
Abstract—The purpose of this contribution is to review two relatively
recent developments in the field of neural networks to the robotics audi-
ence. The first are deep belief networks and the second are echo state
networks. Since much of sensor processing relates to probability esti-
mates and also sampling of data in this work we focus on how to derive
directly a probability and likelihood estimates. As it turns out both
show complementary features and strengths which make a combination
of both highly eligible.

1. Introduction

Most out of the box sensor processing approaches, such as

Kalman and particle filters[1] either explicitly or implicitly as-

sume certain constraints on the uncertainty distribution of the

sensor input and the internal state of a robot. Usually it is as-

sumed that that uncertainty can be expressed by a normal distri-

bution. For everyday applications that works very well although

it is common knowledge that real world noise is often not very

similar to a Gaussian distribution. This has consequences, such

as the fact that many approaches offer a version in which out-

liers are discarded in a separated step because outliers are cov-

ered badly by the Gaussian assumption and have a strong impact

on the mean and variance.

Within this work we present two approaches that base on neu-

ral networks echo state networks and deep belief networks [2, 3]

which in 2 different ways give estimation of a likelihood with-

out any further assumptions on the underlying probability distri-

bution, where the Deep Belief Network as a generative model

generates samples (particles with the correct probability distri-

bution).

Deep Belief Networks (DBNs) are one of the mainstream

deep learning approaches, which were initially introduced in [4].

DBNs can learn the networks one layer at a time in a biologi-

caly plausible way. DBNs have vastly been applied to many

types of data in artificial intelligence, such as hand-written digit

images of binary pixels in MNIST database[5], windows of mel-

cepstral coefficients in speech recognition[8] and gray-scaled

images in 3D object recognition in NORB dataset[7]. In our pa-

per, we will further examine the ability of DBNs in interpreting

binary encoded data, and we will validate this by showing how

dose DBNs perform in learning various distributions.

In our work, we have tried to construct each layer RBMs into

individual dynamic linking module, this layer-like property

made it easily duplicated and distributed under our Qi's frame-

work[11]. We have successfully implemented the deep believe

network on the hand-written digits task using as presented in [4]

using the framework. We have also worked on training the bi-

nary-represented random numbers by DBNs and try to repro-

duce an identical distribution from such random number genera-

tor.

Sect. 2.1 introduces the structure of Deep Belief Network and

Restricted Boltzmann machines (RBMs), the basic component

of DBNs. Sect. 2.2 shows how DBNs can learn the binary en-

coded data by learning certain distributions. In Sect. 2.3, we will

propose some ideas we have came up with on combining DBNs

with domestic service robot application.

The second approach presented here is the echo state network

[22]. Here, we directly attack the concept of likelihood by the

idea that all relevant information for the probability estimate in

some sense is represented in the reservoir, thus it should be pos-

sible to read it out in order to retrieve the best possible probabil-

ity estimate. We show one example in a experiment and read

use this as a benchmark for our approach. The general field of

application would be the analysis of time series.

Time series prediction is important to forecast e.g. economi-

cal data, and used to make decisions which, in turn, change

economy. The term “causality” is used when past values of a

time series provide significant information about future values

of another time series [26]. One of the possible methods for

causality inference is transfer entropy [25], however, it has the

disadvantage of requiring a fair amount of data. Granger causal-

ity [20], on the other hand, is based on regression and uses less

data, but is a linear method (non-linear extensions exist, see also

[6] for a comparison between different methods). In this work,

we propose a (non-linear) approach based on regression and a

recent recurrent neural network learning method, which we

Likelihood estimated by

two types of Neural Networks

C.-H. Lee, L.-W. Lu, N. M. Mayer

Nat'l Chung Cheng University,

Chia-Yi, Taiwan
mikemayer@ccu.edu.tw

社団法人　人工知能学会
Japanese Society for
Artificial Intelligence

人工知能学会研究会資料
JSAI Technical Report
SIG-Challenge-B201-5 (5/4)

25

briefly revisit in Sect. 3.1 Recent advances in this area have

shown to be successful in time series prediction [4, 5, 3]. How-

ever, instead of using predictions of the neural networks direct-

ly, we take a different route and describe an approach using the

prediction error to detect causal links in time series (Sect. 3.2).

