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Abstract

Hyperfunctions in R™ are intuitively considered as sums of boundary values of holomorphic functions defined
in infinitesimal wedges in C". Orthonormal multiwavelets, which are a generalization of orthonormal single
wavelets, generate a multiresolution analysis by means of several scaling functions. Microlocal analysis is
briefly reviewed and a multiwavelet system adapted to microlocal filtering is proposed. A rough estimate of the
microlocal content of functions or signals is obtained from their multiwavelet expansions. A fast algorithm for
multiwavelet microlocal filtering is presented and several numerical examples are considered.

Key words: microlocal analysis, filter, multiwavelet, analytic representation.

Résumé

On considere les hyperfonctions en R™ intuitivement comme des sommes de valeurs au bord de fonctions
holomorphes définies dans des coins infinitésimaux de C". Les multi-ondelettes orthonormales, qui généralisent
les uni-ondelettes orthonormales, génerent une analyse multirésolution au moyen de plusieurs fonctions d’échelles.
On rappelle les bases de I'analyse microlocale et ’on propose un systeme de multi-ondelettes adaptées a cette
analyse. On obtient une estimation frustre du contenu microlocal des fonctions ou signaux au moyen de leur
développement en multi-ondelettes. On présente un algorithme rapide pour les filtres microlocaux en ondelettes
et I'on traite plusieurs exemples numériques.






1. INTRODUCTION

The extraordinary development of wavelets in recent years have made them present in a large part of our high-
technology world [1]. Wavelets are being incorporated in engineering standards for image and audio signal com-
pression. One of the first standards based on wavelets is “wavelet scalar quantization,” adopted by the U.S. Federal
Bureau of Investigation (FBI) in 1997 to encode fingerprints. The forthcoming still-image compression standard
known as JPEG2000 includes a wavelet option, and MPEG-4, the next video compression standard, will be entirely
wavelet-based. Wavelet-based high-compression modems will increase the usable bandwidth of electrical signals over
a telephone line by a factor of 250 from 4kHz to 1MHz. Developments in wavelets have influenced many pure and
applied mathematicians and scientists in such disparate fields as numerical analysis, computer vision, human vision,
turbulence, statistics, physics, and medicine. This paper is an attempt to use wavelets in the study of hyperfunctions
and their microlocal analysis.

Intuitively, hyperfunctions, which were introduced by Sato [2] and extensively developed by the Kyoto school
of mathematics, can be considered as sums of boundary values of holomorphic functions defined in infinitesimal
wedges. Hyperfunctions are powerful tools in several applications; for example, vortex sheets in two-dimensional
fluid dynamics are a realization of one-dimensional hyperfunctions. Analytic continuation in domains of special
forms plays a key role in the theory of hyperfunctions. A simple example of a hyperfunction is the Dirac delta
measure d(z), which, when applied to a continuous functions f(x) produces the value f(0):

/R £(2) 6(x) dz = £(0).

Since, in Schwartz’s theory of distributions [3], smooth testing functions of compact support cannot be holomorphic
functions, Sato used the Cauchy integral formula to define é(x) applied to a holomorphic function f(z) on an open
set D C C. Assuming that 0 € D and letting v = 0D denote the boundary of D, we have
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dz = f(0).

In the limit as the path + is shifted to —y4+ + v_, as shown in Fig. 1, this formula becomes
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F1GURE 1. Shifting the path v to —y4 +~v_.

Thus,
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is defined as the limit of two holomorphic functions, one holomorphic in the upper half-plane and the other holomor-
phic in the lower half-plane.

The classical construction of an orthonormal wavelet basis begins with a single function, the scaling function, which
satisfies a particular functional equation known variously as the refinement equation, dilation equation, or two-scale
difference equation. This scaling function determines a multiresolution analysis for L?(R™), which in turn determines
a wavelet basis [4]. The construction of a multiwavelet basis is analogous, the difference being that several scaling
functions are used to generate the multiresolution analysis instead of a single scaling function. The corresponding
wavelet basis is then generated by several multiwavelets. One advantage of multiwavelets is that they can incorporate
properties that a single wavelet cannot simultaneously possess, such as orthogonality, symmetry, short support, and
high approximation order. Such constructions have shown potential in signal processing applications such as image
compression or denoising [5], [6]. Multiwavelets may well be ideally suited to multichannel signals such as color images



(which are two-dimensional, three-channel signals) and stereo audio signals (which are one-dimensional, two-channel
signals).

In this paper, we present a particular multiwavelet construction which is suited for microlocal filtering. Microlocal
analysis plays an important role in the theory of hyperfunctions, partial differential operators, and many other areas.
In this theory, one can define the product of distributions and discuss the partial regularity of multidimensional
distributions with respect to any independent variable. Microlocal analysis could be called “local Fourier analysis.”

We shall construct multi-dimensional multiwavelets which have the property that decomposition into this basis
reveals directions of analyticity. The resolution of these multiwavelets in any given direction of analyticity can be
made as fine as desired, at the cost of increasing the multiplicity of the multiwavelet basis. Each multiwavelet
corresponds to one direction of analyticity, and each coefficient of the multiwavelet expansion of a function or
signal gives a rough estimate of its microlocal content, or microanalyticity. This is impossible for single wavelets
(“uniwavelets”). Since projections defined by means of our multiwavelets give a rough microlocal decomposition,
they will be called microlocal filters. Microlocal filtering can be done numerically, and we provide some numerical
examples. Furthermore, while, for simplicity, we restrict attention to L?(R™), we note that microlocal filtering could
be applied to more general function classes. Finally, we present a library of orthonormal multiwavelet bases which
may be suitable for implementation via the best basis wavelet packet algorithm.

2. MICROLOCAL ANALYSIS

In this section we briefly review microlocal analysis for Schwartz distributions based on the theory of hyperfunc-
tions, following [7].

