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Abstract

The paper explains the concepts of order and absolute stability of numerical methods for solving systems
of first-order ordinary differential equations (ODE) of the form

y′ = f(t, y), y(t0) = y0, where f : R× R
n → R

n,

describes the phenomenon of problem stiffness, and reviews explicit Runge–Kutta methods, and explicit
and implicit linear multistep methods. It surveys the five numerical methods contained in the Matlab

ODE suite (three for nonstiff problems and two for stiff problems) to solve the above system, lists the
available options, and uses the odedemo command to demonstrate the methods. One stiff ode code in
Matlab can solve more general equations of the form M(t)y′ = f(t, y) provided the Mass option is on.

Keywords : stiff and nonstiff differential equations, implicit and explicit ODE solvers, Matlab odedemo

Résumé
On explique les concepts d’ordre et de stabilité absolue d’une méthode numérique pour résoudre le système
d’équations différentielle du premier ordre :

y′ = f(t, y), y(t0) = y0, où f : R× R
n → R

n,

et le phénomène des problèmes raides. On décrit les méthodes explicites du type Runge–Kutta et les
méthodes multipas linéaires explicites et implicites. On décrit les cinq méthodes de la suite ODE de
Matlab, trois pour les problèmes non raides et deux pour les problèmes raides. On dresse la liste des
options disponibles et on emploie la commande odedemo pour illustrer les méthodes. Un des codes de
Matlab peut résoudre des systèmes plus généraux de la forme M(t)y′ = f(t, y) si l’on active l’option
Mass.





1 Introduction

The Matlab ODE suite is a collection of five user-friendly finite-difference codes for solving initial value problems
given by first-order systems of ordinary differential equations and plotting their numerical solutions. The three
codes ode23, ode45, and ode113 are designed to solve non-stiff problems and the two codes ode23s and ode15s are
designed to solve both stiff and non-stiff problems. The purpose of this paper is to explain some of the mathematical
background built in any finite difference methods for accurately and stably solving ODE’s. A survey of the five
methods of the ODE suite is presented. As a first example, the van de Pol equation is solved by the classic four-stage
Runge–Kutta method and by the Matlab ode23 code. A second example illustrates the performance of the five
methods on a system with small and with large stiffness ratio. The available options in the Matlab codes are listed.
The 19 problems solved by the Matlab odedemo are briefly described. These standard problems, which are found
in the literature, have been designed to test ode solvers.

2 Initial Value Problems

Consider the initial value problem for a system of n ordinary differential equations of first order:

y′ = f(t, y), y(t0) = y0, (1)

on the interval [a, b] where the function f(t, y):

f : R× R
n → R

n,

is continuous in t and Lispschitz continuous in y, that is,

‖f(t, y)− f(t, x)‖ < M‖y − x‖, (2)

for some positive constant M . Under these conditions, problem (1) admits one and only one solution, y(t), t ∈ [a, b].
There are many numerical methods in use to solve (1). Methods may be explicit or implicit, one-step or multistep.

Before we describe classes of finite-difference methods in some detail in Section 6, we immediately recall two such
methods to orient the reader and to introduce some notation.

The simplest explicit method is the one-step Euler method:

yn+1 = yn + hnf(tn, yn), tn+1 = tn + hn, n = 0, 1, . . . ,

where hn is the step size and yn is the numerical solution. The simplest implicit method is the one-step backward
Euler method:

yn+1 = yn + hnf(tn+1, yn+1), tn+1 = tn + hn, n = 0, 1, . . . .

This last equation is usually solved for yn+1 by Newton’s or a simplified Newton method which involves the Jacobian
matrix J = ∂yf(t, y). It will be seen that when J is constant, one needs only set the option JConstant to on to tell
the Matlab solver to evaluate J only once at the start. This represents a considerable saving in time. In the sequel,
for simplicity, we shall write h for hn, bearing in mind that the codes of the ODE suite use a variable step size whose
length is controlled by the code. We shall also use the shortened notation fn := f(tn, yn).

The Euler and backward Euler methods are simple but not very accurate and may require a very small step size.
More accurate finite difference methods have developed from Euler’s method in two streams:

• Linear multistep methods combine values yn+1, yn, yn−1, . . ., and fn+1, fn, fn−1, . . ., in a linear way to achieve
higher accuracy, but sacrifice the one-step format. Linearity allows for a simple local error estimate, but makes
it difficult to change step size.

• Runge–Kutta methods achieve higher accuracy by retaining the one-step form but sacrificing linearity. One-step
form makes it easy to change step size but makes it difficult to estimate the local error.

An ode solver needs to produce a numerical solution yn of system (1) which converges to the exact solution y(t) as
h ↓ 0 with hn = t, for each t ∈ [a, b], and remains stable at working step size. These questions will be addressed in
Sections 3 and 4. If stability of an explicit method requires an unduly small step size, we say that the problem is
stiff and use an implicit method. Stiffness will be addressed in Section 5.
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3 Convergent Numerical Methods

The numerical methods considered in this paper can be written in the general form

k∑
j=0

αjyn+j = hϕf (yn+k, yn+k−1, . . . , yn, tn;h). (3)

where the subscript f to ϕ indicates the dependence of ϕ on the function f(t, y) of (1). We impose the condition
that

ϕf≡0(yn+k, yn+k−1, . . . , yn, tn;h) ≡ 0,

and note that the Lipschitz continuity of ϕ with respect to yn+j , j = 0, 1, . . . , k, follows from the Lipschitz continuity
(2) of f .

Definition 1. Method (3) with appropriate starting values is said to be convergent if, for all initial value
problems (1), we have

yn − y(tn) → 0 as h ↓ 0,

where nh = t for all t ∈ [a, b].

The local truncation error of (3) is the residual

Rn+k :=
k∑

j=0

αjy(tn+j)− hϕf (y(tn+k), y(tn+k−1), . . . , y(tn), tn;h). (4)

Definition 2. Method (3) with appropriate starting values is said to be consistent if, for all initial value
problems (1), we have

1
h

Rn+k → 0 as h ↓ 0,

where nh = t for all t ∈ [a, b].

