
Abstract—The purpose of this contribution is to review two relatively 
recent developments in the field of neural networks to the robotics audi-
ence. The first are deep belief networks and the second are echo state 
networks. Since much of sensor processing relates to probability esti-
mates and also sampling of data in this work we focus on how to derive 
directly  a  probability  and likelihood estimates.   As it  turns out  both 
show complementary features and strengths which make a combination 
of both highly eligible. 

1. Introduction

Most out of the box sensor processing approaches, such as 

Kalman and particle filters[1] either explicitly or implicitly as-

sume certain constraints on the uncertainty distribution of the 

sensor input and the internal state of a robot. Usually it is as-

sumed that that uncertainty can be expressed by a normal distri-

bution. For everyday applications that works very well although 

it is common knowledge that real world noise is often not very 

similar to a Gaussian distribution. This has consequences, such 

as the fact that many approaches offer a version in which out-

liers are discarded in a separated step because outliers are cov-

ered badly by the Gaussian assumption and have a strong impact 

on the mean and variance. 

Within this work we present two approaches that base on neu-

ral networks echo state networks and deep belief networks [2, 3] 

which in 2 different ways give estimation of a likelihood with-

out any further assumptions on the underlying probability distri-

bution, where the Deep Belief Network as a generative model 

generates samples (particles with the correct probability distri-

bution).

Deep  Belief  Networks  (DBNs)  are  one  of  the  mainstream 

deep learning approaches, which were initially introduced in [4]. 

DBNs can learn the networks one layer at a time in a  biologi-

caly plausible  way.  DBNs have vastly  been applied to  many 

types of data in artificial intelligence, such as hand-written digit 

images of binary pixels in MNIST database[5], windows of mel-

cepstral  coefficients  in  speech  recognition[8]  and  gray-scaled 

images in 3D object recognition in NORB dataset[7]. In our pa-

per, we will further examine  the ability of DBNs in interpreting 

binary encoded data, and we will validate this by showing  how 

dose DBNs perform in learning various distributions. 

In our work, we have tried to construct each layer RBMs into 

individual  dynamic  linking  module,  this  layer-like  property 

made it easily duplicated and distributed under our Qi's frame-

work[11]. We have successfully implemented the deep believe 

network on the hand-written digits task using as presented in [4] 

using the framework. We have also worked on training the bi-

nary-represented random numbers by DBNs and try to repro-

duce an identical distribution from such random number genera-

tor.

Sect. 2.1 introduces the structure of Deep Belief Network and 

Restricted Boltzmann machines (RBMs), the basic component 

of DBNs. Sect. 2.2 shows how DBNs can learn the binary en-

coded data by learning certain distributions. In Sect. 2.3, we will 

propose some ideas we have came up with on combining DBNs 

with domestic service robot application. 

The second approach presented here is the echo state network 

[22]. Here, we directly attack the concept of likelihood by the 

idea that all relevant information for the probability estimate in 

some sense is represented in the reservoir, thus it should be pos-

sible to read it out in order to retrieve the best possible probabil-

ity estimate. We show one example in a experiment and read 

use this as a benchmark for our approach. The general field of 

application would be the analysis of time series.

Time series prediction is important to forecast e.g. economi-

cal  data,  and  used  to  make  decisions  which,  in  turn,  change 

economy. The term “causality” is used when past values of a 

time series provide significant information about future values 

of  another  time series  [26].  One of  the possible  methods for 

causality inference is transfer entropy [25], however, it has the 

disadvantage of requiring a fair amount of data. Granger causal-

ity [20], on the other hand, is based on regression and uses less 

data, but is a linear method (non-linear extensions exist, see also 

[6] for a comparison between different methods). In this work, 

we propose a (non-linear) approach based on regression and a 

recent  recurrent  neural  network  learning  method,  which  we 
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briefly revisit  in  Sect.  3.1  Recent  advances in  this  area have 

shown to be successful in time series prediction [4, 5, 3]. How-

ever, instead of using predictions of the neural networks direct-

ly, we take a different route and describe an approach using the 

prediction error to detect causal links in time series (Sect. 3.2). 

Our approach is demonstrated using simulation data (Sect. 3.3), 

and finally, we discuss our results in Sect. 3.5. 

2. Numerical Experiments with DBNs

2.1 Deep Belief Networks

DBNs are probabilistic generative models composed of multi-

layer directed networks of stochastic, latent variables. These sto-

chastic  latent  variables  then  form  into  Restricted  Boltzmann 

Machines (RBMs) a type of neural networks, which are the ba-

sic components of DBNs. These networks are "restricted" to a 

visible layer and a hidden layer, the latter can be viewed as a 

feature detector capturing correlations that observed at the for-

mer.

