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This research provides an efficient earthquake event classifier that aims to aid robots in automating the conven-
tional disaster response process. Additional sensors and automation are constantly required to react efficiently to
a crisis scenario. Deep learning has shown effectiveness in a wide range of applications having a low signal-to-noise
ratio, which encouraged us to present a unique 3-dimensional convolutional recurrent network-based earthquake
detection method to demonstrate its efficacy in real-time implementation. We train the network using a publicly
available earthquake dataset and perform ablations on real-time collected event samples. We preprocess the raw
earthquake signals using Log-Mel-based features extraction to retrieve spatial and temporal information. The model
extracts the feature information from the low-frequency seismic signals. Furthermore, we propose implementing the
model in real-time to distinguish major and minor tremors from seismic signals with an accuracy, sensitivity, and
specificity of 98%, 97.7%, and 99.79%, respectively, and a probability threshold of 0.7. Additionally, we develop
and validate the model using a two-month continuous data stream from a laboratory-based personal seismometer.
The method reliably detects all 63 strong earthquakes recorded by the Meteorological department in Japan from
November to December 2019.

1. INTRODUCTION
Over the past decade, tremendous progress has been made in

Search, Rescue, and Disaster Robotics[1], and several revolution-
ary technologies have been developed to enable efficient disaster
response. However, considerable effort has to be made in this field
to mitigate the effect and destruction caused by natural catastro-
phes that go beyond human perception. Earthquake recognition
continues to be a key and significant aspect for successful crisis
response, and the proposed study is an important step forward in
the area of “Disaster Robotics”.

Identifying earthquakes is a challenging research subject, and a
reliable classification method is required to distinguish earthquake
waveform from seismological noise. There is a strong potential in
using deep learning models in earth observation to describe and
identify earthquakes (e.g. [2, 3]) effectively. Effective implemen-
tation of these methods is relatively dependent on the availability
of high-quality datasets. To address this issue and expedite explo-
ration in this discipline, a worldwide collection of seismic data for
machine learning applications has been provided recently. Form-
ing a new dataset, such as STEAD[4], is used in various ways to
assist in the development of technologies for the seismological in-
dustry. It can also benefit the robotics field in the coming future
for efficient disaster mitigation.

Deep learning emerged as a noteworthy area in the field of arti-
ficial intelligence and has evolved in various disciplines, including
speech recognition, computer vision, and computational linguis-
tics. Availability of enormous processing capabilities[5, 6, 7, 8,
9, 10, 11], deep learning models, implemented as convolutional
neural networks (CNN), have demonstrated considerable advances
in various classification-related tasks and obtained promising out-
comes in a variety of tasks. Thus, an effective learning algorithm
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Figure 1: Earthquake detected, by a model learned using 3D-CNN-
RNN architecture, within a stream of real-time data available from
personal seismometer. The earthquake was reported having a Mag-
nitude of 3.9 in the Japan Meteorological Agency database on
November 02, 2019 17:39:29 UTC
is intended to recognize poor signal-to-noise ratio occurrences in
a seismograph compared to traditional techniques to automate and
enhance the earthquake identification method. With a significant
fraction of historical raw earthquake waveforms availability and
its promising application area in terms of “Disaster Robotics,” we
decided to employ deep learning-based algorithms such as con-
volutional and recurrent neural networks to identify and classify
earthquakes. It is possible to convert the seismic signal into a Log-
Mel spectrogram. These time-frequency transitions are used as a
two-dimensional input to the CNN to extract suitable features from
the data.