Definition 3. Method (3) is zero-stable if the roots of the characteristic polynomial

k∑
j=0

αjr
n+j

lie inside or on the boundary of the unit disk, and those on the unit circle are simple.

We finally can state the following fundamental theorem.

Theorem 1. A method is convergent as h ↓ 0 if and only if it is zero-stable and consistent.

All numerical methods considered in this work are convergent.

4 Absolutely Stable Numerical Methods

We now turn attention to the application of a consistent and zero-stable numerical solver with small but nonvanishing
step size.

For n = 0, 1, 2, . . ., let yn be the numerical solution of (1) at t = tn, and y[n](tn+1) be the exact solution of the
local problem:

y′ = f(t, y), y(tn) = yn. (5)

A numerical method is said to have local error:

εn+1 = yn+1 − y[n](tn+1). (6)

If we assume that y(t) ∈ Cp+1[t0, tf ], we have

εn+1 ≈ Cp+1h
p+1
n+1y

(p+1)(tn) + O(hp+2
n+1) (7)
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and say that Cp+1 is the error constant of the method. For consistent and zero-stable methods, the global error is of
order p whenever the local error is of order p + 1. We remark that a method of order p ≥ 1 is consistent according
to Definition 2.

Let us now apply the solver (3), with its small nonvanishing parameter h, to the linear test equation

y′ = λy, <λ < 0. (8)

The region of absolute stability, R, is that region in the complex ĥ-plane, where ĥ = hλ, for which the numerical
solution yn of (8) goes to zero, as n goes to infinity.

The region of absolute stability of the explicit Euler method is the disk of radius 1 and center (−1, 0), see curve
s = 1 in Fig. 1. The region of stability of the implicit backward Euler method is the outside of the disk of radius 1
and center (1, 0), hence it contains the left half-plane, see curve k = 1 in Fig. 4.

The region of absolute stability, R, of an explicit method is very roughly a disk or cardioid in the left half-plane
(the cardioid overlaps with the right half-plane with cusp at the origin), see Figs. 1, 2, and 3 . The boundary of R
cuts the real axis at α, where −∞ < α < 0, and at the origin. The interval [α, 0] is called the interval of absolute
stability. For methods with real coefficients, R is symmetric with respect to the real axis. All methods considered in
this work have real coefficients; hence figures show only the upper half of R.

The region of stability, R, of implicit methods extends to infinity in the left half-plane, that is α = −∞. The
angle subtended at the origin by R in the left half-plane is usually smaller for higher order methods, see Fig. 4.

If the region R does not include the whole negative real axis, that is, −∞ < α < 0, then the inclusion

hλ ∈ R

restricts the step size:
α ≤ h<λ =⇒ 0 < h ≤ α

<λ
.

In practice, we want to use a step size h small enough to ensure accuracy of the numerical solution as implied by
(6)–(7), but not too small.

5 The Phenomenon of Stiffness

While the intuitive meaning of stiff is clear to all specialists, much controversy is going on about its correct mathe-
matical definition. The most pragmatic opinion is also historically the first one: stiff equations are equations where
certain implicit methods, in particular backward differentiation methods, perform much better than explicit ones
(see [1], p. 1).

Given system (1), consider the n× n Jacobian matrix

J = ∂yf(t, y) =
(

∂fi

∂yj

)
, i ↓ 1, . . . , n, j → 1, . . . , n, (9)

where Nagumo’s matrix index notation has been used. We assume that the n eigenvalues λ1, . . . , λn of the matrix J
have negative real parts, <λj < 0, and are ordered as follows:

<λn ≤ · · · ≤ <λ2 ≤ <λ1 < 0. (10)

The following definition occurs in discussing stiffness.

Definition 4. The stiffness ratio of the system y′ = f(t, y) is the positive number

r =
<λn

<λ1
, (11)

where the eigenvalues of the Jacobian matrix (9) of the system satisfy the relations (8).

The phenomenon of stiffness appears under various aspects (see [2], p. 217–221):

• A linear constant coefficient system is stiff if all of its eigenvalues have negative real parts and the stiffness ratio
is large.

• Stiffness occurs when stability requirements, rather than those of accuracy, constrain the step length.
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• Stiffness occurs when some components of the solution decay much more rapidly than others.

• A system is said to be stiff in a given interval I containing t if in I the neighboring solution curves approach
the solution curve at a rate which is very large in comparison with the rate at which the solution varies in that
interval.

A statement that we take as a definition of stiffness is one which merely relates what is observed happening in
practice.

Definition 5. If a numerical method with a region of absolute stability, applied to a system of differential equation
with any initial conditions, is forced to use in a certain interval I of integration a step size which is excessively small
in relation to the smoothness of the exact solution in I, then the system is said to be stiff in I.

Explicit Runge–Kutta methods and predictor-corrector methods, which, in fact, are explicit pairs, cannot handle
stiff systems in an economical way, if they can handle them at all. Implicit methods require the solution of nonlinear
equations which are almost always solved by some form of Newton’s method.

6 Numerical Methods for Initial Value Problems

6.1 Runge–Kutta Methods

Runge–Kutta methods are one-step multistage methods. As an example, we recall the (classic) four-stage Runge–
Kutta method of order 4 given by its formula (left) and conveniently in the form of a Butcher tableau (right).

k1 = f(tn, yn)

k2 = f

(
tn +

1
2
h, yn +

1
2
hk1

)
k3 = f

(
tn +

1
2
h, yn +

1
2
hk2

)
k4 = f (tn + h, yn + hk3)

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

c A
k1 0 0
k2 1/2 1/2 0
k3 1/2 0 1/2 0
k4 1 0 0 1 0

yn+1 bT 1/6 2/6 2/6 1/6

In a Butcher tableau, the components of the vector c are the increments of tn and the entries of the matrix
A are the multipliers of the approximate slopes which, after multiplication by the step size h, increment yn. The
components of the vector b are the weights in the combination of the intermediary values kj . The left-most column
of the tableau is added here for the reader’s convenience.