We shall consider cones in the space Ry of imaginary coordinates. We assume that every cone has its vertex at
the origin. A subset I of R™ is called a cone if for all ¢ > 0 we have tI' C . A cone T is said to be proper if I'\{0} is
contained in an open half-space with boundary through the origin. If I' and IV are two cones, the notation IV cc T’
means that I” N {|y| = 1} is strictly contained in the interior of I'. Note that the relation I CC T is not the same
as IV C . For example, if I is a closed cone and T" is an open cone, the origin is an exceptional point.

If A is an open set in R™, then the subset R +iA := {z = z+iy;x € R", y € A} in C" is called a tubular domain.
A tubular domain of the form R™ + iI" where I is a cone in R" is called a wedge with edge R™ and opening I.

Let I' be a cone Ry. If A is an open set in R}} which approaches I' asymptotically near the origin from the interior
of I', then the subset U = R™ +iA of C" is called an infinitesimal wedge with opening I', and is denoted by R™ +4I"0
(see Fig. 2).

FIGURE 2. An infinitesimal wedge R™ + ¢I°0.

The following notation will be used.

Notation 1.

e [' is an open cone in R™.

e I is a closed cone in R™.

e C°(R") is the space of continuous functions on R™.

e D'(R™) is the space of distributions on R™.

e S'(R™) is the space of slowly increasing distributions on R™.

o O(U) is the set of holomorphic functions in the open set U € C™.

e Z, ={0,1,2,...} is the set of natural numbers including zero.

o a=(a,as,...,q,) with o; € Z; is a multi-index of nonnegative integers.
o |a| = a3 + as + -+ ay is the length of the multi-index «.

o 0% =01092 .99 and D™ = (—i)l*l 92.



‘We now define some classes of functions and distributions.

Definition 1. The above notation is used.

(a) A continuous function g € C°(R") is said to be slowly increasing, or exponentially decreasing, respectively,
on a closed cone I' if there exist positive numbers C' and M, or C' and J, respectively, such that

@) <C+le)Y, o g@)<Ce,  on T (1)

(b) A distribution f € D'(R™) is said to be slowly increasing, or exponentially decreasing, respectively, on an
open cone I if it can be represented as a finite sum

fl@)= > Dga(x) (2)

loe|<m

where g, € C°(R") are slowly increasing, or exponentially decreasing functions, respectively, on every closed
cone IV CcCT.
(¢) A holomorphic function f € O(U) is said to be slowly increasing in U if it can be represented as a finite sum

[(2)="Y D%al(2) (3)

laj<m
where each function g, € O(U) is continuous on the closure U of U and satisfies the estimate
|ga(z)| < Ca (1 + |Z|)M on U (4)

If U = R™ 4+4I'0 is an infinitesimal wedge, f(z) is said to be a slowly increasing holomorphic function in the
infinitesimal wedge U.

Let f(z) be a slowly increasing holomorphic function in an infinitesimal wedge R™ + iI'0. Then, by definition,
there exists a tubular domain R™ 4 4A such that f(z) has representation (3) in R™ +¢A, where the slowly increasing
holomorphic functions g, (z) are continuous on R™ 4+ ¢A. Hence the restriction of f(z) to R™ yields a slowly increasing
distribution f(z) on R™ that is defined by the right-hand side of (3). Further, for every sequence of points {y*)}
lying inside A and tending to 0 as k — oo, we have

flo)=lim fz+iy™). (5)
—0
z“")eA
For simplicity, we shall write (5) as
f(x) = f(z+il0), (6)

indicating that f(x) is a “generalized boundary value” of a holomorphic function in an infinitesimal wedge R™ + iI'0.
Such a distribution can be thought of as being analytic with respect to the direction of T'.
We now turn to the study of the directional analyticity of a distribution.

Definition 2. A distribution f(x) is said to be analytic with respect to a direction & if it can be represented as a
finite sum of limits f;(z + ¢I';0) of slowly increasing holomorphic functions f;(z) in R™ + ¢I";0 such that for every j
we have

Iin{yeR™y-& <0} #0.

Remark 1. The above representation of f(x) by a finite sum of limits f;(x + iI';0) of slowly increasing holomorphic
functions corresponds to an intuitive definition of hyperfunctions. Let 2 be an open set in R™. If, for j =1,..., N,
F;(z) is a holomorphic function defined on an infinitesimal wedge €2 + iI';0, then intuitively a hyperfunction is a
commutative formal sum
N
f@) =" Fj(x+1iT;0)

Jj=1
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FIGURE 4. Open cone I', dual cone I'°, and complement (I"°)¢ of dual
cone.

of boundary values of holomorphic functions F;(z) defined in Q + ¢I";0 (see [8]). Figure 3 illustrates  + iI';0. Note
that an infinitesimal wedge of the form R™ +¢I';0 is a tubular domain, but, in general, an infinitesimal wedge of the
form € + ¢I';0 need not be a tubular domain if €2 # R™.

In this paper, the Fourier transform f (&) of f(x) is defined by

F© = fl@e ™ de.
Rn
To characterize the microanalyticity of a slowly increasing distribution f € S'(R™) by its Fourier transform f , we
introduce the dual cone, I'°, of I' defined by

Ir°:={¢eRy-&>0forevery y €T}

(see Fig. 4). If T" is a cone in R™ then the dual cone I'° is a closed convex cone in R™. Moreover, I'° is a proper cone.
The complement of T'° is denoted by (I'°)¢
The following two lemmas are standard (see [7]).

Lemma 1. Let T be an open convex cone. A slowly increasing distribution f(x) € S'(R™) can be represented as the
limit f(x +14T0) of a slowly increasing holomorphic function f(z) in the infinitesimal wedge R™ 4 iT'0 if and only if
the Fourier transform f of [ is exponentially decreasing in the open cone (I'°)¢, the complement of I'°, that is, f 18
exponentially decreasing on every closed proper subcone IV CC (I'°)°.

