM sensors. The auditory sensor localizes the target
even if the target is not on the LOS of the visual sen-
sor. In order to localize a NLOS target in an unknown
environment, the first-arrival diffraction signal and the
first-arrival reflection signal are extracted and analyzed.
The estimation is performed within the RBE framework
where observations of the visual and auditory sensors are
each converted into an observation likelihood.

The paper is organized as follows. The following sec-
tion presents the proposed approach that uses the visual
and the auditory sensors and localizes NLOS targets in
unknown indoor environments. Section 3 presents the
proposed extraction of the first-arrival diffraction and
reflection signals and the construction of the joint au-
ditory observation likelihood. While its application as
an assistive and training device for people who are blind
or visually-impared is described in Section 4, Section 5
shows the results of the preliminary experimental study
and demonstrates the efficacy of the proposed approach.
Conclusions are summarized in the final section.

2 Hybrid Visual/Auditory RBE for
Unknown Environments

2.1 Overview

Figure 1 shows a schematic diagram of the hybrid vi-
sual/auditory approach proposed in this paper. This
is to localize a NLOS target in an unknown environ-
ment. Sensors used are an auditory sensor, a visual sen-
sor and SLAM sensors. The auditory sensor is a mi-
crophone array whereas the visual sensor is a RGB-D
sensor, which measures not only RGB information but
also depth information and recognizes three-dimensional
(3D) surroundings on the LOS. SLAM sensors are those
to enable SLAM and include an Inertial Measurement
Unit (IMU).

The proposed approach operates as follows. Similarly
to the past work of the author, it deploys the frame-
work of the grid-based RBE and estimates a sound tar-
get in terms of a non-Gaussian belief [5, 6, 11]. Since
environments are assumed to be unknown, the proposed
approach incorporates SLAM where the RGB-D sensor
is utilized in addition to the SLAM sensors. The self-
location is thus known, so only the target pose is esti-
mated in the RBE. The RGB-D sensor detects and lo-
cates a sound target if it is on the LOS or in the FOV.
Otherwise, a sound target is processed as “not detected”,
and the RGB-D image is used primarily to recognize 3D
surroundings including geometry and material which in-

Figure 1: Schematic diagram of the proposed approach

fluence NLOS sound propagation. The microphone array
is the sensor that locates a NLOS target in addition to
a LOS target. Based on the visual information on the
surroundings, a NLOS target is identified by extracting
and analyzing the first-arrival diffraction signal and the
first-arrival reflection signal. The proposed approach al-
lows localization in unknown environments because it is
sound physics based and does not thus require spatial in-
formation. Fusion of the visual and auditory observation
likelihoods results in a joint likelihood, which updates
belief in the glsrbe.

2.2 Mathematical Formulation

The mathematical framework of the hybrid vi-
sual/auditory RBE is as follows. Let the state of the
robot s and the map updated by SLAM at time step k−1
be x̄sk−1 ∈ X s and m̄k−1 ∈ M respectively. Given a se-
quence of observations by the robot s from time step 1 to
time step k−1, sz̃t1:k−1 ≡ {sz̃tκ|∀κ ∈ {1, ..., k}}, the RBE
iteratively updates the belief on the state of a target t,
xtk ∈ X t, in time and observation. Let the belief given
the sequence of observations and the robot state and the
map at time step k−1 be p

(
xtk−1|sz̃t1:k−1, x̄sk−1, m̄k−1

)
.

Chapman-Kolmogrov equation updates the prior belief
in time, or predicts the belief at time step k, by the
probabilistic motion model p

(
xtk|xtk−1, x̄sk−1, m̄k−1

)
:

p
(
xtk|sz̃t1:k−1, x̄sk−1, m̄k−1

)
=∫

X t

p
(
xtk|xtk−1, x̄sk−1, m̄k−1

)

p
(
xtk−1|sz̃t1:k−1, x̄sk−1, m̄k−1

)
dxtk−1. (1)

The observation update, or the correction process, is
performed using the Bayes theorem. The target belief is
corrected using the new observation sz̃tk as

p (xtk|sz̃t1:k, x̄sk, m̄k) =
q
(
xtk|sz̃t1:k, x̄sk−1:k, m̄k−1:k

)
∫
X t q

(
xtk|sz̃t1:k, x̄sk−1:k, m̄k−1:k

)
dxtk

,

(2)
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(a) Joint visual/acoustic observation likelihood

(b) RBE incorporating an acoustic sensor

Figure 2: Hybrid visual/auditory target estimation

where q (·) = l (xtk|sz̃tk, x̄sk, m̄k) p
(
xtk|sz̃t1:k−1, x̄sk−1, m̄k−1

)
,

and l (xtk|sz̃tk, x̄sk, m̄k) represents the observation likeli-
hood of xtk given sz̃tk, x̄sk and m̄k.