There are stable s-stage explicit Runge-Kutta methods of order p = s for s = 1, 2, 3, 4. The minimal number of
stages of a stable explicit Runge-Kutta method of order 5 is 6.

Applying a Runge-Kutta method to the test equation,

y′ = λy, <λ < 0,

with solution y(t) → 0 as t →∞, one obtains a one-step difference equation of the form

yn+1 = Q(ĥ)yn, ĥ = hλ,

where Q(ĥ) is the stability function of the method. We see that yn → 0 as n →∞ if and only if

|Q(ĥ)| < 1, (12)

and the method is absolutely stable for those values of ĥ in the complex plane for which (12) hold; those values
form the region of absolute stability of the method. It can be shown that the stability function of explicit s-stage
Runge-Kutta methods of order p = s, s = 1, 2, 3, 4, is

R(ĥ) =
yn+1

yn
= 1 + ĥ +

1
2!

ĥ2 + · · ·+ 1
s!

ĥs.

The regions of absolute stability of s-stage explicit Runge–Kutta methods of order k = s, for s = 1, 2, 3, 4, are the
interior of the closed regions whose upper halves are shown in the left part of Fig. 1.

6



Figure 1: Left: Regions of absolute stability of s-stage explicit Runge–Kutta methods of order k = s. Right: Region
of absolute stability of the Dormand-Prince pair DP5(4)7M.

Embedded pairs of Runge–Kutta methods of orders p and p+1 with interpolant are used to control the local error
and interpolate the numerical solution between the nodes which are automatically chosen by the step-size control.
The difference between the higher and lower order solutions, yn+1− ŷn+1, is used to control the local error. A popular
pair of methods of orders 5 and 4, respectively, with interpolant due to Dormand and Prince [3] is given in the form
of a Butcher tableau.

Table 1: Butcher tableau of the Dormand-Prince pair DP5(4)7M with interpolant.

c A
k1 0 0
k2

1
5

1
5 0

k3
3
10

3
40

9
40 0

k4
4
5

44
45 − 56

15
32
9 0

k5
8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0
k6 1 9017

3168 − 355
33

46732
5247

49
176 − 5103

18656 0
k7 1 35

384 0 500
1113

125
192 − 2187

6784
11
84

ŷn+1 b̂T 5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

yn+1 bT 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

yn+0.5
5783653
57600000 0 466123

1192500 − 41347
1920000

16122321
339200000 − 7117

20000
183

10000

The number 5 in the designation DP5(4)7M means that the solution is advanced with the solution yn+1 of order
five (a procedure called local extrapolation). The number (4) in parentheses means that the solution ŷn+1 of order
four is used to obtain the local error estimate. The number 7 means that the method has seven stages. The letter
M means that the constant C6 in the top-order error term has been minimized, while maintaining stability. Six
stages are necessary for the method of order 5. The seventh stage is necessary to have an interpolant. However,
this is really a six-stage method since the first step at tn+1 is the same as the last step at tn, that is, k

[n+1]
1 = k

[n]
7 .

Such methods are called FSAL (First Step As Last). The upper half of the region of absolute stability of the pair
DP5(4)7M comprises the interior of the closed region in the left half-plane and the little round region in the right
half-plane shown in the right part of Fig. 1.

Other popular pairs of embedded Runge-Kutta methods are the Runge–Kutta–Verner and Runge–Kutta–Fehlberg
methods. For instance, the pair RKF45 of order four and five minimizes the error constant C5 of the lower order
method which is used to advance the solution from yn to yn+1, that is, without using local extrapolation.

One notices that the matrix A in the Butcher tableau of an explicit Rung–Kutta method is strictly lower triangular.
Semi-explicit methods have a lower triangular matrix. Otherwise, the method is implicit. Solving semi-explicit
methods for the vector solution yn+1 of a system is much cheaper than solving explicit methods.
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Figure 2: Left: Regions of absolute stability of k-step Adams–Bashforth methods. Right: Regions of absolute
stability of k-step Adams–Moulton methods.

Runge–Kutta methods constitute a clever and sensible idea [2]. The unique solution of a well-posed initial value
problem is a single curve in R

n+1, but due to truncation and round-off error, any numerical solution is, in fact, going
to wander off that integral curve, and the numerical solution is inevitably going to be affected by the behavior of
neighboring curves. Thus, it is the behavior of the family of integral curves, and not just that of the unique solution
curve, that is of importance. Runge–Kutta methods deliberately try to gather information about this family of
curves, as it is most easily seen in the case of explicit Runge–Kutta methods.

6.2 Adams-Bashforth-Moulton Linear Multistep Methods

Using the shortened notation
fn := f(tn, yn), n = 0, 1, . . . ,

we define a linear multistep method or linear k-step method in standard form by

k∑
j=0

αjyn+j−k+1 = h
k∑

j=0

βjfn+j−k+1, (13)

where αj and βj are constants subject to the normalizing conditions

αk = 1, |α0|+ |β0| 6= 0.

The method is explicit if bk = 0, otherwise it is implicit.
Applying (13) to the test equation,

y′ = λy, <λ < 0,

with solution y(t) → 0 as t →∞, one finds that the numerical solution yn → 0 as n →∞ if the zeros, rs(ĥ), of the
stability polynomial

π(r, ĥ) :=
k∑

j=0

(αj − ĥβj)rj

satisfy |rs(ĥ)| < 1, s = 1, 2, . . . , k. In that case, we say that the linear multistep method (13) is absolutely stable
for given ĥ. The region of absolute stability, R, in the complex plane is the set of values of ĥ for with the method
is absolutely stable. The regions of absolute stability of k-step Adams–Bashforth and Adams–Moulton methods of
order k = 1, 2, 3, 4, are the interior of the closed regions whose upper halves are shown in the left and right parts,
respectively, of Fig. 2. The region of absolute stability of the Adams–Bashforth method of order 3 extends in a small
triangular region in the right half-plane. The region of absolute stability of the Adams–Moulton method of order 1
is the whole left half-plane.