The three major components of our suggested technique are as
follows: Firstly, we generate our custom dataset using the 1.2 mil-
lion waveforms currently accessible in STEAD. Secondly, we train
a model to identify seismic events using a 3-dimensional con-
volutional recurrent architecture to enhance its accuracy further.
Thirdly, we implement and test the system on real-time data trans-
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mitted via a personal seismometer to analyze the performance of
our classification network. This approach will result in the first
implementation of an earthquake monitoring system powered by
artificial intelligence for emergency preparedness in the robotics
domain. The primary benefit of this technology is that it may be
deployed in an environment where robots can be engaged in real-
time in the event of a potentially major seismic event. In summary,
we assert that our technique has made the following contributions:

1. Propose a three-dimensional (3D) convolution framework for
the identification of seismic signals. In a conventional convo-
lutional recurrent network, feature maps are layered to cap-
ture the optimum amount of information from the input data;
however, we combine separate RNNs on every filter of the
last convolutional layer in this study;

2. This is the first study to use a feature extraction technique
based on Log-Mel spectrograms to seismic waveforms to the
best of our knowledge;

3. Performance evaluation of the system using triangular-
shaped filters set to 60 in Log-Mel spectrograms;

4. Extensive analysis of real-time data obtained through a per-
sonal seismometer: an earthquake detecting gadget[12].

In this section, we briefly review closely related approaches.
Conventional Methods. Due to their simplicity, STA/LTA[13,

14] and template matching[15, 16] are often used approaches for
event identification in seismology. STA/LTA detects earthquakes
by comparing short-term average energy to long-term average en-
ergy. However, in difficult circumstances with a poor signal-to-
noise ratio and time-varying background noise, it generates many
false detections. Template matching is a technique for detecting
anomalies in candidate waveform data that needs previous knowl-
edge of the candidate waveform data. Cross-correlation algorithms
employed in template matching are inefficient and lack general-
ity to handle data in real-time. Both of these systems have a
low signal-to-noise ratio and a high false-positive rate, making
them impractical for real-time applications, particularly disaster
response, where high accuracy is the primary goal.

ConvNetQuake[17]. Convolutional neural networks (CNNs)
for seismic data have lately gained popularity as a means of over-
coming the limits of traditional techniques. Even though Con-
vNetQuake is built on the deep topology of a convolutional neu-
ral network[9], it is learned on unprocessed waveforms. It does
not include feature engineering, which is critical for extracting
spatiotemporal information from seismic data. The 2D-CNN
framework[9] used in ConvNetQuake serves as a feature extrac-
tor in various classification-related tasks, and it is widely recog-
nized as being superior to hand-crafted features. Because of this,
a spectrogram of a seismic signal (an intermediary representation
of the seismic signal) is required as a two-dimensional input in
leveraging the high-dimensional information. In this study, dense
CNN models demonstrate good detection accuracy since simulated
noisy data was combined with actual data to improve accuracy;
however, we demonstrate that state-of-the-art performance may
also be obtained if convolutional networks are utilized sensibly
alongside recurrent networks on entire real data.

CRED[18]. In this latest research, earthquake detection is
treated as a sequence-to-sequence learning problem[19], and two-
dimensional convolutional layers are organized in residual blocks,
as described in [6], to optimize feature extraction. The authors
conducted a comprehensive review of CRED and compared it to
established techniques such as STA/LTA and template matching.
Their method recognized three orders of magnitude more events
than STA/LTA and reduced the false positive rate, demonstrating
the deep learning architecture’s efficacy and reliability. However,
in this research, two-dimensional convolutional neural networks
are layered with RNN(Bi-LSTM) layers to extract local features
and model hidden temporal relationships, respectively. In gen-
eral, super deep CNN architectures[6],[9] outperform regular CNN
models. However, expanding the receptive area of a 3-dimensional
convolutional recurrent network by extracting spectral and tempo-
ral feature maps may also give state-of-the-art results.