Our approach is demonstrated using simulation data (Sect. 3.3),

and finally, we discuss our results in Sect. 3.5.

2. Numerical Experiments with DBNs

2.1 Deep Belief Networks

DBNs are probabilistic generative models composed of multi-

layer directed networks of stochastic, latent variables. These sto-

chastic latent variables then form into Restricted Boltzmann

Machines (RBMs) a type of neural networks, which are the ba-

sic components of DBNs. These networks are "restricted" to a

visible layer and a hidden layer, the latter can be viewed as a

feature detector capturing correlations that observed at the for-

mer.

A. Restrict Boltzmann Machine

The Restrict Boltzmann Machines are the type of generative

models which can be applied on many types of data such as bi-

nary images in MNIST database[5][4], gray-scaled images of

3D objects in NORB dataset[7],colored nature image[6], or mel-

cepstral coefficients in speech recognition[8]. To train the

RBMs, contrastive diversions[12] are often performed in order

the obtain generative weights.

A RBM is a two-layer network in which visible layer and hid-

den are symmetrically connected and the siblings within one

layer are not connected (see Fig. 1).

Fig. 1. Structure of RBMs, one RBMs contains a hidden layer and a

visible layer.

The network takes the idea of “energy” as described by Hop-

field, 1982, in which the joint configuration of a pair (v,h) has

an energy E(v,h) :

 (1)

where i indicates visible unit and j indicate hidden unit, ai, bj

are their biases respectively and wij is the weight between them.

For each possible pair (v,h), the energy function is:

 (2)

The probability of visible vector or training image, v, is given

as (3).

 (3)

Hence, we can compute the derivatives of the log probability

of data, and the maximum likelihood learning rule for data vec-

tor v can be defined as (4).

 (4)

Then we can repeatedly update the weight, wij, of visible unit

i and hidden unit j. Which lead to (5).

 (5)

where ε is a learning rate.

A fast learning algorithm is proposed in [4] which has termed

contrastive divergence. Refer to [4] and [14] for further details.

B. Deep Belief Networks

As stated before, DBNs are probabilistic generative models

composed of multilayer directed networks of stochastic, latent

variables. These stochastic latent variables then form a Restrict-

ed Boltzmann Machine, which is the basic components of

DBNs. According to [16], DBNs have two most significant

properties:

1. “There is an efficient, layer-by-layer procedure for learn-

ing the top-down, generative weights that determine how the

variables in one layer depend on the variables in the layer

above.”

2. “After learning, the values of the latent variables in every

layer can be inferred by a single, bottom-up pass that starts

with an observed data vector in the bottom layer and uses the

generative weights in the reverse direction.”

2.2 DBNs on Learning Binary Data

26

Deep Belief Networks can deals with many different types of

sensory input data, including binary colored image, colored

nature image, speech phones or even video sequence. In this

paper, we want to examine the ability of DBNs on binary

encoded sensory input. In this section, we will first depict our

experimental setup and we will show that DBNs works well on

extracting features from binary encoded input data.

A. Experimental Setup

In this experiment, we first generate a double precision

number of base 10 from a certain distribution, then we encoded

this number into binary base according to IEEE-754[17]. (see

the shaded area of Fig. 2).

Fig. 2. Structure of our Deep Belief Networks. The shaded area

explain how we encoded into binary number. Shape squares stands

for each node in visible layer, and circle stands for each node in

hidden layer. Character 'S' stands for sign bit in IEEE-754, 'E' stands

for exponent bits and 'F' stands for fraction bits. This two layer form

a Restricted Boltzmann Machine in Deep Belief Networks.