The convex hull of an open cone I" is denoted by coI'. It can be shown that I'° = (coT")°.

Lemma 2 (Bochner). Let T be an open connected cone. Every slowly increasing holomorphic function in the
infinitesimal wedge R™ 4 iI'0 can be extended to a slowly increasing holomorphic function in the infinitesimal wedge
R™ +i(coT)0.

Hereafter, we shall always assume that the opening I' of an infinitesimal wedge is convex. The larger the opening
T, the more regular a slowly increasing distribution f(z 4 ¢I'0) will be. The largest opening I" is the whole space, in
which case f(x + iT'0) is analytic. The next largest possible openings I' are half-spaces.

Let a slowly increasing distribution f(x) be analytic with respect to a direction &. Then, by Definition 2, f(x)
can be represented as a finite sum of limits f;(z +4I';0) of slowly increasing holomorphic functions in R™ +¢I';0 such
that I'; N {y € R";y - & < 0} # 0 for each j. By Lemma 1, each Fourier transform fj(f) is exponentially decreasing
in the open cone (I‘?)c. Since & ¢ I'Z, there exists an open cone I' containing §p such that the Fourier transform
f(f) => fj (&) is exponentially decreasing in T

It is desirable to localize the directional decay of a function in ¢-space (Fourier space), because local non-smoothness
of a function f in x-space corresponds to slow decay of the Fourier transform f along some directions at infinity. Each
such direction corresponds to a point on the unit sphere S*~! in £-space. Therefore, we shall use the coordinates
(r,€) € R™ x S"~! to represent a point x € R™ together with a direction & € S*~1.



Definition 3. A distribution f(x) € D'(R") is said to be analytic at xy € R™ if there exists an open neighborhood
V C R” of 2y such that the restriction f|y of f on V is analytic in V. The set of all points = € R™ where f is not
analytic is called the singular support of f and is denoted by sing supp f.

Definition 4. A distribution f(z) is said to be microanalytic or microlocal analytic at (zo,&y) € R™ x S"~1 if there
exists a distribution g(x) which is analytic with respect to the direction &y such that f(x) — g(x) is analytic in a
neighborhood of z. The set of all points (x,£) € R™ x S"~! where f is not microanalytic is called the singular
spectrum of f and is denoted by S.S. f.

Remark 2. Let m be the natural projection from R™ x S*~! to R™. Then

m(S.8S. f) = sing supp f.

Hence, an analytic function is a function which is microanalytic at every point (z, &).
The following lemma shows that the singular spectrum is an invariant concept under analytic local coordinate
transformations (see [7]).

Lemma 3. Let y = F(z) be an analytic local coordinate transformation with Jacobian matriz dF (z) = (OF;/0xy,).
Then
dF(z)" n

<$’||dp(x)T,7||) €S.S. f(z) = (y,n) €S.S. f(F'(v))

and ( o
z)''n

Z, d};'(x)Tn') ZS.S. fz) = (y,n) €8S.S. f(F ' (v)),

where dF(z)T denotes the transpose matrix of dF (z).

3. MULTIWAVELETS
We define multiwavelets in this section, referring to [9] for detail. The following notation will be used.

Notation 2.
e Given f € L*(R"), fjx(x) denotes the scaled and shifted functions

fie(x) =2M2f(22 — k), e, kezr.

Given fi,..., fq € L*(R™), F denotes the vector-valued function F = (fi,..., f4) € L>(R")? and Fj;, denotes
the scaled and shifted vector-valued functions

Fi = ((f)jks-- (fa)ju), JE€Z, kel

E ={0,1}"\ {(0,...,0)} is the set of 2™ — 1 vertices of the n-dimensional unit cube less the origin.
e D ={1,...,d} for a positive integer d.
(u,v) = [u(z)v(x) dx denotes the inner product on L?(R™).

Definition 5. Let the 2" — 1 functions ¥, := (¢.1,...,1%.q) € L>(R")?, ¢ € E, be such that the system
{(1/’66)3'1«(93) = 9/ ¢eé(2j~’0 - k)}aeE,éeD,jez, kezn (7)

forms an orthonormal basis for L2(R™). Then {VU.}.cp is called a family of 2" — 1 multiwavelets, or multiwavelet
functions, the functions (1¢.5) 5 are called multiwavelets, (7) is called an orthonormal multiwavelet basis, and any
f € L*(R"™) admits the multiwavelet expansion

F= " {f,(Wes)jn) (Ves)in (8)

eeE,5eD
jEz, ker



FIGURE 5. A complex neighborhood U of Q.

4. ONE-DIMENSIONAL MICROLOCAL FILTERING

In the one-dimensional case, i.e., n = 1, the definition of hyperfunctions is simple. Let {2 be an open subset of R.
An open set U C C is called a complex neighborhood of  if € is a relatively closed subset of U. The directions of
analyticity are S° = {£1}. For a complex neighborhood U of €2, corresponding to the directions +1, define

Uy . =Un{Imz > 0}, U_ :=Un{Imz < 0}.

We can take U sufficiently small so that U\Q2 = U, UU_ (see Fig. 5).
A hyperfunction f(z) on Q is defined by the difference of two holomorphic functions:

f@) = Fy(z +140) — F_(z —i0),  Fi e OUL).

For simplicity, we write Fy. € O(UL) to mean F € O(UL) and F_ € O(U-); the same convection applies throughout
the rest of this paper. The pair (Fy,F_) is called a defining function. Such a pair is not unique, since, for each
holomorphic function G € O(U), the defining function (Fy + G, F— + G) determines the same hyperfunction f.

Our goal in this one-dimensional setting is to construct a multiwavelet function ¥ := (¢4,1_), corresponding
to the directions £1 of analyticity, such that the functions (¢4 );i are localized in both z and & and the pair of
projections

Pefi= Y (fi(We)w) We)n,  fELR), (9)

JEL, kEL

yield a defining function (P, f,P_f) of f. In this case, each term (f, (¢¥+);k) (¥+);x may serve as a comparison
function g in the sense of Definition 4 to measure the microanalyticity of f. Moreover, even when dealing with a
function f ¢ L?(R), if there exists a real analytic function h, say, a polynomial, such that f — h € L3(R), then we
can measure the microanalyticity of f by measuring the microanalyticity of f — h.