One of the core technologies proposed in this paper is
the hybrid use of visual and auditory sensors. This is
given by

l
(
xtk|sz̃tk, x̄sk, m̄k

)
= lc

(
xtk|sz̃tk, x̄sk, m̄k

)
la
(
xtk|sz̃tk, x̄sk, m̄k

)

(3)
where lc (·) and la (·) are the likelihoods of the visual
sensor (RGB-D camera) and the auditory sensor (mi-
crophone array). In order to maximize information, the
camera observation is used not only to detect a target if
it is in the FOV but also to construct the no-detection
likelihood if the target is outside the FOV:

lc
(
xtk|sz̃tk, x̄sk, m̄k

)
=

{
p (sz̃tk|xtk, x̄sk, m̄k) ∃sz̃tk ∈ sX td
1− Pd (xtk|x̄sk) @sz̃tk ∈ sX td,

(4)
where sX td is the camera FOV or, more precisely, the
detectable region. The effectiveness of Equation (4) is
thoroughly investigated by the author in the context of
autonomous search and tracking.

While the derivation of la (·) is most challenging and
thus will be dealt with separately in the next section, the
advantage of Equation (3) in RBE is illustratively shown
in Figure 2. The possible locations of the target are nar-
rowed down even though the no-detection likelihood is

Figure 3: Construction of auditory NFOV target likelihood

used in visual sensing since the likelihood clears out the
joint likelihood in the FOV and dropped some peak(s) as
shown in Figure 2(a). Because sharpest and most Gaus-
sian is the visual observation likelihood with detection,
the prior belief is most determined by the last visual
observation and remains a sharp Gaussian distribution
as shown in Figure 2(b). The posterior belief with the
joint observation likelihood inherits this characteristics
since the joint likelihood most likely captures the target
location with a peak and magnifies the confidence of the
prior belief with the joint likelihood.

3 Physics based NLOS Auditory
Observation Likelihood

3.1 Overview

Figure 3 shows the overview of how to construct a
NLOS auditory observation likelihood using the physics
of sound wave propagation. Unlike radio signals, sound
signals reflect significantly without penetrating into dif-
ferent media while they also diffract at low frequen-
cies [1]. The proposed approach begins with obtain-
ing a time-domain signal of a relatively impulsive sound
at the microphone array. Notable signals are then ex-
tracted as candidate first-arrival diffraction and reflec-
tion sounds. The sound target is considered in a NLOS
region if the diffraction and reflection signals behave as
expected. An acoustic beamformer identifies the direc-
tions of the diffraction and reflection signals in the LOS
region, and the diffraction and reflection points are iden-
tified to further localize the sound target in the NLOS
region. The direction of the diffraction signal beyond
the LOS is inferred by deriving the loss of sound en-
ergy through diffraction, or the diffraction loss. That
of the reflection signal is identified by considering the
orientation of the reflection wall. Diffraction and reflec-
tion observation likelihoods are eventually constructed
by additionally incorporating knowledge on the distance
from the sound magnitude and characteristics. An au-
ditory observation likelihood is finally created by fusing
the diffraction and reflection observation likelihoods.
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(a) Acoustic signals from
NFOV target