Later, we construct the DBNs as in Fig. 2, there are four

hidden layer and one visible layer(input layer), the size of each

hidden layer is set as following respectively, 256, 512, 256 and

64. For each RBMs, we train each layer for 100 epochs, each

epoch training through the whole data set once. After training,

in order to examine the result, we let the network runs as

generative mode for the exact the same amount of data as

training set.

B. Experiment Result

1. Normal Distribution
In this experiment, we have tested two normal distribution,

one with mean at 0 and another with mean at 10. We generate

the number from the function of these two distributions as input

data for DBNs respectively. Fig. 3 shows that DBNs can learn

the exact mean and deviation of normal distributions and

reconstruct the identical distribution.

2. Poisson Distribution

In experiment 1, we have tested the continuous distribution.

This experiment test test the networks with Poisson distribution,

which has the discrete property. Fig. 4 shows DBNs can also

Fig. 3. The result of learning normal distribution with mean 0 and 10. Picture a is the normal distribution with mean 0, b is the learning
result of reconstructed distribution. Picture c is the normal distribution with mean 10, d is the result of reconstructed distribution learning
from c.

27

learn the discrete distribution.

3. Random Number Generator
In the last experiment, we examnine with a uniform

distribution. We tested the network with 5000 random numbers.

The result is presented in Fig. 6, one can see that most of the

reconstructed numbers lay within the range between 0 and 1.

This result needs more fine tuning, for example, there's a small

gap neer 0 with extremely low probabiliy compared to the

reigon nearby and not every reconstructed number is between 0

and 1. In conclusion, the network can get a approximation of our

test set.

2.3 Combing DBNs with Domestic Ser-
vice Robots

Among the ideas, we took the advantages of great

performance of deep autoencoder[8]. In the service robot

competitions, the robots must operate in everyday human

environments, where they have to perform a given set of service

tasks, such as following instructions like gesture, voice or even

remote control signals. In voice recognition task, we first train

the users voice using CMUSphinx[9], the output sentence of

CMUSphinx need further treatment since we can not assure zero

error in speech recognition. In natural language, one or more

mistakes in one sentence may lead to the meaningless task.

Hence, we feed those results into our DBNs modules and train

the network to categorize semantics into certain task. Another

application could be categorizing environment. We take kitchen

as example, one could easily imagine what types of objects may

appeare inside the kitchen environment such as a pot, oven or

stove. We will leave the topic as an open issue here, additional

works need to be done in the future. Thus, we see good reason

to investigate for the service robot tasks. In the following

passage we give a example in phone recognition as present in

[4]. By doing above experiments, we have shown that Deep Be-

lieve Networks can successfully learn the probability distribu-

tion with binary encoded dataset. With this property, we can fur-

ther

Fig. 5. The result of learning Poisson distribution. Left picture shows the original distribution, on the right hand side is the reconstruction
of it.

Fig. 4. The result of learning Uniform distribution from random number generator. Left picture shows the original distribution, on the
right hand side is the reconstruction of it.

28

extend DBNs into state prediction application. In robotics, we

often are confronted with with the problem of state prediction,

for instance, ball prediction. In domestic service robot, particu-

larly in mapping and tracking, state prediction of self-localiza-

tion and state of the tracked object, one may use DBNs to calcu-

late the posterior of Bayesian filters.

 3. ESN as a likelihood estimator

 3.1 Echo State Networks

Echo State Networks (ESN) are an approach to address the

problem of slow convergence in recurrent neural network learn-

ing. ESN consist of three layers (see Fig. 6): a) an input layer,

where the stimulus is presented to the network; b) a randomly

connected recurrent hidden layer; and c) the output layer. Con-

nections in the output layer are trained to reproduce the training

signal. The network dynamics is defined for discrete time-steps

t, with the following equations:

xlin,t+1 = Wxt + winut (6)

xt+1 = tanh(xlin,t+1) (7)

Ot = woutxt (8)

where the vectors ut , xt , ot are the input and the neurons of

the hidden layer and output layer respectively, and win , W, wout

are the matrices of the respective synaptic weight factors.