Our construction of multiwavelet functions is closely related to the classical Hardy spaces H2(R.) defined by

H*(Ry) == {f € L*(R) ; f(&) =0 for a.a. € <0},
H*R_):={f € L*(R) ; f(€) =0 for a.a. € >0}.

Hereafter, we shall use the convention that [a, b] denotes the interval [b, a] when b < a.

Theorem 1. Consider the multiwavelet function U := (Yy,v_) where ¥y are defined by 121;: = X[+2r,+4x] (see
Fig. 6) and let P+ be the projections defined by (9). Then for each f € L*(R), P+f can be continued analytically to
the upper and lower half-planes Hy := {z € C;Imz > 0} and H_ := {z € C;Im z < 0}, respectively.

3 Wy

—dr -2 0 2n 4r
FIGURE 6. Functions &i = X[+2n,+4n]-

Proof. Tt is well known that every element of H?(R.) can be continued analytically to Hx. Since L*(R) = H2(Ry)®
H?(R_), where @ denotes the orthogonal sum, it is enough to show that 1. is a uniwavelet function for H?(R.).
But this is immediate since {(¢+);}jez, rez forms an orthonormal basis for H2(Ry) (see, for example, [10], [11]
Section 5, or [12] Section 7.6). Hence {(¢ )k, (¥—);k}jez, kez forms an orthonormal basis for L?(R), which means
that W is a multiwavelet function for L2(R). O



Remark 3. The multiwavelet system defined in Theorem 1 is associated with a multiresolution analysis. In particular,
if o4 is defined by @+ = X[0,4+2+], then ® := (¢4, p_) is a multiscaling function for the above multiwavelets. We
refer to [9] for the connection between multiscaling functions, multiresolution analysis, and multiwavelets.

Remark 4. The multiwavelets {(¥1)k, (Y- )k }jez, kez of Theorem 1 provide us with the best possible resolution in
&-space, because the directions of analyticity are S° = {£1}. In a-space, however, (1)) j% are multiples of cardinal
sine functions; thus the resolution is rough, but the coefficients of the multiwavelet expansion can be calculated
numerically.

Next, we consider the possibility of obtaining a finer resolution in z-space while keeping the best resolution in
&-space. In one sense, this is impossible. In fact, if we keep the best resolution in &-space, 1+ must be uniwavelet
functions of H%(Ry). However, it is known that there exist no smooth (in &-space) wavelets in H?(Ry). More
precisely, there are no wavelet functions ¢, € H?(R,) satisfying the following two conditions:

|QZ+| is continuous on R

and R
[v4(§)] =0 ((1 + |§|)_a_1/2) as |¢| — oo for some « > 0.

See, for example, [13] or [12] Section 7.6.
One solution to this problem is to use a multiwavelet frame. A collection of functions {(¥1)k, (¥—);k}jez, kez 1S
called a tight frame for L?(R) with frame bound A if

AlfIP =Y [ (s)k)>  forall f € L*(R).

oe{£}
JEL,kEL

In this case, each f € L?(R) can be expanded as in the series

f=5 X (W) Wl (10)

de{£}
JEZ,KEZ

We refer to [4] or [11] for the derivation of basic properties of frames. One disadvantage of frames is that the
representation in (10) need not be unique in general. However, for many applications, including microlocal filtering,
uniqueness is not essential.

Smooth frames for H?(Ry) were first constructed in [10]. The following construction is from [12] Section 8.4.
Given € > 0, let s. be a C* function such that sa.(z) = s.(z/e), sc(x) = 0 for x < ¢, and s2(x) + ¢2(x) = 1, where
ce(z) = s.(—x). For 0 < e < ¢, define a bell function associated with the interval [, 27] by

be(z) := sc(x — ) coc (T — 27),
and define ¢ by
Pe(€) = 0-(6/2),  SeR (11)
The following lemma is stated without proof in [12].

Lemma 4. Given 0 < ¢ < g7, let ¢ be defined by (11). Then {(¢E)j»k}j wez forms a tight frame for H%(Ry) with
frame bound 1. Moreover, ¢ is in the Schwartz class S(R) of C* functions of fast descent.

Using these smooth frame uniwavelets for H?(R, ), we can construct frame multiwavelets for L?(R) having finer
resolution in z-space.

Theorem 2. Let bF be bell functions associated with the interval [rr,27]. Then, b (£/2) is a bell function associated
with the interval [2m,4w] and b7 (—£/2) is a bell function associated with the interval [—4m, —2x]. Define ¢y (x)
by @i(f) = bE(££/2), respectively (see Fig. 7). Then {(1+)jk, (V)i }ikez forms a tight frame for L*(R) with
frame bound 1, and, furthermore, (1) € S(R). Let Py be projections to H*(Ry) defined by (9). Then, for each
f € L?(R), Pif can be continued analytically to H .

A A

/_II-'\ 1 /_w*—\
—dr -2r 0 2n 4

FIGURE 7. Functions ¢ (£) = b (££/2).



5. MULTI-DIMENSIONAL MICROLOCAL FILTERING

We now generalize Theorem 1 to the multi-dimensional case and provide a library of orthonormal multiwavelet
bases from which the best microlocal filtering might be selected by means of a best basis algorithm.