(b) Extraction of diffraction/reflection sig-
nals

(c) Direction of signals identified
though beamforming

Figure 4: Auditory NFOV target observation

3.2 Extraction of First-arrival Diffraction and
Reflection Signals

Figure 4 shows the identification of a NLOS sound tar-
get and the extraction of the diffraction and reflection
signals proposed in this paper illustratively in one of the
simplest scenarios where a robot carrying a microphone
array receives sound emitted by a target in the NLOS in
a two-dimensional indoor environment with three walls
(Figure 4(a)). Figure 4(b) shows the pressure of sound in
the time domain, Pi (t). As shown in the figures, sound
waves emitted from a NLOS target reach the robot first
through diffraction and second through reflection and, if
the sound is relatively impulsive, the first-arrival diffrac-
tion and reflection signals can be extracted clearly. Be-
cause the sound energy loss from diffraction is larger
than that from reflection, the sound target can be rec-
ognized NLOS if the absolute peak of the first signal is
smaller than the second signal (The first-arrival signal is
strongest with a LOS target as it is the LOS signal). Ex-
traction becomes challenging for complex environments,
but various existing techniques proposed to extract sig-
nals or select thresholds for extraction reportedly achieve
successful extraction and identify candidate diffraction
and reflection signals [12, 9, 26, 8]. The extraction re-
sults in the identification of directions of diffraction and
reflection sounds through acoustic beamforming shown

(a) Diffraction sound esti-
mation

(b) Magnitude with different orientation angles
[16]

Figure 5: Diffraction sound estimation

in Figure 4(c). Once it observes the sound directions,
the RGB-D camera identifies the end of LOS and thus
identifies the diffraction and reflection points as well as
the orientation of the reflection wall and the reflection
angle.

3.3 Estimation of Sound Direction from
Diffraction Signals

Figure 5(a) shows the notations used for estimating
sound direction from diffraction signals in the scenario
introduced in the last subsection. The direction angle
with respect to the robot frame to estimate is defined by
θd whereas the NLOS angle is given by θ̂d. The diffrac-
tion point is given by [xd, yd]. Of these, the diffraction
point is known from the result of beamforming and the
depth measurement, so the NLOS angle θ̂d must be fur-
ther identified.

The proposed approach identifies the angle by analyz-
ing the magnitudes of diffraction and reflection sounds,
Md (ω) and Mr (ω), which are extracted after represent-
ing the sound signals with respect to frequency ω. The
loss of sound energy is assumed to be more if the NLOS
angle is more. This assumption, in fact, has been found
to be valid by the work of Medwin a quarter-century ago
[16] shown in Figure 5(b). The magnitude of diffraction
sound drops when the “level of NLOS” represented by
the orientation angle is increased. Assuming that re-
flection is specular with negligible loss, this makes the
proposed approach define the diffraction loss as

Ld =

∫ [
Mr (ω)−Md (ω)

]
dω ≥ 0 (5)

and associates it with the level of NLOS. The work of
Medwin also shows that the diffraction loss is approxi-
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Figure 6: Reflection sound estimation

Figure 7: Joint acoustic observation likelihood

mately proportional to the level of NLOS. The nonlin-
ear polynomial can be derived from the presented graph
and enables more accurate identification of diffraction
angle; θ̂d = f (Ld). Having the NLOS angle specified,
the diffraction angle θd is derived as

θd = θ̂d + tan−1
yd
xd
. (6)

3.4 Estimation of Sound Direction from
Reflection Signals

Figure 6 shows the proposed approach for estimation of
sound direction from reflection signals. Reflection makes
the sound propagation and the subsequent target esti-
mation complicated, but if the wall is smooth and yields
specular reflection, the sound direction can be estimated
easily [19]. Let the reflection angle with respect to the
robot frame to derive be θr and the sound direction to
the reflection wall and the reflection point be θ̂r and
[xr, yr] respectively. Since both θ̂r and [xr, yr] are known
from the preceding measurement, the orientation of the
wall with respect to the robot frame is given by

θw = θ̂r + tan−1
yr
xr
. (7)

The reflection angle is resultantly given by

θr = θ̂r + θw = 2θ̂r + tan−1
yr
xr
. (8)

3.5 Construction of Joint Acoustic
Observation Likelihood

While the sound can be better identified in direction
rather than distance, it is also possible to make an es-
timate on how far the sound target is. The proposed

approach makes the estimate by utilizing any available
information including the magnitude, sound patterns
stored in a database, or sound characteristics in a knowl-
edge base and constructs an observation likelihood for
each of the diffraction and reflection signals by modeling
uncertainties. The diffraction and reflection likelihoods
are then combined to create an auditory joint observa-
tion likelihood via the canonical data fusion formula:

la
(
xtk|sz̃tk, x̄sk, m̄k

)

= ldj
(
xtk|sz̃tk, x̄sk, m̄k

)
lrj
(
xtk|sz̃tk, x̄sk, m̄k

)
(9)

where ld (·) and lr (·) are the diffraction and reflection
observation likelihood.