Connections in the hidden layer are random but the system

needs to fulfil the so-called echo state condition. Jaeger [22]

gives a definition; in the following a slightly more compact

form of the echo state condition:

Consider a time-discrete recursive function xt+1 = F (xt , ut)

that is defined at least on a compact sub-area of the vector-space

x R∈ n . and where xt are to be interpreted as internal states and

ut is some external input sequence, i.e. the stimulus.

The definition of the echo-state condition is the following:

Assume an infinite stimulus sequence: u∞ = u0 , u1 , . . . and two

random initial internal states of the system x0 and y0 . To both

initial states x0 and y0 the sequences x∞ = x0 , x1 , . . . and y∞ =

y0 , y1 , . . . can be assigned.

xt+1 = F (xt , ut) (9)

yt+1 = F (yt , ut) (10)

Then the system F (.) fulfils the echo-state condition if inde-

pendent from the set ut and for any (x0 ,y0) and all real values ϵ
> 0 there exists a δ(ϵ) for which

d(xt , yt) ≤ϵ (11)

for all t ≥ δ. The ESN is designed to fulfil the echo state con-

dition.

3.1.1 Online learning using recursive least

squares

ESN can be trained using either an offline or an online learn-

ing procedure. For our approach, we are online learning the out-

put layer using the recursive least square method (RLS). The

combination of ESN and RLS has first been published by Jaeger

[23]. The following update rule was used:

αt = st
teach − wout

t−1 · ot , (12)

gt = pt · ot /(λ + ot
T · p · ot) , (13)

pt = 1./λ · pt − gt · ot
T · pt /λ , (14)

wt
 out = wt

 out + (αt · gt
T) , (15)

where αt represents the linear error vector and pt the inverse of

the autocorrelation, λ is close to 1 and is used as forgetting fac-

tor.

Fig. 6. ESN networks: Principle setup

3.2Modelling probability distributions by us-
ing the mean square error

In the following we reproduce one idea that was outlined in

the tutorial of Jaeger [22] that we also used as the basis in our

previous publication[3]. Instead of training the output ωt Ω di∈ -

rectly, we model a probability that a specific event has occurred

with regard to the output. In other words: the aim is to train the

network in that way that each of the output units represents the

probability of an event. As one simplest way to do this we teach

the output or of the network to reproduce the probability that the

as a range of the – statistical – output variable Ωr Ω that is of⊂

interest for the given task. The task of network is to find p(Ωr |xt

(u∞)) in the following written short p(Ωr). We define u the teach-

ing signal dr as:

29

if (ωt Ω∈ r) dr = 1

else dr = 0

Fig. 7. Test model set-up.

The mean square error (MSE) is the

Emse =< (dr,t − or)2 >= p(Ωr)(1 − or)2 + (1 − p(Ωr))o2
r (16)

The derivative ∂Emse /∂or set equal to zero yields the point at

which Emse is minimal:

or − p(Ωr) = 0 (17)

Thus, the MSE is reached when or = p(Ωr); we can assume

or → p(Ωr), (18)

for sufficiently long learning sequences. Since – with the

common restrictions of reservoir computing– the full informa-

tion of the input history is encoded in the activity state of the

reservoir. Thus, –without additional efforts in the hidden layer–

more information about statistical variables can be retrieved

from additional output units: Because the optimal solution (ab-

solute minimum of the MSE) can be derived, the network is go-

ing to find the true probability as far as it is detectable by linear

regression from the current state of the reservoir. Usually, the

quality of the network performance and the learning progress

can be checked by measuring Emse , where values close to zero

represent a good network performance. It should be noted that

for the learning rule outlined above the theoretical limit is above

zero. Under the assumption that the p(Ωr) is the true probability

we get:

Emin (Ωr) = minor (Emse) = p(Ωr)(1 − p(Ωr)). (19)

However, since in fact the true value p(Ωr) is unknown, it is

not a good idea to use Emse − Emin as a measure. However, it

can be used to find out if the output node is deterministic (i.e.

the output node takes either 0 or 1). In this case the minimal er-

ror is in fact 0 again.