2. PROPOSED METHOD
We propose a three-dimensional (3D) convolutional architecture

for earthquake detection and expand the usage of Log-Mel spec-
trograms to extract features from seismic signals to attain greater
temporal and spatial resolution. The 3D-CNN architecture is em-
ployed in various fields, including human action detection[20] for
video processing applications, audio-visual recognition[21], and,
more lately, speaker verification tasks that do not need text[22].
We introduce a 3D-CNN-RNN framework in this study to lever-
age the temporal and spatial characteristics of seismic waveforms.
In comparison, a traditional CNN-RNN architecture stacks feature
maps together. In contrast, we implement distinct RNNs to every
filter of the final convolution operation to capture most temporal
information from the seismic waves. Similar to ConvNetQuake
and CRED, we use Log-Mel energies to balance frequency and
temporal characteristics.

2.1 3D CONVOLUTIONAL NEURAL NETWORKS
In principle, the 3D-CNN is the expansion of 2D-CNN. When

2D-CNNs are employed on 2D feature maps we can only extract
the information in spatial domain. In the case of seismic events, if
two events occur at the same time it is most desirable to extract the
temporal information related to actual earthquake signal. The said
information can only be inferred in temporal domain to capture the
changing behaviour of the signal. To tackle the aforementioned is-
sue, we propose to perform 3D convolutions in convolution stages
which is desirable in computing the features from spatial and tem-
poral perspective. In theory, 3D convolution is performed by con-
volving a 3D kernel (filter) and stacking multiple adjacent frames
in a form of cube. In this topology, stacked frames in the previ-
ous layer are connected to feature maps in the convolution layer,
thereby capturing temporal information. In formulation, the value
of any unit at position (x,y,z) in the jth feature map in the ith layer,
denoted as ux,y,z

i j , is given by

ux,y,z
i j = g

(
bi j +∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wp,q,r
i jm u(x+p)(y+q)(z+r)

(i−1)m

)
, (1)

where g is the activation function, bi j is the bias for the feature
map, Ri is the size of the 3D kernel along the time axis, wp,q,r

i jm is
the (p,q,r)th value of the kernel connected to mth feature in the
previous layer.
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Figure 2: 3D-CNN-RNN combination for earthquake detection. Combination of three convolutional layers and sixteen separate GRUs
for each filter in the final convolutional layers is used in above architecture. Each feature map of the last layer is fed to 32 GRU cells
in the sixteen recurrent layers. Softmax output layer acts as a fully connected (FC) last layer to classify the events in to earthquake and
not-earthquake. Input is a stack of 10-second ground motion clips.

2.2 RECURRENT NEURAL NETWORK (RNN)
The RNNs are important in sequence-to-sequence learning tasks

as they retain relations among inputs while training. In practical
applications[23] gated RNNs, also known as gated recurrent units
or GRUs, are used most effectively because they have the deriva-
tives that neither vanish nor explode while creating paths through
time. In many sequential tasks GRUs are used because they have
the capability of simultaneously controlling the forgetting factor
and the decision to update the state unit with a single gating unit.
The update equations[24] for GRUs are as follows:

h(t)i = u(t−1)
i h(t−1)

i

+(1−u(t−1)
i )σ

(
bi +∑

j
Ui, jx

(t−1)
j +∑

j
Wi, jr

(t−1)
j h(t−1)

j

)
, (2)

where u stands for the update gate and r for the “reset” gate.
Their value is separately defined as:

u(t)i = σ

(
bu
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Uu
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(t)
j

)
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r(t)i = σ

(
br

i +∑
j

U r
i, jx

(t)
j +∑

j
W r

i, jh
(t)
j

)
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In GRUs reset and update gates can independently “ignore”
some parts of the state vector making it dynamically control the
time scale and forgetting behaviour of different units.