Popular linear k-step methods are (explicit) Adams–Bashforth (AB) and (implicit) Adams–Moulton (AM) meth-
ods,

yn+1 − yn = h
k−1∑
j=0

β∗j fn+j−k+1, yn+1 − yn = h
k∑

j=0

βjfn+j−k+1,
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Table 2: Coefficients of Adams–Bashforth methods of stepnumber 1–6.

β∗5 β∗4 β∗3 β∗2 β∗1 β∗0 d k p C∗
p+1

1 1 1 1 1/2

3 −1 2 2 2 5/12

23 −16 5 12 3 3 3/8

55 −59 37 −9 24 4 4 251/720

1901 −2774 1616 −1274 251 720 5 5 95/288

4277 −7923 9982 −7298 2877 −475 1440 6 6 19 087/60 480

Table 3: Coefficients of Adams–Moulton methods of stepnumber 1–6.

β5 β4 β3 β2 β1 β0 d k p Cp+1

1 1 2 1 2 −1/12

5 8 −1 12 2 3 −1/24

9 19 −5 1 24 3 4 −19/720

251 646 −264 106 −19 720 4 5 −3/160

475 1427 −798 482 −173 27 1440 5 6 −863/60 480

respectively. Tables 2 and 3 list the AB and AM methods of stepnumber 1 to 6, respectively. In the tables, the
coefficients of the methods are to be divided by d, k is the stepnumber, p is the order, and C∗

p+1 and Cp+1 are the
corresponding error constants of the methods.

In practice, an AB method is used as a predictor to predict the next-step value y∗n+1. The function f is then
evaluated as f(xn+1, y

∗
n+1) and inserted in the right-hand side of an AM method used as a corrector to obtain

the corrected value yn+1. The function f is then evaluated as f(xn+1, yn+1). Such combination is called an ABM
predictor-corrector in the PECE mode. If the predictor and corrector are of the same order, they come with the
Milne estimate for the principal local truncation error

εn+1 ≈
Cp+1

C∗
p+1 − Cp+1

(yn+1 − y∗n+1).

This estimate can also be used to improve the corrected value yn+1, a procedure that is called local extrapolation.
Such combination is called an ABM predictor-corrector in the PECLE mode.

The regions of absolute stability of kth-order Adams–Bashforth–Moulton pairs, for k = 1, 2, 3, 4, in the PECE
mode, are the interior of the closed regions whose upper halves are shown in the left part of Fig. 3. The regions
of absolute stability of kth-order Adams–Bashforth–Moulton pairs, for k = 1, 2, 3, 4, in the PECLE mode, are the
interior of the closed regions whose upper halves are shown in the right part of Fig. 3.

6.3 Backward Differentiation Formulas

We define a k-step backward differentiation formula (BDF) in standard form by

k∑
j=0

αjyn+j−k+1 = hβkfn+1,

where αk = 1. BDF’s are implicit methods. Tables 4 lists the BDF’s of stepnumber 1 to 6, respectively. In the table,
k is the stepnumber, p is the order, Cp+1 is the error constant, and α is half the angle subtended at the origin by the
region of absolute stability R.

The left part of Fig. 4 shows the upper half of the region of absolute stability of the 1-step BDF, which is the
exterior of the unit disk with center 1, and the regions of absolute stability of the 2- and 3-step BDF’s which are the
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Figure 3: Regions of absolute stability of k-order Adams–Bashforth–Moulton methods, left in PECE mode, and right
in PECLE mode.

Table 4: Coefficients of the BDF methods.

k α6 α5 α4 α3 α2 α1 α0 βk p Cp+1 α

1 1 −1 1 1 1 90◦

2 1 − 4
3

1
3

2
3 2 − 2

9 90◦

3 1 − 18
11

9
11 = 2

11
6
11 3 − 3

22 86◦

4 1 − 48
25

36
25 − 16

25
3
25

12
25 4 − 12

125 73◦

5 1 − 300
137

300
137 − 200

137
75
137 − 12

137
60
137 5 − 110

137 51◦

6 1 − 360
147

450
147 − 400

147
225
147 − 72

147
10
147

60
147 6 − 20

343 18◦

exterior of closed regions in the right-hand plane. The angle subtended at the origin is α = 90◦ in the first two cases
and α = 88◦ in the third case. The right part of Fig. 4 shows the upper halves of the regions of absolute stability
of the 4-, 5-, and 6-step BDF’s which include the negative real axis and make angles subtended at the origin of 73◦,
51◦, and 18◦, respectively.

A short proof of the instability of the BDF formulas for k ≥ 7 is found in [4]. BDF methods are used to solve
stiff systems.

6.4 Numerical Differentiation Formulas

Numerical differentiation formulas (NDF) are a modification of BDF’s. Letting

∇yn = yn − yn−1

denote the backward difference of yn, we rewrite the k-step BDF of order p = k in the form

k∑
m=1

1
m
∇myn+1 = hfn+1.

Figure 4: Left: Regions of absolute stability for k-step BDF for k = 1, 2 . . . , 6. These regions include the negative
real axis.
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The algebraic equation for yn+1 is solved with a simplified Newton (chord) iteration. The iteration is started with
the predicted value

y
[0]
n+1 =

k∑
m=0

1
m
∇myn.

Then the k-step NDF of order p = k is

k∑
m=1

1
m
∇myn+1 = hfn+1 + κγk

(
yn+1 − y

[0]
n+1

)
,

where κ is a scalar parameter and γk =
∑k

j=1 1/j. The NDF’s of order 1 to 5 are given in Table 5.

Table 5: Coefficients of the NDF methods.

k κ α5 α4 α3 α2 α1 α0 βk p Cp+1 α

1 −37/200 1 −1 1 1 1 90◦

2 −1/9 1 − 4
3

1
3

2
3 2 − 2

9 90◦

3 −0.0823 1 − 18
11

9
11 − 2

11
6
11 3 − 3

22 80◦

4 −0.0415 1 − 48
25

36
25 − 16

25
3
25

12
25 4 − 12

125 66◦

5 0 1 − 300
137

300
137 − 200

137
75
137 − 12

137
60
137 5 − 110

137 51◦

In [5], the choice of the number κ is a compromise made in balancing efficiency in step size and stability angle.
Compared with the BDF’s, there is a step ratio gain of 26% in NDF’s of order 1, 2, and 3, 12% in NDF of order
4, and no change in NDF of order 5. The percent change in the stability angle is 0%, 0%, −7%, −10%, and 0%,
respectively. No NDF of order 6 is considered because, in this case, the angle α is too small.