Notation 3. The following notation will be used.

e H = {£1}" is a parametrization of the 2" n-dimensional orthants in R”. For example, in R?, (+1,+1),
(=1,+1), (—=1,-1), and (41, —1) correspond to the first, second, third, and fourth quadrants, respectively.

e For n = (m1,...,m,) € H, denote by @, the unit cube [];_, [0,7x], where [0, —1] stands for the interval
[-1,0].

e For e = (e1,...,¢,) € E as defined in Notation 2 and n = (n1,...,7n,) € H, denote the element-wise product
by

ek = (1M1, ., EnNn)-

e Fore=(e1,....,en) €EE,n=(m...,mn) € H, and j € Z,, define the cube
27 (Qn +eox 77) = {(Qj(ml +51771)a s 72j(xn +5n77n)) 5 (.1'17 cee axn) € Qn} .
Then let Q; ., be the collection of unit cubes that cover 27 (Q, + €. * 1)) with overlaps of measure zero, i.e.,
Qj,a,n = {H [nk(fk - 1)ank€k] + 2J<E * 7]) 71 S el; e 7£n S 2]a £17 e aen S N}7
k=1

where [—(¢; — 1), —£;] stands for the interval [—f, —(¢x — 1)].
e Given an indexing set K and a collection {Qy }rex of subsets of R™, define

Q:={Qihrex and  (Q) = Q.

keEK

e Define
21Qem =1{27Q ; Q € Qj-n}

o Let ZY* denote the set of all functions from E x H to Z.
e For a nonnegative integer N € Z,, let Zy := {0,1,..., N} and denote the set of all functions from E x H to
Zy by Z5H.
Theorem 3. Letj€Zi,c€ E, andn € H. For Q € Qj. .y, define g by

Yo = X2r@»

where X2 15 the characteristic function of the cube 2w@Q). For p € ZEXH, let

Q= U 21Q p(e ) e -

(e;n)EEXH

Then ¥ := (sz)QEQP is a multiwavelet function.

Proof. First we claim that Ujcz27Q, is a non-overlapping covering of R”. Consider the case p = 0. We have

Q= |J 2Qu.n= U 27(Q+exn).

(e;n)€EEXH (e;n)€EExXH

Since U(e nyyepxa (@ + €. % 1) is a non-overlapping covering of ITro; =2.2\TTi-, (—1,1) and

U2 (ﬁ [—2,2}\ ﬁ (—1, 1)) =R",

JEZ k=1 k=1



then Ujez 27Qy is a non-overlapping covering of R™. For an arbitrary fixed element (e,7) € E x H, since the set
Ujez 2727 (Q, + €. x 1) is invariant under multiplication by 27 for any jy € Z, we have

U2o= | [ijan+a*nﬂ

jez (e;n)EEXH “jeZ

- U [U 2m2°EM (Q, + €. n)}

(e;n)EEXH “jeZ

=J 29,

JEL
Next, consider a cube 27(Q) € Q,. Because L//)\Q = X2xQ, the collection

(%4 (€) Yrezn

forms an orthonormal basis for the space of L? (R?) functions supported on 27Q). By Plancherel’s formula,

{Yo(@ — k) }rezn

is an orthonormal basis for the space of L?(R”) functions whose Fourier transforms are supported in 27Q. Taking
the union of these orthonormal bases for 27() € Q,, we obtain an orthonormal basis for the space of functions whose
Fourier transforms are supported in ¢(Q,) defined in Notation 3. The dilates of those functions form an orthonormal
basis for functions whose Fourier transforms are supported in dilates of ¢(Q,), and combining these in all possible
ways we obtain the following multiwavelet orthonormal basis for L?(R"):

93/ 24) ) (29 —k} . O
{ wQ( v ) Q€EQ,,jELkEL

Corollary 1. For n € H, define v, by ©, = X2xq,. Then ® = (@W)neH is a multiscaling function for the
multiwavelet system of Theorem 3.

Remark 5. Since each g is the product of a complex exponential and cardinal sine functions in the variables xy,
k=1,...,n, multiwavelet coefficients can be calculated numerically.

The points (¢,17) € E x H can be thought of as rough directions of analyticity. By choosing p so that p(e,n) is
large, that is, by taking the set 2°(=:7) (Qy + €. %n) to be a large cube, the Fourier transform of each function g
for Q € Qp(c ).,y has support contained in a cube 27Q € 27Q,(c ;) ,c,, Which subtends a very small angle as viewed
from the origin (see Fig. 8).

2n 22(15211 +e.m)

= (-1.41) =140 _
/// P ’_,-"'
e=O1) | e=(y =
\ \ / - -
4 ./"'.’.
/'/ _‘__/".’ ZTEQ

o T ~_
£=(1,0)
RN

2n (@, +&4m)

n=(-1.-1) n=1-1)

FIGURE 8. Two-dimensional example of Q,,.



By Lemma 1, for a given function f, the cubes @ for which ¢ have large wavelet coefficients indicate fairly well
the directions along which the Fourier transform of f is concentrated, that is, the directions of analyticity of f. The
cost for a good angular resolution in £-space is many multiwavelets. Even though these multiwavelets have rough
localization in z-space, they still can be used as a tool for microlocal filtering.

Definition 6. Let N € Z,. The family of orthonormal multiwavelet bases:

MFBy = {{2@/21/}@(2% —k)}qeog, jezkezn pE Zﬁﬂi}

is called a library of microlocal filtering bases of level N.

Once we have a library of microlocal filtering bases MF By for a given function f, we can find the best microlocal
filtering basis for f in MFBy by an entropy functional criterion as in [14].

6. FAST MICROLOCAL FILTERING ALGORITHM

To implement the multiwavelet transform of f we need the scaling coefficients at high resolution. Recall that
in the uniwavelet case, at very high resolution, the scaling functions are usually close to the delta function; hence
the samples of the function f are often used as scaling coefficients. However, for multiwavelets we need expansion
coefficients for d scaling functions. Simply using nearby samples as scaling coefficients may be a bad choice. Data
samples need to be preprocessed (prefiltered) to produce reasonable values for the expansion coeflicients of scaling
functions at the highest scale.