A. Restrict Boltzmann Machine

The Restrict Boltzmann Machines are the type of generative 

models which can be applied on many types of data such as bi-

nary images in  MNIST database[5][4],  gray-scaled images of 

3D objects in NORB dataset[7],colored nature image[6], or mel-

cepstral  coefficients  in  speech  recognition[8].  To  train  the 

RBMs, contrastive diversions[12] are often performed in order 

the obtain generative weights.

A RBM is a two-layer network in which visible layer and hid-

den  are  symmetrically  connected and the  siblings within  one 

layer are not connected (see Fig. 1).

Fig. 1.  Structure of RBMs, one RBMs contains  a hidden layer and a 

visible layer.

The network takes the idea of “energy” as described by Hop-

field, 1982, in which the joint configuration of a pair (v,h) has 

an energy E(v,h) :

      (1)

where i indicates visible unit and j indicate hidden unit, ai, bj 

are their biases respectively and wij is the weight between them.

For each possible pair (v,h), the energy function is:

                               (2)

The probability of visible vector or training image, v, is given 

as (3).                  

                                    (3)

Hence, we can compute the derivatives of the log probability 

of data, and the maximum likelihood learning rule for data vec-

tor v can be defined as (4).

         (4)

Then we can repeatedly update the weight, wij, of visible unit 

i and hidden unit j. Which lead to (5).

  (5)

where ε is a learning rate.

A fast learning algorithm is proposed in [4] which has termed 

contrastive divergence. Refer to [4] and [14] for further details.

B. Deep Belief Networks

As stated before,  DBNs are probabilistic generative models 

composed of multilayer directed networks of stochastic, latent 

variables. These stochastic latent variables then form a Restrict-

ed  Boltzmann  Machine,  which  is  the  basic  components  of 

DBNs.  According  to  [16],  DBNs  have  two  most  significant 

properties:

1. “There is an efficient, layer-by-layer procedure for learn-

ing the top-down,  generative weights that determine how the  

variables  in  one  layer  depend  on  the  variables  in  the  layer  

above.”

2. “After learning, the values of the latent variables in every  

layer can be inferred by a single,  bottom-up pass that  starts  

with an observed data vector in the bottom layer and uses the  

generative weights in the reverse direction.”

2.2 DBNs on Learning Binary Data
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Deep Belief Networks can deals with many different types of 

sensory  input  data,  including  binary  colored  image,  colored 

nature  image,  speech phones or  even video sequence.  In  this 

paper,  we  want  to  examine  the  ability  of  DBNs  on  binary 

encoded sensory input. In this section, we will first depict our 

experimental setup and we will show that DBNs works well on 

extracting features from binary encoded input data.

A. Experimental Setup

In  this  experiment,  we  first  generate  a  double  precision 

number of base 10 from a certain distribution, then we encoded 

this number into binary base according to IEEE-754[17]. (see 

the shaded area of Fig. 2).

Fig.  2.  Structure  of  our  Deep  Belief  Networks.  The  shaded  area 

explain how we encoded into binary number. Shape squares stands 

for each node in visible  layer,  and circle stands for each node in 

hidden layer. Character 'S' stands for sign bit in IEEE-754, 'E' stands 

for exponent bits and 'F' stands for fraction bits. This two layer form 

a Restricted Boltzmann Machine in Deep Belief Networks.

Later,  we  construct  the DBNs as  in  Fig.  2,  there  are  four 

hidden layer and one visible layer(input layer), the size of each 

hidden layer is set as following respectively, 256, 512, 256 and 

64. For each RBMs, we train each layer for 100 epochs, each 

epoch training through the whole data set once. After training, 

in  order  to  examine  the  result,  we  let  the  network  runs  as 

generative  mode  for  the  exact  the  same  amount  of  data  as 

training set.

B. Experiment Result

1. Normal Distribution
In this experiment, we have tested two normal distribution, 

one with mean at 0 and another with mean at 10. We generate  

the number from the function of these two distributions as input 

data for DBNs respectively. Fig. 3 shows that DBNs can learn 

the  exact  mean  and  deviation  of  normal  distributions  and 

reconstruct the identical distribution. 

2. Poisson Distribution

In experiment 1, we have tested the continuous distribution. 

This experiment test test the networks with Poisson distribution, 

which has the  discrete property. Fig. 4 shows DBNs can also 

Fig. 3.  The result of learning normal distribution with mean 0 and 10. Picture a is the normal distribution with mean 0, b is the learning 
result of reconstructed distribution. Picture c  is the normal distribution with mean 10,  d is the result of reconstructed distribution learning 
from c. 
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learn the discrete distribution.