7 The Methods in the Matlab ODE Suite

The Matlab ODE suite contains three explicit methods for nonstiff problems:

• The explicit Runge–Kutta pair ode23 of orders 3 and 2,

• The explicit Runge–Kutta pair ode45 of orders 5 and 4, of Dormand–Prince,

• The Adams–Bashforth–Moulton predictor-corrector pairs ode113 of orders 1 to 13,

and two implicit methods for stiff systems:

• The implicit Runge–Kutta pair ode23s of orders 2 and 3,

• The implicit numerical differentiation formulas ode15s of orders 1 to 5.

All these methods have a built-in local error estimate to control the step size. Moreover ode113 and ode15s are
variable-order packages which use higher order methods and smaller step size when the solution varies rapidly.

The command odeset lets one create or alter the ode option structure.
The ODE suite is presented in a paper by Shampine and Reichelt [5] and the Matlab help command supplies

precise information on all aspects of their use. The codes themselves are found in the toolbox/matlab/funfun folder
of Matlab 5. For Matlab 4.2 or later, it can be downloaded for free by ftp on ftp.mathworks.com in the
pub/mathworks/toolbox/matlab/funfun directory. The second edition of the book by Ashino and Vaillancourt [6]
on Matlab 5 will contain a section on the ode methods.

In Matlab 5, the command
odedemo

lets one solve 4 nonstiff problems and 15 stiff problems by any of the five methods in the suite. The two methods for
stiff problems are also designed to solve nonstiff problems. The three nonstiff methods are poor at solving very stiff
problems.

For graphing purposes, all five methods use interpolants to obtain, by default, four or, if specified by the user,
more intermediate values of y between yn and yn+1 to produce smooth solution curves.
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7.1 The ode23 method

The code ode23 consists in a four-stage pair of embedded explicit Runge–Kutta methods of orders 2 and 3 with
error control. It advances from yn to yn+1 with the third-order method (so called local extrapolation) and controls
the local error by taking the difference between the third-order and the second-order numerical solutions. The four
stages are:

k1 = hf(tn, yn),
k2 = hf(tn + (1/2)h, yn + (1/2)k1),
k3 = hf(tn + (3/4)h, yn + (3/4)k2),
k4 = hf(tn + h, yn + (2/9)k1 + (1/3)k2 + (4/9)k3),

The first three stages produce the solution at the next time step:

yn+1 = yn + (2/9)k1 + (1/3)k2 + (4/9)k3,

and all four stages give the local error estimate:

E = − 5
72

k1 +
1
12

k2 +
1
9

k2 −
1
8

k4.

However, this is really a three-stage method since the first step at tn+1 is the same as the last step at tn, that is
k

[n+1]
1 = k

[n]
4 (that is, a FSAL method).

The natural interpolant used in ode23 is the two-point Hermite polynomial of degree 3 which interpolates yn and
f(tn, yn) at t = tn, and yn+1 and f(tn+1, tn+1) at t = tn+1.

7.2 The ode45 method

The code ode45 is the Dormand-Prince pair DP5(4)7M with a high-quality “free” interpolant of order 4 that was
communicated to Shampine and Reichelt [5] by Dormand and Prince. Since ode45 can use long step size, the default
is to use the interpolant to compute solution values at four points equally spaced within the span of each natural
step.

7.3 The ode113 method

The code ode113 is a variable step variable order method which uses Adams–Bashforth–Moulton predictor-correctors
of order 1 to 13. This is accomplish by monitoring the integration very closely. In the Matlab graphics context, the
monitoring is expensive. Although more than graphical accuracy is necessary for adequate resolution of moderately
unstable problems, the high accuracy formulas available in ode113 are not nearly as helpful in the present context
as they are in general scientific computation.

7.4 The ode23s method

The code ode23s is a triple of modified implicit Rosenbrock methods of orders 3 and 2 with error control for stiff
systems. It advances from yn to yn+1 with the second-order method (that is, without local extrapolation) and
controls the local error by taking the difference between the third- and second-order numerical solutions. Here is the
algorithm:

f0 = hf(tn, yn),
k1 = W−1(f0 + hdT ),
f1 = f(tn + 0.5h, yn + 0.5hk1),
k2 = W−1(f1 − k1) + k1,

yn+1 = yn + hk2,

f2 = f(tn+1, yn+1),
k3 = W−1[f2 − c32(k2 − f1)− 2(k1 − f0) + hdt],

error ≈ h

6
(k1 − 2k2 + k3),
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where
W = I − hdJ, d = 1/(2 +

√
2 ), c32 = 6 +

√
2,

and
J ≈ ∂f

∂y
(tn, yn), T ≈ ∂f

∂t
(tn, yn).

This method is FSAL (First Step As Last). The interpolant used in ode23s is the quadratic polynomial in s:

yn+s = yn + h

[
s(1− s)
1− 2d

k1 +
s(s− 2d)
1− 2d

k2

]
.

7.5 The ode15s method

The code ode15s for stiff systems is a quasi-constant step size implementation of the NDF’s of order 1 to 5 in terms
of backward differences. Backward differences are very suitable for implementing the NDF’s in Matlab because
the basic algorithms can be coded compactly and efficiently and the way of changing step size is well-suited to the
language. Options allow integration with the BDF’s and integration with a maximum order less than the default 5.
Equations of the form M(t)y′ = f(t, y) can be solved by the code ode15s for stiff problems with the Mass option set
to on.

8 Solving Two Examples with Matlab

Our first example considers a non-stiff second-order ODE. Our second example considers the effect of a high stiffness
ratio on the step size.