Our design of prefilter is the following. Let ¢,, n € H, be the scaling functions defined by @, = x2.q, in

Corollary 1. Assume that f € Span{(vy) ok tneH, kezn for large jo, that is, suppf C 2m270[—1,1]". Then,

F@)y=" Y {f(0n)ior) (¥n)jok()-

n€H, keZn

By Plancherel’s formula,

F, (@n) o) = 1)U, (D) o) |
= (2m) 7" (f, 270 2T R/ o (¢ j200))

= 2~ "do/? (27T)_n/ ke f(f)X27r2J'0Qn (&) d¢

n

=27 E T [f(©)Xanzioq, (O] (/27).

Hence

@)= Y F 27 Xommm00, () F(©)](k/27°) 279072 (o) ok ().

neH, kezZ™

Denote ) .
fol@) =Y F U2 Xomm0, f](x),  neH.

kezn
Since 2mdo/2 (¢n)jok are close to delta functions for sufficiently large jo, it follows that

f@) =Y fyla).

neH

Therefore, f,(x) can be regarded as prefiltered data for each scaling function ,,. In this case, the prefilters are
Py=F 1027000, 0 F,  nE€H,

for sufficiently large jo. Here 27™J0 Xar2i0@, denotes the multiplication operator by the function 270y o o Q-
Denote

‘/;‘n = Span{(¢7})jk‘}kezn7 ne H, JjE€ Z.

For eachn € H, {VJ" }jez is an increasing sequence of subspaces which defines a (uniwavelet) multiresolution analysis
of V1 C L*(R"™). We can apply a fast uniwavelet transform and truncate filter coefficients at each resolution level



L

FIGURE 9. Microlocal prefiltering of an image. White is one and black
is zero.

of {V}"}jez. Finally, since {V"},cpg is an orthogonal decomposition of L*(R™), we need only sum up all the filter
coefficients with respect to n € H.

To apply this algorithm to images, we put n = 2 and jy = 0 and use the two-dimensional fast Fourier transform
for prefiltering. Figure 9 is an example of microlocal prefiltering of images. In this figure, if brightness is scaled from
one to zero, white is one and black is zero.

In this example, the prefiltered image by P(; _) has maximum energy among the four prefiltered images by P+ +),
because it is the brightest. The following tableau lists the energy of the four prefiltered images.



Energy = 1.0e+06 *
2.2059 2.0735

2.5749 8.5187

Experimentally we observed that singular parts, or details, of images contain less energy than regular parts, or
approximations, of images. Hence we suspect that the prefiltered image by P _) contains regular parts of the
original image and the other three prefiltered images contain singular parts of the original image. Let us look at the
three filtered images by Py, y+ Py, Py, + P_ 4y, and Py + Py 4y

In the first case, the support of the Fourier transform of the filtered image by P _y+ P _) is contained in the
half-space {(£,7) € R? ; n < 0}. Hence, Lemma 1 implies that there exist an open cone I'; containing (&,7) = (0, —1)
and a holomorphic function fi(z) in the infinitesimal wedge R? +4I';0 such that the filtered image by P _y+ P _)
is represented as the limit fi (x 4 iI";0).

Similarly, in the second case, the support of the Fourier transform of the filtered image by P4 _y + P4 4) is
contained in the half-space {(¢,17) € R? ; £ > 0}. Hence, by Lemma 1 there exist an open cone I'y containing
(¢,m) = (1,0) and a holomorphic function fa(z) in the infinitesimal wedge R? + il'20 such that the filtered image
by P )+ P4 ) is represented as the limit f;(x + iI'10). Hence these two filtered images by Py _) + P _) and
Py —y+ P 4 are, in a sense, “approximations” of the original.

In the third case, however, the support of the Fourier transform of the filtered image by P, _y + P ;) is not
restricted to a half spaces. Hence, we may assume the Fourier transform of the filtered image by P _)+ P 1) cannot
have exponential decay on any half-space (this is an assumption in dealing with images). Then the filtered image
by Py _y + P(_ 4+) cannot be represented as a boundary value of a single holomorphic function in an infinitesimal
wedge. However, it can be represented as a sum of boundary values of several holomorphic functions in infinitesimal
wedges. This means that the filtered image by P _)+ P ), in a sense, may be a “detail” only. These “regularities”
and “singularities” can be seen in Fig. 9.

7. NUMERICAL EXAMPLES

We present commonly used examples of hyperfunctions in R? and illustrate their microanalyticity numerically.

Each example is formulated as a Matlab image A with mn pixels in the form of an m x n matrix with nonnegative
real elements. The two-dimensional discrete fast Fourier transform of A produces a matrix B of the same dimensions
as A. Then B is prefiltered by splitting it into four parts of dimensions (m/2) x (n/2),

Bi1 B2
B = ,
[321 B22}

and each part is filtered by three disjoint masks. Each of these twelve parts is appropriately padded with zeros to
the original size m x n and its discrete fast inverse Fourier transform is analyzed for the directions of microlocal
analyticity of the given function. The twelve filter masks are shown in Fig. 10, where black is one and white is zero.
Each of the center prefilter masks is the sum of the three outside adjacent masks. The masks are arranged in a 4 x 4
matrix and an image whose Fourier transform has been prefiltered or filtered by the (7, j) mask will be referred to as
its (4, j)-th part.

7.1. A hyperfunction with microanalytic direction in its singular support.
Consider the one-variable hyperfunction
f(ar) = (21 +140)%,

with defining functions
Fi(a) =2, F_(a)=0.

The function f(z1) is analytic with respect to the direction £ = —1 and has singular spectrum
S.8. f(z1) = {z1 =0} x {& = +1}.