3. Random Number Generator
In  the  last  experiment,  we  examnine  with  a  uniform 

distribution. We tested the network with 5000 random numbers. 

The result is presented in Fig. 6, one can see that most of the 

reconstructed numbers lay within the range between 0 and 1. 

This result needs more fine tuning, for example, there's a small 

gap  neer  0  with  extremely  low  probabiliy  compared  to  the 

reigon nearby and not every reconstructed number is between 0 

and 1. In conclusion, the network can get a approximation of our 

test set.

2.3 Combing DBNs with Domestic Ser-
vice Robots

Among  the  ideas,  we  took  the  advantages  of  great 

performance  of  deep  autoencoder[8].  In  the  service  robot 

competitions,  the  robots  must  operate  in  everyday  human 

environments, where they have to perform a given set of service 

tasks, such as following instructions like gesture, voice or even 

remote control signals. In voice recognition task, we first train 

the users  voice  using  CMUSphinx[9],  the output  sentence of 

CMUSphinx need further treatment since we can not assure zero 

error in speech recognition.  In natural language,  one or more 

mistakes  in  one  sentence  may  lead  to  the  meaningless  task. 

Hence, we feed those results into our DBNs modules and train 

the network to categorize semantics into certain task. Another 

application could be categorizing environment. We take kitchen 

as example, one could easily imagine what types of objects may 

appeare inside the kitchen environment such as a pot, oven or 

stove. We will leave the topic as an open issue here, additional 

works need to be done in the future. Thus, we see good reason 

to  investigate  for  the   service  robot  tasks.  In  the  following 

passage we give a example in phone recognition as present in 

[4]. By doing above experiments, we have shown that Deep Be-

lieve Networks can successfully learn the probability distribu-

tion with binary encoded dataset. With this property, we can fur-

ther 

Fig. 5.  The result of learning Poisson distribution. Left picture shows the original distribution,  on the right hand side is the reconstruction 
of it.

Fig. 4.  The result of learning Uniform distribution from random number generator. Left picture shows the original distribution,  on the 
right hand side is the reconstruction of it.
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extend DBNs into state prediction application. In robotics, we 

often are confronted with with the problem of state prediction, 

for instance, ball prediction. In domestic service robot, particu-

larly in mapping and tracking, state prediction of self-localiza-

tion and state of the tracked object, one may use DBNs to calcu-

late the posterior of Bayesian filters.

 3. ESN as a likelihood estimator

        3.1 Echo State Networks 

Echo State Networks (ESN) are an approach to address the 

problem of slow convergence in recurrent neural network learn-

ing. ESN consist of three layers (see Fig. 6): a) an input layer,  

where the stimulus is presented to the network; b) a randomly 

connected recurrent hidden layer; and c) the output layer. Con-

nections in the output layer are trained to reproduce the training 

signal. The network dynamics is defined for discrete time-steps 

t, with the following equations: 

xlin,t+1 = Wxt + winut (6) 

xt+1 = tanh(xlin,t+1) (7) 

Ot = woutxt (8)

where the vectors ut ,  xt ,  ot are the input and the neurons of 

the hidden layer and output layer respectively, and win , W, wout 

are the matrices of the respective synaptic weight factors. 

Connections in the hidden layer are random but the system 

needs to  fulfil  the  so-called echo state  condition.  Jaeger  [22] 

gives  a  definition;  in  the  following  a  slightly  more  compact 

form of the echo state condition: 

Consider a time-discrete recursive function xt+1 = F (xt , ut ) 

that is defined at least on a compact sub-area of the vector-space 

x  R∈ n . and where xt are to be interpreted as internal states and 

ut is some external input sequence, i.e. the stimulus. 

The definition of  the echo-state condition is the following: 

Assume an infinite stimulus sequence: u∞ = u0 , u1 , . . . and two 

random initial internal states of the system x0 and y0 . To both 

initial states x0 and y0 the sequences x∞  = x0 , x1 , . . . and y∞ = 

y0 , y1 , . . . can be assigned. 

xt+1 = F (xt , ut) (9) 

yt+1 = F (yt , ut) (10) 

Then the system F (.) fulfils the echo-state condition if inde-

pendent from the set ut and for any (x0 ,y0 ) and all real values ϵ 
> 0 there exists a δ(ϵ) for which 

d(xt , yt) ≤ϵ  (11) 

for all t ≥ δ. The ESN is designed to fulfil the echo state con-

dition. 