2.3 3D CNN-RNN ARCHITECTURE
A range of CNN-RNN topologies may be designed using the

3D convolution and Recurrent Neural Network methods described
earlier. We explain a 3D-CNN-RNN framework that we con-
structed for an earthquake classification task in the next section.
Three convolutional layers are used in this design, as seen in Fig.2.
We suggest a 3× 3× 3 field of view (3× 3 in the space, 3 in the
time axis). Furthermore, we apply max pooling operation in each

convolutional layer, such as: (1× 2× 2) for the first, (2× 2× 2)
for the second, and (3× 2× 2) for the final layer. Strided con-
volutions combined with a max-pooling layer operation enable
us to downsample the signals through each dimension, lowering
the computational complexity while rapidly increasing the field of
view across the original signal. To retrieve temporal and spatial
details, indirect connections are employed. Moreover, we add the
ReLU (rectified linear unit) activation function g(.) = max(0, .) to
each convolutional layer, using its backpropagation rule to cancel
out any gradient elements that are smaller than zero. To optimize
the learning rate, batch normalization[25] is performed individu-
ally in each layer. To prevent overfitting, a dropout rate of 0.5 is
employed. The Xavier initialization[26] technique is adopted for
randomly initializing the training weights. We apply several GRUs
to the final convolutional layer’s feature maps to extract temporal
information from seismic waves. Since the final layer has sixteen
filters (kernels), each filter is represented by a distinct GRU, re-
sulting in sixteen GRUs. We built seven recurrent layers among
each feature map, where seven is the number of time steps mapped
from the 50 timestamps in the original spectrogram. The recur-
rent network comprises 32 GRU cells per layer. Each recurrent
layer employs a many-to-one structure, and the output of all layers
is concatenated and then fed into a fully linked layer. Using the
backpropagation technique, optimization is performed simultane-
ously on 3D-CNN and RNN architectures. As a final layer, a fully
connected softmax layer comprising two nodes is implemented to
categorize occurrences as earthquakes or non-earthquake.

3. DATA AND METHODS
3.1 PROPERTIES OF DATASET

Earthquakes occur when rapid movements across active faults
release stored elastic energy in the rocks, generating shock waves
that flow through the ground. Each day, thousands of earthquake
events occur worldwide, of which fifty are intense enough to be
experienced (magnitude > 2.5)[27]. These seismic signals are
recorded at local seismic stations, and there was a need for a single
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universal database. To anticipate the potential challenge, Stanford
researchers have released a database featuring seismic waves from
throughout the world from January 1984 to August 2018. STan-
ford Earthquake Dataset (STEAD)[4] is a publicly accessible on-
line database for research purposes. It is classified into two types:
localized earthquakes and seismic noise (free of earthquake sig-
nals). It comprises sim 1,050,000 three-component seismograms,
with 6000 samples per waveform in the east-west, north-south,
and vertical directions. However, we selected the vertical com-
ponent of the waveform since our model would be validated using
a real-time personal seismometer that can only monitor the verti-
cal component. Each earthquake event contains 32 properties, one
of which is ‘source magnitude,’ which is critical for balancing the
dataset. The majority of earthquake waveforms presented in the
database have a magnitude of < 2.5. We utilized only manually
selected waveforms, i.e., those provided by seismic stations, and
ignored any waveforms determined by computerized algorithms.
We picked distinct waveforms for the training and test sets. All
waveforms (earthquake and non-earthquake) are classified accord-
ing to their stated properties. The waveforms in the given dataset
have been detrended (i.e., the mean has been removed), resampled
at 100 Hz, and then filtered using a 1-45 Hz bandpass filter. To ad-
dress data disparity and increase generalization, we omitted spe-
cific waveforms and created our dataset. There are 108,680 and
46,561 waveforms used to train and test the model, respectively.
The dataset for training and test set makes up a composition of
70% and 30% independently. A one-hot encoding of the training
and test set is performed, and each waveform is labeled with 1 if an
earthquake event is present and 0 if no earthquake event (seismic
noise). The statistics for the development and evaluation sets are
presented in Table 1 and 2.

Table 1: Dataset orientation for Earthquake Waveforms.