Example 1. Use the Runge–Kutta method of order 4 with fixed step size h = 0.1 to solve the second-order van
der Pol equation

y′′ +
(
y2 − 1

)
y′ + y = 0, y(0) = 0, y′(0) = 0.25, (14)

on 0 ≤ x ≤ 20, print every tenth value, and plot the numerical solution. Also, use the ode23 code to solve (14) and
plot the solution.

Solution. We first rewrite problem (14) as a system of two first-order differential equations by putting y1 = y
and y2 = y′1,

y′1 = y2,

y′2 = y2

(
1− y2

1

)
− y1,

with initial conditions y1(0) = 0 and y2(0) = 0.25.
Our Matlab program will call the function M-file exp1vdp.m:

function yprime = exp1vdp(t,y); % Example 1.
yprime = [y(2); y(2).*(1-y(1).^2)-y(1)]; % van der Pol system

The following program applies the Runge–Kutta method of order 4 to the differential equation defined in the
M-file exp1vdp.m:

clear
h = 0.1; t0= 0; tf= 21; % step size, initial and final times
y0 = [0 0.25]’; % initial conditions
n = ceil((tf-t0)/h); % number of steps

count = 2; print_control = 10; % when to write to output
t = t0; y = y0; % initialize t and y
output = [t0 y0’]; % first row of matrix of printed values
w = [t0, y0’]; % first row of matrix of plotted values
for i=1:n
k1 = h*exp1vdp(t,y); k2 = h*exp1vdp(t+h/2,y+k1/2);
k3 = h*exp1vdp(t+h/2,y+k2/2); k4 = h*exp1vdp(t+h,y+k3);
z = y + (1/6)*(k1+2*k2+2*k3+k4);

13



t = t + h;
if count > print_control

output = [output; t z’]; % augmenting matrix of printed values
count = count - print_control;

end
y = z;
w = [w; t z’]; % augmenting matrix of plotted values
count = count + 1;
end
[output(1:11,:) output(12:22,:)] % print numerical values of solution
save w % save matrix to plot the solution

The command output prints the values of t, y1, and y2.

t y(1) y(2) t y(1) y(2)

0 0 0.2500 11.0000 -1.9923 -0.2797
1.0000 0.3586 0.4297 12.0000 -1.6042 0.7195
2.0000 0.6876 0.1163 13.0000 -0.5411 1.6023
3.0000 0.4313 -0.6844 14.0000 1.6998 1.6113
4.0000 -0.7899 -1.6222 15.0000 1.8173 -0.5621
5.0000 -1.6075 0.1456 16.0000 0.9940 -1.1654
6.0000 -0.9759 1.0662 17.0000 -0.9519 -2.6628
7.0000 0.8487 2.5830 18.0000 -1.9688 0.3238
8.0000 1.9531 -0.2733 19.0000 -1.3332 0.9004
9.0000 1.3357 -0.8931 20.0000 0.1068 2.2766
10.0000 -0.0939 -2.2615 21.0000 1.9949 0.2625

The following commands graph the solution.

load w % load values to produce the graph
subplot(2,2,1); plot(w(:,1),w(:,2)); % plot RK4 solution
title(’RK4 solution y_n for Example 1’); xlabel(’t_n’); ylabel(’y_n’);

We now use the ode23 code. The command

load w % load values to produce the graph
v = [0 21 -3 3 ]; % set t and y axes
subplot(2,2,1);
plot(w(:,1),w(:,2)); % plot RK4 solution
axis(v);
title(’RK4 solution y_n for Example 1’); xlabel(’t_n’); ylabel(’y_n’);
subplot(2,2,2);
[t,y] = ode23(’exp1vdp’,[0 21], y0);
plot(t,y(:,1)); % plot ode23 solution
axis(v);
title(’ode23 solution y_n for Example 1’); xlabel(’t_n’); ylabel(’y_n’);

The code ode23 produces three vectors, namely t of (144 unequally-spaced) nodes and corresponding solution values
y(1) and y(2), respectively. The left and right parts of Fig. 5 show the plots of the solutions obtained by RK4 and
ode23, respectively. It is seen that the two graphs are identical.

In our second example we analyze the effect of the large stiffness ratio of a simple system of two differential
equations with constant coefficients. Such problems are called pseudo-stiff since they are quite tractable by implicit
methods.

Consider the initial value problem[
y1(t)
y2(t)

]′
=

[
1 0
0 10q

] [
y1(t)
y2(t)

]
,

[
y1(0)
y2(0)

]
=

[
1
1

]
, (15)
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Figure 5: Graph of numerical solution of Example 1.

or
y′ = Ay, y(0) = y0.

Since the eigenvalues of A are
λ1 = 1, λ2 = −10q,

the stiffness ratio (11) of the system is
r = 10q.

The solution is [
y1(t)
y2(t)

]
=

[
e−t

e−10qt

]
.

Even though the second part of the solution containing the fast decaying factor exp(−10qt) for large q numerically
disappears quickly, the large stiffness ratio continues to restrict the step size of any explicit schemes, including
predictor-corrector schemes.

Example 2. Study the effect of the stiffness ratio on the number of steps used by the five Matlab ode codes in
solving problem (15) with q = 1 and q = 5.

Solution. The function M-file exp2.m is

function uprime = exp2(t,u); % Example 2
global q % global variable
A=[-1 0;0 -10^q]; % matrix A
uprime = A*u;

The following commands solve the non-stiff initial value problem with q = 1, and hence r = e10, with relative and
absolute tolerances equal to 10−12 and 10−14, respectively. The option stats on requires that the code keeps track
of the number of function evaluations.

clear;
global q; q=1;
tspan = [0 1]; y0 = [1 1]’;
options = odeset(’RelTol’,1e-12,’AbsTol’,1e-14,’Stats’,’on’);
[x23,y23] = ode23(’exp_camwa’,tspan,y0,options);
[x45,y45] = ode45(’exp_camwa’,tspan,y0,options);
[x113,y113] = ode113(’exp_camwa’,tspan,y0,options);
[x23s,y23s] = ode23s(’exp_camwa’,tspan,y0,options);
[x15s,y15s] = ode15s(’exp_camwa’,tspan,y0,options);

Similarly, when q = 5, and hence r = exp(105), the program solves a pseudo-stiff initial value problem (15).
Table 1 lists the number of steps used with q = 1 and q = 5 by each of the five methods of the ODE suite.