Instead one could go the following way in that we can get a

set of outputs that covers a complete range of the random vari-

able in the way that for a range r R: ∈

∪r R∈ Ωr = Ω, (20)

Ωi ∩ Ωj = ,∅ (21)

for all i = j. Obviously, we have r R p(Ω∈ r) = 1. We can test

the constraint in the network. We test the quality of the network

output by testing measuring r or which should be close to one if

the network has adapted sufficiently.

Basing on the plausibility constraint it is very easy to define

an error function for the network. In the simplest case, it can be

assumed to train 2 outputs, of which the first represents the oc-

currence of an event e Ω∈ x , whereas the second output is

trained to record the non-occurrence e Ω∈ x . Thus, I train (d1 =

1, d2 = 0) in the case e ∉ Ωx and else (d1 = 0, d2 = 1). In this

case it can be assumed that the cost function

Etotal = (o1 + o2 − 1)2 (22)

approaches zero after a sufficient long learning process since

from Eq. 18 we get

Etotal → (p(Ωx) + p(Ωx) − 1)2 = (p(Ωx) + (1 − p(Ωx)) − 1)2 = 0.

(23)

Thus, this energy function may serve better as an estimator

how well the network has adapted to the particular current input

history.

4 .Simulation details

We demonstrate the approach on a prediction task. Our test

model cycles between four states (A, B, C, D). Figure 7 outlines

the transition probabilities. Every time in which the state A is

reached a random number 0 ≤ r(t) < 1 is drawn. In every time

step the model transfers from one state to the next state. Is the

current state the state A and the random value r(t) smaller then

0.5 the model goes to state B else the model transfers to state C.

From state B the model transfers to C. From C a the next step is

either D if r(t − d) < 0.5 else the model returns to state A, where

d is a positive or zero delay constant (0 delay indicates that the

transition C-A happens in the same cycle as A-C, i.e. the com-

plete cycle becomes A-C-A. Is the model in state D it always

transits back to A.

The task of the network is to predict the next state from the

previous. Had the states A, B, C, D been interpreted directly as

Markov states the transitions from C to the next state would ap-

pear random with equal probability either to state A or D, i.e. in

30

that interpretation the model is non-Markov. However, a perfect

hidden Markov model (HMM) with 2d hidden states would –

presumably– be able to detect the fact that the choices of the

transitions from A and those from C are linked.

Fig. 8. Histograms of errors for different delays. Depicted is the

MSE of probability of the transition to state D in the event of initial

state C. If the network cannot detect the causality of transitions from

C the error is at best 0.5. Full lines depicts the error at delay 0, dash-

es delay 1, small dashes delay 2, dotted delay 3, dash-dotted delay 4,

double dashed delay 5, small dash-dotted delay 6.

The model is presented as an 8 dimensional vector in the fol-

lowing way to the network:

A = [1, 0, 0, 0, 0, 1, 1, 1]

B = [0, 1, 0, 0, 1, 0, 1, 1]

C = [0, 0, 1, 0, 1, 1, 0, 1]

D = [0, 0, 0, 1, 1, 1, 1, 0]

The second half of each vector represents the inverse of the

first. Thus, it can serve to find the cost function according to Eq.

23. Obviously, the task becomes more complex as the delay

constant increases. The inverse correlation matrix was set to p =

0.0001 · I where I is the identity matrix. The forgetting factor λ

was set to 1.0, which sets the RLS into the non-forgetting mode.

The recurrent matrix was set to random orthonormal matrix

which was multiplied by 0.98 (Fig. 8) and 1.14 (Fig. 9), which

gives a slightly over-critical network. Since the input practically

is never close to 0, the network stays non critical. The online

learning was performed from the 1000th step onwards up to

18000th step. The different MSEs were recorded in the last 100

steps of each simulation.