Earthquake
Magnitudes

Earthquake
Waveforms
(Training Set)

Earthquake
Wave-
forms (Test
Set)

> 0 10868 4656

> 1 10868 4656

> 2 10868 4656

> 3 10868 4656

> 4 9923 4252

> 5 883 378

> 6 61 26

> 7 1 0

Total 54340 23280

3.2 DATA REPRESENTATION: FEATURE EX-
TRACTION

We propose that Mel Spectrograms be employed as a data
representation of seismic waveforms at the frame level. Mel-

Table 2: Dataset orientation for seismic noise waveforms.

Non-Earthquake
Waveforms
(Training Set)

Non-Earthquake
Waveforms
(Test Set)

54340 23281

spectrograms are constructed by incorporating linearly spaced
triangular-shape filters in the Mel scale. Further, we obtain the log-
energies in the Mel scale. The method is very similar to MFCCs,
except that the Discrete Continuous Transform (DCT) is not used
in this case. We apply this approach to seismic data to extract
frequency components by applying triangular-shape filters while
maintaining the maximum temporal information. We divided 60-
second ground motion data into six 10-second segments. Overlap-
ping windowed signals represent the temporal features. Using the
sequence of these window signals, a single spectrogram of a ten-
second clip is generated. The signal is framed using a 400ms win-
dow length. Using a Fast Fourier Transform (FFT) with 64 bins
(zero padded) and a hamming window with a 50% signal over-
lap, we can calculate a Short-Time Fourier Transform (STFT) with
zero padding. The complex spectrum of a seismic signal s(t) may
be expressed as follows:

S(n, f ) = |S(n, f )|e jθ(n, f ) (5)

where |S(n, f )| is the magnitude and θ(n, f ) as the phase spec-
trum for frequency f in frame n.

Mel-scale is extensively used in speech recognition tasks as one
of the feature extraction method. However, we propose this scale
can also be utilized for seismic signals. Several analytical expres-
sions exist to convert Hertz-scale frequencies to Mel-scale and one
of the common relation as given by D. O’Shaughnessy is used in
our study to extract features for network training.

m = 2595log10 (1+ f/700) (6)

and filter bandwidths computed using,

f = 700(10m/2595−1) (7)

Linearly spaced triangular-shape filters in Mel-scale are con-
structed using the aforementioned equation. The number of filters
are set to 60, that act as spectral features for our problem. Finally
the magnitude values are then converted into log magnitudes and
were normalized as input to the network.

S(n, f ) = log(|S(n, f )|) (8)

Each feature map has the dimensionality of δ × 60× 50. δ is
the number of seismic signal clips, 60 are the number of filters
in Mel-scale and 50 is the window frames used to calculate the
STFT. Finally the input feature for 3D-CNN RNN architecture is
6× 60× 50 and feature extraction process as employed on raw
seismic waveform is shown in Fig.3.
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Figure 3: Data input process for 3D-CNN RNN network: Feature
extraction using Log-Mel spectrograms

4. EXPERIMENTS
4.1 EVALUATION METRICS

We report the performance evaluation metric of our earthquake
detector classifier in terms of Precision (sensitivity), Recall (speci-
ficity) and F-score (accuracy) using (9), (10) and (11) respectively.
Sensitivity is defined as the number of earthquakes predictions that
are accurate, Specificity is defined as the number of instances that
are accurately predicted, and the F-score is the harmonic mean of
sensitivity and specificity. We calculate these scores using a deci-
sion threshold value (thresh) for output probabilities.

Precision = T P(thresh)/(T P(thresh)+FP(thresh)) (9)

Recall = T P(thresh)/(T P(thresh)+FN(thresh)) (10)

Fscore = 2×Precision×Recall/(Precision+Recall) (11)

where, TP denotes true positives, FP denotes false positives, and
FN are false negatives. TP=1 and FP=0 in a perfect classifier.