Figure 7 illustrates the diffraction and reflection ob-
servation likelihoods as well as the joint observation like-
lihood where the observation likelihood is represented by
an ellipsoid indicating a probability distribution with a
covariance. The diffraction and reflection likelihoods are
shown to have high eccentricity due to more accuracy
in direction than in distance. Since the difference of the
diffraction and reflection likelihoods in orientation may
not be significant, the resulting auditory joint likelihood
could also be given by an ellipsoid with high eccentricity,
but the proposed approach, utilizing the diffraction and
reflection physics of sound, could estimate the location
of the sound target.

4 Assistive/Training Devices for Blind
and Visually Impaired People

Figure 8 shows the schematic diagram of the wearable
assistive/training device for blind and visually impaired
people to be developed. The wearable device is chosen
to be a belt partly because it is one of the most common
wearings and partly because it can implement a ringed
microphone array as well as other sensors/components
with some weight including an RGB-D camera. The ma-
jor components of the device are (1) a multi-story ringed
microphone array, (2) an RGB-D camera, (3) an IMU,
(4) a speaker, (5) a central unit and (6) a wireless mod-
ule. Because of the multi-story design, the microphone
array can form acoustic beams in not only the horizontal
direction but also in the vertical direction. This allows
the identification and removal of sound components com-
ing from the floor and the ceiling and the extraction of
the corresponding first-arrival diffraction and reflection
signals. The RGB-D camera, which works based on the
principle of time-of-flight, structured light or stereovi-
sion, is used not only to recognize LOS 3D environments
for NLOS target estimation but also to perform SLAM
together with an IMU. The speaker is used to provide
feedback by sound for assistive and training use. The
NLOS target estimation can be performed on the central
unit since its computation can be made light in weight.

5 Preliminary Experimental Validation

This subsection presents a result of the preliminary
proof-of-concept. Figure 9 shows the test environment
developed and the actual test conducted in the anechoic
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(a) Mechanical design

(b) Electronic design

Figure 8: Assistive/training devices for blind people

(a) Test environment

(b) NLOS test with Daniel Kish

Figure 9: Experimental proof-of-concept settings

chamber. The capability of the microphone array, as
well as sighted and blind people including the pioneer of
human echolocation, Daniel Kish, was tested in the en-
vironment. Only two walls were placed in the anechoic
chamber to make the problem two-dimensional (2D) for
the proof-of-concept purpose. A mechanical clicker cre-
ated impulsive sound at positions labeled 1-9, and the
robot with the microphone array and human testees were
supposed to identify the correct sound direction and lo-
cation [22].

Figure 10 shows the sound amplitude in the time do-
main collected at Microphones 6 and 8. The result shows
that the diffraction signal and reflection signal are dis-
tinctly separable having enough time interval between
the signals. More signal processing efforts will be nec-
essary when more natural sounds are deployed, and the
signal processing effort is ongoing while completing the
proof-of-concept. Figure 11 shows the constructed joint

Figure 10: Time-domain signals

(a) Position 1 (b) Position 4

(c) Position 8

Figure 11: Result of proof-of-concept

observation likelihood together with the true target loca-
tion colored blue when the sound source was located at
Positions 1, 4 and 8. The maximum likelihood is shown
by a red circle to compare to the true location. It can
be first seen that the diffraction and reflection points are
always identified well to indicate that the sound source
is in the NLOS region. The accuracy drops particularly
for targets in a severely NLOS region, but the proposed
approach could still make a good estimate.

6 Conclusions

This paper has presented a new approach that localizes
NLOS targets in unknown indoor environments. While
the visual sensor localizes a target when the target is on
its LOS, the auditory sensor stably localizes the target
even if the target is not on the LOS of the visual sensor.
In order for a NLOS target in an unknown environment,
the proposed approach extracts and analyzes the first-
arrival diffraction signal and the first-arrival reflection
signal. The RBE localizes the NLOS most reliably and
accurately. The ability of the proposed approach was
experimentally validated in a controlled indoor environ-
ment.
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The work presented in this paper is only the first step
for the NLOS target localization in unknown indoor en-
vironments. Ongoing work includes the experimental
validation in the uncontrolled indoor environment, the
development of the assistive/training device for people
who are blind or visually impaired and the use of human
voice.
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