Let us transform this one-variable hyperfunction f(x1) to the two-variable hyperfunction f(y; — y2) in R?. Define
an analytic transformation y = F(x) from R? to R? by

vi| |1 1| x| _ z1
=l
Since this transformation is linear, its Jacobian matrix, dF(z), is equal to A,

dF (z) = [(1) ”



Fittar far B11 Fittar far B11 Filer far B12 Fitar for B12

Prefitter for B Fittar for B12

Prefiter for B Fittar for B22

Filttar for B21

Filler far B22 Fittar for B22

FiGURE 10. Each of the four center prefilter masks is the sum of the
three adjoining filter masks padded with zeros. Black is one and white
is zero. The dashed frames are used to delimit the masks.

Hence, y = F(x) is a bijection on R? and its inverse, x = F~1(y), is

B tanIHEEN
T 0 1 Y2 Y2 ’
The singular spectrum of f(z1) as a two-variable function is

S.S. f(x1) = {(w1,22,&1,&) € R x S5 21 =0, & = +1}.

Since
F({z1=0}) ={y1 —y2 =0}
and
_[1]  dF@)Tn  ATg
<= M = @) Tl = TAT ]’
that is,
L e Y R R S I B S TV

then Lemma 3 implies that the function f(y; — y2) has singular spectrum

SS. f(yr —y2) = {(1,y2,m,m2) €R® xS' 5 y1 =yo, m = 1/V2, = —1/V2}.

See also [15], p. 222. For numerical convenience, we shall consider this function on a 256 x 256 matrix A with
singularity along the secondary diagonal:

S
r—5—ie
a(mSJrl,T)—{(T_S)W} , r=1,2,...,m, s=12,...,m,

with A = 1/2 and € = 10~3. Figure 11 shows the result of the numerical microlocal analysis of f by the twelve masks
of Fig. 10.
The energy in each of the twelve parts, measured by their Frobenius norm, is shown in the following tableau:



FIGURE 11. The microlocal content of the twelve partitions of the orig-
inal figure. White is one and black is zero in a gray scale.

Energy = 1.0e+06 *
9.4796 0.4414 0.1644 0.0661
0.4414 0.0727
0.1644 0.5355
0.0661 0.0727 0.5355 8.7079

The difference between the sum of the twelve parts and the original figure, in the maximum norm, is
2.7102e-10.

It is seen from Fig. 11 that the top left and the bottom right filters pick up almost all the energy in the Fourier
transformed image. Hence the direction along the main diagonal, » = s, is in the singular spectrum of f and the
direction along the secondary diagonal, m —r + 1 = s, is a direction of microanalyticity.

7.2. An image with support of its Fourier transform in the first quadrant.
In this example the Fourier transform B of image A is the function

> [ &, for& =20, & >0,
H& &) = { 0, otherwise.

The inverse Fourier-Laplace transform of f(£,&) is

1 1
ﬁ (.Tl + iyl)Q (.TQ + in)Q '

flxy iy, xo +iy2) =

Prefiltering and filtering of the Fourier transform of A is done by the prefilters and filters of Fig. 10. The energy in
each of the twelve filtered parts, measured by their Frobenius norm, is shown in the following tableau:
Energy = 1.0e+05 *
0.0000 0.0000 2.3459 6.1648
0.0000 2.3159
0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

The difference between the sum of the twelve parts and the original figure, in the Frobenius norm, is

8.3745e-12.



A = fltshift(Fft2(B)) Criginal B

o

FIGURE 12. Image A built from image B in the Fourier space. Black is
one and white is zero. The dashed frames are used to delimit the figures.

In this example, it was convenient to take for image A the inverse Fourier transform of image B. These are shown
in Fig. 12, where, in a gray scale, black is one and white is zero. The pixels in the 8 x 8 central square of image A has
been set to 164 to enhance the remaining pixels. Due to boundary discontinuities of finite-size images, it would have
been difficult to start from A to produce an image B with zero energy outside the first quadrant in Fourier space as
shown in the above tableau.

7.3. A hyperfunction without microanalytic direction in the singular support.
Consider the one-variable distribution

f(z1) = d(x1),

where the Dirac mass §(z) has defining functions

1 1
Fj:(Zl) = —% ;1

The function f(z1) has singular spectrum

S.S. flan) = {1 = 0} x {& = +1}

in opposite directions and hence has no direction of microanalyticity. Let us transform this one-variable distribution
to a two-variable distribution f(y; — y2) in R%. Such a distribution is called a line impulse in the image processing
literature [16], p. 4. By Lemma 3, the function f(y; — y2) has singular spectrum

SS. f(yr — y2) = {(y1,y2,m,m2) €R® X S' 5 y1 = w2, (m1,m2) = £(1/v2,-1/v2) }.

See also [15], p. 222.
In this example a line impulse is simulated numerically by a 256 x 256 matrix A with elements on the secondary
diagonal equal to 100,
a(257 — r,r) = 100, r=1,2,...,256,

and all the other elements are set to zero, as shown in part (a) of Fig. 13. In this figure, black is one and white is
zero in a gray scale. The absolute value of the fast Fourier transform of the original figure is shown in part (b) of
Fig. 13. Prefiltering and filtering by the filters of Fig. 10 recover the line structure of the original image. The filtered
part (4,4), shown in part (c) of Fig. 13, contains the horizontal line at about half the intensity of the original line.
The filtered parts (1,1), (2,2), and (3,3) (not shown) are similar to part (4,4). The remaining 12 filtered parts are
white (part (1,4) is shown in part (d) of Fig. 13).

Criginal A abs(fft2(A)) Filtered part (4.4) Filtered part (1 4)

(=) {b} (e} d)

FicURE 13. Filtering of an image containing a line impulse along the
secondary diagonal. Black is one and white is zero. The dashed frames
are used to delimit the figures.



The energy in each of the twelve parts, measured by their Frobenius norm, is shown in the following tableau:
Energy = 1.0e+05 *

2.8862 0.0853 0.0000 0.0000

0.0853 0.0000

0.0000 0.0853

0.0000 0.0000 0.0853 2.8862

The difference between the sum of the twelve parts and the original figure, in the Frobenius norm, is
8.3745e-12.