It is seen from the table that nonstiff solvers are hopelessly slow and very expensive in solving pseudo-stiff
equations.
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Table 6: Number of steps used by each method with q = 1 and q = 5 with default relative and absolute tolerance
RT = 10−3 and AT = 10−6 respectively, and same tolerance set at 10−12 and 10−14, respectively.

(RT,AT ) (10−3, 10−6) (10−12, 10−14)
q 1 5 1 5
ode23 29 39 823 24 450 65 944
ode45 13 30 143 601 30 856
ode113 28 62 371 132 64 317
ode23s 37 57 30 500 36 925
ode15s 43 89 773 1 128

9 The odeset Options

Options for the five ode solvers can be listed by the odeset command (the default values are in curly brackets):

odeset
AbsTol: [ positive scalar or vector {1e-6} ]

BDF: [ on | {off} ]
Events: [ on | {off} ]

InitialStep: [ positive scalar ]
Jacobian: [ on | {off} ]
JConstant: [ on | {off} ]
JPattern: [ on | {off} ]

Mass: [ on | {off} ]
MassConstant: [ on | off ]

MaxOrder: [ 1 | 2 | 3 | 4 | {5} ]
MaxStep: [ positive scalar ]

NormControl: [ on | {off} ]
OutputFcn: [ string ]
OutputSel: [ vector of integers ]

Refine: [ positive integer ]
RelTol: [ positive scalar {1e-3} ]
Stats: [ on | {off} ]

We first give a simple example of the use of ode options before listing the options in detail. The following
commands solve the problem of Example 2 with different methods and different options.

[t, y]=ode23(’exp2’, [0 1], 0, odeset(’RelTol’, 1e-9, ’Refine’, 6));
[t, y]=ode45(’exp2’, [0 1], 0, odeset(’’AbsTol’, 1e-12));
[t, y]=ode113(’exp2’, [0 1], 0, odeset(’RelTol’, 1e-9, ’AbsTol’, 1e-12));
[t, y]=ode23s(’exp2’, [0 1], 0, odeset(’RelTol’, 1e-9, ’AbsTol’, 1e-12));
[t, y]=ode15s(’exp2’, [0 1], 0, odeset(’JConstant’, ’on’));

The ode options are used in the demo problems in Sections 8 and 9 below. Others ways of inserting the options in
the ode M-file are explained in [7].

The command ODESET creates or alters ODE OPTIONS structure as follows

• OPTIONS = ODESET(’NAME1’, VALUE1, ’NAME2’, VALUE2, . . . ) creates an integrator options structure
OPTIONS in which the named properties have the specified values. Any unspecified properties have default
values. It is sufficient to type only the leading characters that uniquely identify the property. Case is ignored
for property names.

• OPTIONS = ODESET(OLDOPTS, ’NAME1’, VALUE1, . . . ) alters an existing options structure OLDOPTS.

• OPTIONS = ODESET(OLDOPTS, NEWOPTS) combines an existing options structure OLDOPTS with a
new options structure NEWOPTS. Any new properties overwrite corresponding old properties.

• ODESET with no input arguments displays all property names and their possible values.

Here is the list of the odeset properties.
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• RelTol : Relative error tolerance [ positive scalar 1e-3 ] This scalar applies to all components of the solution
vector and defaults to 1e-3 (0.1% accuracy) in all solvers. The estimated error in each integration step satisfies
e(i) <= max(RelTol*abs(y(i)), AbsTol(i)).

• AbsTol : Absolute error tolerance [ positive scalar or vector 1e-6 ] A scalar tolerance applies to all components
of the solution vector. Elements of a vector of tolerances apply to corresponding components of the solution
vector. AbsTol defaults to 1e-6 in all solvers.

• Refine : Output refinement factor [ positive integer ] This property increases the number of output points by
the specified factor producing smoother output. Refine defaults to 1 in all solvers except ODE45, where it is
4. Refine does not apply if length(TSPAN) > 2.

• OutputFcn : Name of installable output function [ string ] This output function is called by the solver after
each time step. When a solver is called with no output arguments, OutputFcn defaults to ’odeplot’. Otherwise,
OutputFcn defaults to ’ ’.

• OutputSel : Output selection indices [ vector of integers ] This vector of indices specifies which components of
the solution vector are passed to the OutputFcn. OutputSel defaults to all components.

• Stats : Display computational cost statistics [ on | {off} ]

• Jacobian : Jacobian available from ODE file [ on | {off} ] Set this property ’on’ if the ODE file is coded so
that F(t, y, ’jacobian’) returns dF/dy.

• JConstant : Constant Jacobian matrix dF/dy [ on | {off} ] Set this property ’on’ if the Jacobian matrix dF/dy
is constant.

• JPattern : Jacobian sparsity pattern available from ODE file [ on | {off} ] Set this property ’on’ if the ODE
file is coded so F([ ], [ ], ’jpattern’) returns a sparse matrix with 1’s showing nonzeros of dF/dy.

• Vectorized : Vectorized ODE file [ on | {off} ] Set this property ’on’ if the ODE file is coded so that F(t, [y1
y2 . . . ] ) returns [F(t, y1) F(t, y2) . . . ].

• Events : Locate events [ on | off ] Set this property ’on’ if the ODE file is coded so that F(t, y, ’events’) returns
the values of the event functions. See ODEFILE.

• Mass : Mass matrix available from ODE file [ on | {off} ] Set this property ’on’ if the ODE file is coded so that
F(t, [ ], ’mass’) returns time dependent mass matrix M(t).

• MassConstan : Constant mass matrix available from ODE file [ on | {off} ] Set this property ’on’ if the ODE
file is coded so that F(t, [ ], ’mass’) returns a constant mass matrix M.

• MaxStep : Upper bound on step size [ positive scalar ] MaxStep defaults to one-tenth of the tspan interval in
all solvers.