5 .Results
We tested the network for several delays and network

sizes. To estimate the network performance we used the

MSE error at the transition from node C, in following EM

SE,C . A network that is able to detect the causality be-

tween the history and the transition from node C can

reach zero MSE, whereas for network that cannot detect

the causality the transition appears to be stochastic with

equal probability to state D and A. The MSE in this case

can be determined by Eq. 19.

A histogram of errors for different delays is depicted in

Fig. 8. For sake of simplicity we used the MSE of transi-

tions from A (stochastic, EM SE,A) and B (deterministic,

EM SE,B) in Fig. 9. The plot depicts the values of

Enorm = (EMSE,C − EMSE,B)/(EMSE,A − EMSE,B). (24)

Thus, values of Enorm around 0 can be interpreted in

that way that the network is able to detect the causality re-

lation between transitions from A and C. Fig. 8 results for

different network sizes and delays. Each line represents

different the performance of one network and different

delays. The network sizes are 10,20,30,50,100,150, and

200 neurons in the hidden layer.

The value of Etotal (cf. Eq. 23)) shows a very fast con-

vergence to the final range almost immediately after the

learning starts.

6 .Discussion
In the case of DBNs we investigated several ways to in-

sert continuous input to the network and in this way to re-

trieve samples with correct probability distributions. The

results are promising though we were not able to exactly

achieve the correct distribution ranges. In the case of ESN

we demonstrated an approach able to detect causalities in

time series by using the mean square error of an ESN on-

line learning procedure. Our current results indicate that

the ability of this approach is limited to a few cycles–

equivalent some dozens of steps. It can be expected that

our results can be further improved by adapting the reser-

voir to the stimulus statistics. It would be very good if

both approaches could be connected in order to combine

virtues of both ESNs and DBNs.

31

Fig. 9. Normalised errors for different network sizes at the hidden

layer as a function of the delay. Full line 10 neurons, dashed 20 neu-

rons, small dashes 30 neurons, dotted 50 neurons, dash-dotted 100

neurons, double dashed 150 neurons, and small dash-dotted 200 neu-

rons.

[1] S. Thun, W. Burgard, D. Fox, Probabilistic robotics, MIT Press, 2006

[2] L-W. Lu, C-H. Lee, N. M. Mayer, Combining Deep Believe Networks

with Domestic Service Robot, The 43rd Intl. Symp. on Robotics

(ISR2012),Taipei, Taiwan, Aug. 29-31, 2012(in preparation)

[3] Norbert Michael Mayer, Oliver Obst, Chang Yu-Chen , Time Series

Causality Inference Using Echo State Networks. Latent Variable

Analysis and Signal Separation - 9th International Conference, LVA/ICA

2010, St. Malo, France, September 27-30, 2010. Proceedings;

01/2010

[4] Hinton, G. E., Osindero, S. and Teh, Y., “A fast learning algorithm

for deep belief nets,” Neural Computation 18, pp 1527-1554., 2009.

[5] THE MNIST DATABASE of handwritten digits, Yann LeCun, Corinna

Cortes, http://yann.lecun.com/exdb/mnist/

[6] Ranzato, M., Krizhevsky, A. and Hinton, G. E., “Factored 3-way

restricted Boltzmann machines for modeling natural images,” Proc.

Thirteenth International Conference on Artificial Intelligence and

Statistics, 2010.

[7] THE NORB DATASET of 3D object recognition from shape, Fu Jie

Huang, Yann LeCun, Courant Institute, New York University, 2004,

http://www.cs.nyu.edu/ ylclab/data/norb-v1.0/

[8] Mohamed, A. R., Dahl, G. E. and Hinton, G. E., “Deep belief

networks for phone recognition,” NIPS 22 workshop on deep learning

for speech recognition, 2009.