It is seen from the tableau that the prefilters for the matrices By1; and Bso pick up all the energy in the Fourier
transformed image. Since most of this energy is picked up by the top left and bottom right filters, it is seen that the
opposite directions along the secondary diagonal are in the singular spectrum of f.

7.4. Denoising.

In this example, a vertical line impulse of height 100 in column 60 of a 256 x 256 matrix with remaining elements
equal to zero, is superimposed with a random noise of maximum height 100 over all the pixels of the matrix. One-
hundred minus the original image is shown in the left part of Fig. 14. In this figure, white is one and black is zero
in a gray scale.

Prefiltering and filtering by the filters of Fig. 10 recover the line structure of the original image as shown in the
right part of Fig. 14. The energy in each of the twelve filtered parts, measured by their Frobenius norm, is shown in
the following tableau:

Energy = 1.0e+06 *

0.5475 0.5459 0.5486 0.5469
0.5425 0.5524
2.9939 3.1255
0.5636 0.5656 1.3740 1.3729

The filtered images in positions (3,1) and (3,4) contain most of the energy.
The difference between the sum of the twelve parts and the original figure, in the Frobenius norm, is

6.4367e—11.
The difference between the sum of parts (3,1) and (3,4) and the original figure, in the Frobenius norm, is

1.1990e + 04.

It is seen that the filters in positions (3,1) and (3,4) of Fig. 13 recover the vertical line by eliminating much of
the noise. One-hundred minus their sum is shown in the right part of Fig. 14,

Cnginal figure Sum of fitared parts (3,1) and (3,4)

F1GURE 14. Original figure with noise and image from the sum of filtered
parts (3,1) and (3,4). White is one and black is zero in a gray scale.



Original image with singularity

FI1GURE 15. Original smooth image with a line impulse singularity. Black
is one and white is zero. The dashed frame delimits the image.

FI1GURE 16. Filtering of a smooth function with a line impulse. White
is one and black is zero in a gray scale.

7.5. Detection of smooth and singular parts of an image.

In this example, a diagonal line impulse of height 100 is added to an exponentially decreasing radial function on
a 256 x 256 matrix, as shown in part in Fig. 15, where black is one and white is zero in a gray scale.

Prefiltering and filtering by the filters of Fig. 10 separate the smooth and singular structures of the original image
as shown in Fig. 16.

The energy in each of the twelve parts, measured by their Frobenius norm, is shown in the following tableau:

Energy = 1.0e+06 *
1.3039 1.8358 2.4944 3.4984

1.8358 4.3728
2.4944 5.6681
3.4984 4.3728 5.6681 4.1156

The difference between the sum of the twelve parts and the original figure, in the Frobenius norm, is
2.4778e—10.
The difference between the sum of parts (3,4), (4,3) and (4,4) and the original figure, in the Frobenius norm, is
4.2847e + 04.

Since much of the energy is contained in the parts (3,4), (4,3) and (4,4) of the figure, one expects that their sum,
which is part (3,3) of Fig. 16, will recover the regular part although with some distortion away from the origin due
to mixing of frequencies in the Fourier space (a phenomenon called aliasing) [16], p. 204. The singular line impulse
is recovered in parts (1,4) and (4, 1) of Fig. 16. Thus, the regular and singular parts of an image can be separated
by means of the twelve filters.



7.6. Image compression in the Fourier domain.

In this example, a horizontal line impulse of height 100 is added to a 256 x 256 zero matrix as shown in part
(a) of Fig. 17. In this figure, black is one and white is zero in a gray scale. The dashed frames are used to delimit
the images. The absolute value of the fast Fourier transform of the original figure is shown in part (b) of Fig. 17.
Prefiltering and filtering by the filters of Fig. 10 recover the line structure of the original image. The filtered part
(1,3) contains the horizontal line at about half the intensity of the original line. The filtered parts (2, 3), (3,3), and
(4,3) (not shown) are similar to part (1,3). The remaining 12 filtered parts are white (part (1,4) is shown in part
(d) of Fig. 17).

Criginal A absifft2{A)) Filtered part (1,3} Filtered part (1.4)

(a) (b} icl (d)

F1GURE 17. Filtering and compression of an image containing a hori-
zontal line impulse. Black is one and white is zero. The dashed frames
are used to delimit the figures.

With no compression, the energy in each of the twelve parts, measured by their Frobenius norm, is shown in the
following tableau:

Energy = 1.0e+05 *
0 0 2.8905 0.0855

0 0.0855
0 0.0855
0 0 2.8905 0.0855

A first compression omits the zero-energy left half-part of the Fourier transform of the original image. This
compression does not reduce the quality of the reconstructed image.

A further compression is obtained by taking only parts (1,3), (1,4), and (2,4) of the Fourier transform of the
original image. A final compression is obtained by taking only part (1,3) of the Fourier transform of the original
image.

The difference between the sum of the 12, 6, 3, and 1 parts which are retained and the original figure, in the
Frobenius norm, is,

diff12 = 2.9865e-12, diff 6 = 2.9865e-12, diff 3 = 1.1370e+03, diff 1 = 1.1390e+03,

respectively, In the last two cases, compression slightly reduces the quality of the reconstructed image.
From one compression to the next, half the number of 256 x 256 inverse fast Fourier transforms need to be done.
In MATLAB 5.3 sparse matrices cannot be used with the fast Fourier transform.

8. CONCLUSION

Hyperfunctions in R™ have been presented as sums of boundary values of holomorphic functions defined in infini-
tesimal wedges in C™. Microlocal analysis has been briefly reviewed and a multiwavelet system adapted to microlocal
filtering is proposed. A rough estimate of the microlocal content of functions or signals is obtained from their multi-
wavelet expansions and a fast algorithm for multiwavelet microlocal filtering is presented. The numerical filtering of
a natural image and several simple geometric figures have been prefiltered and filtered in the Fourier space to analyze
their microanalytic properties.
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