3.1.1  Online  learning  using  recursive  least 

squares 

ESN can be trained using either an offline or an online learn-

ing procedure. For our approach, we are online learning the out-

put layer using the recursive least  square method (RLS).  The 

combination of ESN and RLS has first been published by Jaeger 

[23]. The following update rule was used: 

αt = st
teach − wout

t−1 · ot ,  (12)

gt = pt · ot /(λ + ot
T · p · ot) , (13) 

pt = 1./λ · pt − gt · ot
T · pt /λ , (14)

wt
 out = wt

 out + (αt · gt
T ) ,  (15)

where αt represents the linear error vector and pt the inverse of 

the autocorrelation, λ is close to 1 and is used as forgetting fac-

tor. 

Fig. 6. ESN networks: Principle setup 

3.2Modelling probability distributions by us-
ing the mean square error 

In the following we reproduce one idea that was outlined in 

the tutorial of Jaeger [22] that we also used as the basis in our 

previous publication[3]. Instead of training the output ωt  Ω di∈ -

rectly, we model a probability that a specific event has occurred 

with regard to the output. In other words: the aim is to train the 

network in that way that each of the output units represents the 

probability of an event. As one simplest way to do this we teach 

the output or of the network to reproduce the probability that the 

as a range of the – statistical – output variable Ωr  Ω that is of⊂  

interest for the given task. The task of network is to find p(Ωr |xt 

(u∞)) in the following written short p(Ωr). We define u the teach-

ing signal dr as: 
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if (ωt  Ω∈ r) dr = 1 

else dr = 0 

Fig. 7. Test model set-up. 

The mean square error (MSE) is the 

Emse =< (dr,t − or)2 >= p(Ωr)(1 − or)2 + (1 − p(Ωr))o2 
r (16) 

The derivative ∂Emse /∂or set equal to zero yields the point at 

which Emse is minimal: 

or − p(Ωr) = 0 (17)

Thus, the MSE is reached when or = p(Ωr); we can assume 

or → p(Ωr), (18)

for  sufficiently  long  learning  sequences.  Since  –  with  the 

common restrictions of reservoir computing– the full informa-

tion of the input history is encoded in the activity state of the 

reservoir. Thus, –without additional efforts in the hidden layer– 

more  information  about  statistical  variables  can  be  retrieved 

from additional output units: Because the optimal solution (ab-

solute minimum of the MSE) can be derived, the network is go-

ing to find the true probability as far as it is detectable by linear 

regression from the current state of the reservoir.  Usually, the 

quality of the network performance and the learning progress 

can be checked by measuring Emse , where values close to zero 

represent a good network performance. It should be noted that 

for the learning rule outlined above the theoretical limit is above 

zero. Under the assumption that the p(Ωr ) is the true probability 

we get: 

Emin (Ωr ) = minor (Emse ) = p(Ωr )(1 − p(Ωr )). (19)

However, since in fact the true value p(Ωr ) is unknown, it is 

not a good idea to use Emse − Emin as a measure. However, it 

can be used to find out if the output node is deterministic (i.e.  

the output node takes either 0 or 1). In this case the minimal er-

ror is in fact 0 again. 

Instead one could go the following way in that we can get a 

set of outputs that covers a complete range of the random vari-

able in the way that for a range r  R: ∈

∪r R∈  Ωr = Ω, (20) 

Ωi ∩ Ωj = ,∅  (21) 

for all i = j. Obviously, we have r R p(Ω∈ r) = 1. We can test 

the constraint in the network. We test the quality of the network 

output by testing measuring r or which should be close to one if 

the network has adapted sufficiently. 

Basing on the plausibility constraint it is very easy to define 

an error function for the network. In the simplest case, it can be 

assumed to train 2 outputs, of which the first represents the oc-

currence  of  an  event  e   Ω∈ x ,  whereas  the second output  is 

trained to record the non-occurrence e  Ω∈ x . Thus, I train (d1 = 

1, d2 = 0) in the case e ∉ Ωx and else (d1 = 0, d2 = 1). In this 

case it can be assumed that the cost function 

Etotal = (o1 + o2 − 1)2 (22) 

approaches zero after a sufficient long learning process since 

from Eq. 18 we get 

Etotal → (p(Ωx) + p(Ωx) − 1)2 = (p(Ωx) + (1 − p(Ωx)) − 1)2 = 0. 

(23) 

Thus, this energy function may serve better as an estimator 

how well the network has adapted to the particular current input 

history. 

4 .Simulation details 

We demonstrate the approach on a prediction task. Our test 

model cycles between four states (A, B, C, D). Figure 7 outlines 

the transition probabilities. Every time in which the state A is 

reached a random number 0 ≤ r(t) < 1 is drawn. In every time 

step the model transfers from one state to the next state. Is the  

current state the state A and the random value r(t) smaller then 

0.5 the model goes to state B else the model transfers to state C.  