[9] Deng, L., Seltzer, M., Yu, D., Acero, A., Mohamed A. and Hinton, G.,

“Binary Coding of Speech Spectrograms Using a Deep Auto-encoder,”

Interspeech, Makuhari, Chiba, Japan, 2010.

[10] Carnegie Mellon University, The cmu sphinx group open source

speech recognition engines,

http://cmusphinx.sourceforge.net/html/cmusphinx.php

[11] Qi is a tool for rapid prototyping of integrated behavior systems on

a team of distributed embedded systems we developed.

[12] G. E. Hinton, “Training products of ecperts by minimizing

contrastive divergence,” Neural Computation , vol. 14, pp. 1771-1800,

2002

[13] K.-F. Lee and H.-W. Hon, “Speaker-independent phone

recognition using hidden markov models,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 37, no. 11, pp. 1641-

1648, 1989.

[14] G. E. Hinton, “A practical guide to training restricted Boltzmann

machines”, 2010

[15]Arel, I.; Rose, D.C.; Karnowski, T.P.; , "Deep Machine Learning - A

New Frontier in Artificial Intelligence Research [Research Frontier],"

Computational Intelligence Magazine, IEEE , vol.5, no.4, pp.13-18, Nov.

2010, doi: 10.1109/MCI.2010.938364

[16] Geoffrey E. Hinton (2009), Scholarpedia,

4(5):5947.http://www.scholarpedia.org/article/Deep_belief_networks

[17] IEEE Computer Society (August 29, 2008), IEEE Standard for

Floating-Point Arithmetic, IEEE, doi:10.1109/IEEESTD.2008.4610935,

IEEE Std 754-2008

[18] T. Lee and D. Mumford, “Hierarchical Bayesia inference in the

visual cortex,” J. Opt. Soc. Amer., vol.20, pt.7, pp.1434-1448, 2008

[19] Joschka Boedecker, Oliver Obst, N. Michael Mayer, and Minoru

Asada. Initialization and self-organized optimization of recurrent neural

network connectivity. HFSP J., 3(5):340–349, 2009. doi:

10.2976/1.3240502.

[20] C. W. J. Granger. Investigating causal relations by econometric

models and cross- spectral methods. Econometrica, 37(3):424–438,

1969.

[21] Barbara Hammer, Benjamin Schrauwen, and Jochen J. Steil.

Recent advances in efficient learning of recurrent networks. In

ESANN’2009 proceedings, European Symposium on Artificial Neural

Networks - Advances in Computational Intelligence and Learning,

pages 213–226, 2009.

[22] H. Jaeger. The ’echo state’ approach to analysing and training

recurrent neural networks. In GMD Report 148, GMD German National

Research Insitute for Computer Science, 2001.

[23] Herbert Jaeger. Adaptive nonlineaer systems identification with

echo state networks.

In Advances in Neural Information Processing Systems; Proceedings of

the NIPS 15, pages 609–615, 2003. AA14.

[24] E. Pereda, R. Quian Quiroga, and J. Bhattacharya. Nonlinear

multivariate analysis of neurophysiological signals. Progress in

Neurobiology, (77):1–37, 2005.

[25] Thomas Schreiber. Measuring information transfer. Physical

Review Letters, 85(2):461–464, July 2000.

[26] Takashi Shibuya, Tatsuya Harada, and Yasuo Kuniyoshi. Causality

quantification and its applications: structuring and modeling of

multivariate time series. In KDD ’09: Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data

mining, pages 787–796, New York, NY, USA, 2009. ACM.

32

http://yann.lecun.com/exdb/mnist/
http://www.scholarpedia.org/article/Deep_belief_networks
http://cmusphinx.sourceforge.net/html/cmusphinx.php

	2.1 Deep Belief Networks
	2.2 DBNs on Learning Binary Data
	2.3 Combing DBNs with Domestic Service Robots
	 3.1 Echo State Networks
	3.2Modelling probability distributions by using the mean square error
	4 .Simulation details
	5 .Results
	6 .Discussion