4.2 TRAINING
We used 3D-CNN architecture in all it’s essence i.e. 3-

dimensional convolution and three CNN layers. We trained the
model using a drop-out rate of 0.5. In binary classification prob-
lem, as in our study, we employed binary cross-entropy loss on the
softmax function. We employed RMSProp optimizer[24] with ini-
tial learning rate of 10−3 and a momentum decay of 0.9 to avoid
the gradient vanishing/exploding issues, and to increase the learn-
ing rate. We use batch size of 64 i.e. 64 training examples to train
our models. Furthermore, as a training policy, we split the training
set into 97% of the total training examples whereas the remainig
3% of the examples are used as a validation set to monitor the
validation loss and observe the training process. The data in the
training set is shuffled randomly and to overcome the overfitting
problem and maintain generalization we stopped the training af-
ter 100 epochs. Data augmentation strategy is not applied because
of the availability of large amount of data. During testing, we se-
lected the best model having highest accuracy on the validation
set and calculated the predictions. Tensorflow is used to imple-
ment the model. We train our networks on a single NVIDIA V100
GPU. The learning time for our proposed architecture is 24 hours
that includes feature extraction, training, testing and predicting the
probabilities.

4.3 DETECTION ACCURACY
The detection accuracy of the algorithm is the percentage of

waveforms correctly classified as earthquake or seismic noise. We
selected the best model based on the tuned hyperparameters to de-
tect an earthquake event. Regardless of the threshold choice, our
earthquake detector successfully detects 22380 earthquake events
as catalogued in STEAD and misclassifies 23 of the earthquake
waveforms as seismic noise, whereas it correctly classifies 23258
noise events and misclassifies 900 as earthquakes. In summary
(see Fig.4), our algorithm predicts 22380 true positives, 23 false
negatives, 900 false positives, and 23258 true negatives. There-
fore, the sensitivity (fraction of earthquake events that are true
events) is 96%, and specificity (fraction of true events correctly
detected) is 99.99%. However, with a probability threshold of 0.7,
sensitivity of the network is increased to 97.70% and specificity
decreased to 99.79%.
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Figure 4: Confusion Matrix Regardless of Threshold Value
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Figure 5: Receiver Operating Characteristics (ROC)

Building a robust deep learning model typically requires a
large amount of labelled training data as discussed in Con-
vNetQuake[17] and CRED[18]. In general our classifier has su-
perior performance as compared to other two methods. In Con-
vNetQuake authors report the classifier has a precision of 94%
and recall of 100% while in CRED the model has a precision
of 96% and recall of 99%. In CRED model is trained using
500000 seismographs (250000 as earthquake events and 250000
as noise waveforms) and with a denser network, whereas in Con-
vNetQuake the network was trained using 702748 waveforms
(2709 events and 700,039 noise windows) whereas noise windows
were synthetically generated. However, we have demonstrated that
state-of-the art results can also be achieved by using a smaller
dataset and with a less denser network i.e. only 3 convolutional
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layers. Our model is learned using a real and smaller dataset, mak-
ing it to generalize better in real-time scenarios. The superior per-
formance of our method is due to its reliance on both spectral and
temporal feature extraction of the signal rather than the waveform
and spectral features only. Hence, denoising the signal as input to
the learned model can help reduce the false positive rate as large
amount of seismic noise is present in the real-time environment.
Furthermore, for fair comparison in general, the datasets for the
baseline and proposed methods should have been same but due to
non-availibility of datasets used by ConvNetQuake and CRED; we
had to train our model using an efficient dataset i.e. STEAD and is
publicly available for an acceptable comparison in future studies.

CONCLUSION
We presented a unique autonomous system capable of detecting

earthquakes using a learned system based on deep neural networks
and a personal seismometer. This breakthrough significantly ex-
pands the application fields for artificial intelligence systems, in-
cluding seismology and disaster robotics. The described method is
not dependent on an alert center and may function effectively as an
earthquake detection tool in metropolitan areas on its own. While
the current study concentrated on detection, future work will ex-
amine how artificial intelligence-based algorithms may be utilized
to improve the reaction time of an earthquake warning system.
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