From state B the model transfers to C. From C a the next step is 

either D if r(t − d) < 0.5 else the model returns to state A, where 

d is a positive or zero delay constant (0 delay indicates that the 

transition C-A happens in the same cycle as A-C, i.e. the com-

plete cycle becomes A-C-A. Is the model in state D it always 

transits back to A. 

The task of the network is to predict the next state from the 

previous. Had the states A, B, C, D been interpreted directly as 

Markov states the transitions from C to the next state would ap-

pear random with equal probability either to state A or D, i.e. in 
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that interpretation the model is non-Markov. However, a perfect 

hidden Markov model (HMM) with 2d hidden states would –

presumably– be able to detect the fact that the choices of the 

transitions from A and those from C are linked. 

Fig. 8. Histograms of errors for different delays. Depicted is the 

MSE of probability of the transition to state D in the event of initial 

state C. If the network cannot detect the causality of transitions from 

C the error is at best 0.5. Full lines depicts the error at delay 0, dash-

es delay 1, small dashes delay 2, dotted delay 3, dash-dotted delay 4, 

double dashed delay 5, small dash-dotted delay 6. 

The model is presented as an 8 dimensional vector in the fol-

lowing way to the network: 

A = [1, 0, 0, 0, 0, 1, 1, 1] 

B = [0, 1, 0, 0, 1, 0, 1, 1] 

C = [0, 0, 1, 0, 1, 1, 0, 1] 

D = [0, 0, 0, 1, 1, 1, 1, 0] 

The second half of each vector represents the inverse of the 

first. Thus, it can serve to find the cost function according to Eq.  

23.  Obviously,  the  task  becomes more complex as  the  delay 

constant increases. The inverse correlation matrix was set to p = 

0.0001 · I where I is the identity matrix. The forgetting factor λ 

was set to 1.0, which sets the RLS into the non-forgetting mode. 

The  recurrent  matrix  was  set  to  random orthonormal  matrix 

which was multiplied by 0.98 (Fig. 8) and 1.14 (Fig. 9), which 

gives a slightly over-critical network. Since the input practically 

is never close to 0, the network stays non critical. The online 

learning  was  performed from the 1000th step onwards up to 

18000th step. The different MSEs were recorded in the last 100 

steps of each simulation. 

5 .Results 
We tested the network for several delays and network 

sizes. To estimate the network performance we used the 

MSE error at the transition from node C, in following EM 

SE,C . A network that is able to detect the causality be-

tween  the  history  and  the  transition  from  node  C  can 

reach zero MSE, whereas for network that cannot detect 

the causality the transition appears to be stochastic with 

equal probability to state D and A. The MSE in this case 

can be determined by Eq. 19. 

A histogram of errors for different delays is depicted in 

Fig. 8. For sake of simplicity we used the MSE of transi-

tions from A (stochastic, EM SE,A ) and B (deterministic, 

EM SE,B ) in Fig. 9. The plot depicts the values of 

Enorm = (EMSE,C − EMSE,B)/(EMSE,A − EMSE,B). (24) 

Thus, values of Enorm around 0 can be interpreted in 

that way that the network is able to detect the causality re-

lation between transitions from A and C. Fig. 8 results for 

different network sizes and delays. Each line represents 

different  the performance  of  one network  and  different 

delays.  The network sizes  are 10,20,30,50,100,150, and 

200 neurons in the hidden layer. 

The value of Etotal (cf. Eq. 23)) shows a very fast con-

vergence to the final range almost immediately after the 

learning starts. 

6 .Discussion 
In the case of DBNs we investigated several ways to in-

sert continuous input to the network and in this way to re-

trieve samples  with correct probability distributions. The 

results are promising though we were not able to exactly 

achieve the correct distribution ranges. In the case of ESN 

we demonstrated an approach able to detect causalities in 

time series by using the mean square error of an ESN on-

line learning procedure. Our current results indicate that 

the ability of  this approach  is limited to a  few cycles– 

equivalent some dozens of steps. It can be expected that 

our results can be further improved by adapting the reser-

voir to the stimulus statistics. It  would be very good if 

both approaches could be connected in order to combine 

virtues of both ESNs and DBNs.
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Fig. 9. Normalised errors for different network sizes at the hidden 

layer as a function of the delay. Full line 10 neurons, dashed 20 neu-

rons, small dashes 30 neurons, dotted 50 neurons, dash-dotted 100 

neurons, double dashed 150 neurons, and small dash-dotted 200 neu-

rons. 
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