• InitialStep : Suggested initial step size [ positive scalar ] The solver will try this first. By default the solvers
determine an initial step size automatically.

• MaxOrder : Maximum order of ODE15S [ 1 | 2 | 3 | 4 | {5} ]

• BDF : Use Backward Differentiation Formulas in ODE15S [ on | {off} ] This property specifies whether the
Backward Differentiation Formulas (Gear’s methods) are to be used in ODE15S instead of the default Numerical
Differentiation Formulas.

• NormControl : Control error relative to norm of solution [ on | {off} ] Set this property ’on’ to request that the
solvers control the error in each integration step with norm(e) <= max(RelTol*norm(y), AbsTol). By default
the solvers use a more stringent component-wise error control.
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10 Nonstiff Problems of the Matlab odedemo

10.1 The orbitode problem

ORBITODE is a restricted three-body problem. This is a standard test problem for non-stiff solvers stated in
Shampine and Gordon, p. 246 ff in [8]. The first two solution components are coordinates of the body of infinitesimal
mass, so plotting one against the other gives the orbit of the body around the other two bodies. The initial conditions
have been chosen so as to make the orbit periodic. Moderately stringent tolerances are necessary to reproduce the
qualitative behavior of the orbit. Suitable values are 1e-5 for RelTol and 1e-4 for AbsTol.

Because this function returns event function information, it can be used to test event location capabilities.

10.2 The orbt2ode problem

ORBT2ODE is the non-stiff problem D5 of Hull et al. [9] This is a two-body problem with an elliptical orbit of
eccentricity 0.9. The first two solution components are coordinates of one body relative to the other body, so plotting
one against the other gives the orbit. A plot of the first solution component as a function of time shows why this
problem needs a small step size near the points of closest approach. Moderately stringent tolerances are necessary
to reproduce the qualitative behavior of the orbit. Suitable values are 1e-5 for RelTol and 1e-5 for AbsTol. See [10],
p. 121.

10.3 The rigidode problem

RIGIDODE solves Euler’s equations of a rigid body without external forces.
This is a standard test problem for non-stiff solvers proposed by Krogh. The analytical solutions are Jacobi

elliptic functions accessible in Matlab. The interval of integration [t0, tf ] is about 1.5 periods; it is that for which
solutions are plotted on p. 243 of Shampine and Gordon [8].

RIGIDODE([ ], [ ], ’init’) returns the default TSPAN, Y0, and OPTIONS values for this problem. These values
are retrieved by an ODE Suite solver if the solver is invoked with empty TSPAN or Y0 arguments. This example
does not set any OPTIONS, so the third output argument is set to empty [ ] instead of an OPTIONS structure
created with ODESET.

10.4 The vdpode problem

VDPODE is a parameterizable van der Pol equation (stiff for large mu). VDPODE(T, Y) or VDPODE(T, Y, [ ],
MU) returns the derivatives vector for the van der Pol equation. By default, MU is 1, and the problem is not stiff.
Optionally, pass in the MU parameter as an additional parameter to an ODE Suite solver. The problem becomes
stiffer as MU is increased.

For the stiff problem, see Subsection 11.15.

11 Stiff Problems of the Matlab odedemo

11.1 The a2ode and a3ode problems

A2ODE and A3ODE are stiff linear problems with real eigenvalues (problem A2 of [11]). These nine- and four-
equation systems from circuit theory have a constant tridiagonal Jacobian and also a constant partial derivative with
respect to t because they are autonomous.

Remark 1. When the ODE solver JConstant property is set to ’off’, these examples test the effectiveness of
schemes for recognizing when Jacobians need to be refreshed. Because the Jacobians are constant, the ODE solver
property JConstant can be set to ’on’ to prevent the solvers from unnecessarily recomputing the Jacobian, making
the integration more reliable and faster.

11.2 The b5ode problem

B5ODE is a stiff problem, linear with complex eigenvalues (problem B5 of [11]). See Ex. 5, p. 298 of Shampine [10]
for a discussion of the stability of the BDFs applied to this problem and the role of the maximum order permitted
(the MaxOrder property accepted by ODE15S). ODE15S solves this problem efficiently if the maximum order of the
NDFs is restricted to 2.
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This six-equation system has a constant Jacobian and also a constant partial derivative with respect to t because
it is autonomous. Remark 1 applies to this example.

11.3 The buiode problem

BUIODE is a stiff problem with analytical solution due to Bui. The parameter values here correspond to the stiffest
case of [12]; the solution is

y(1) = e−4t, y(2) = e−t.

11.4 The brussode problem

BRUSSODE is a stiff problem modelling a chemical reaction (the Brusselator) [1]. The command BRUSSODE(T, Y)
or BRUSSODE(T, Y, [ ], N) returns the derivatives vector for the Brusselator problem. The parameter N >= 2 is
used to specify the number of grid points; the resulting system consists of 2N equations. By default, N is 2. The
problem becomes increasingly stiff and increasingly sparse as N is increased. The Jacobian for this problem is a
sparse matrix (banded with bandwidth 5).

BRUSSODE([ ], [ ], ’jpattern’) or BRUSSODE([ ], [ ], ’jpattern’, N) returns a sparse matrix of 1’s and
0’s showing the locations of nonzeros in the Jacobian ∂F/∂Y . By default, the stiff solvers of the ODE Suite generate
Jacobians numerically as full matrices. However, if the ODE solver property JPattern is set to ’on’ with ODESET,
a solver calls the ODE file with the flag ’jpattern’. The ODE file returns a sparsity pattern that the solver uses
to generate the Jacobian numerically as a sparse matrix. Providing a sparsity pattern can significantly reduce the
number of function evaluations required to generate the Jacobian and can accelerate integration. For the BRUSSODE
problem, only 4 evaluations of the function are needed to compute the 2N × 2N Jacobian matrix.

11.5 The chm6ode problem

CHM6ODE is the stiff problem CHM6 from Enright and Hull [13]. This four-equation system models catalytic
fluidized bed dynamics. A small absolute error tolerance is necessary because y(:,2) ranges from 7e-10 down to 1e-12.
A suitable AbsTol is 1e-13 for all solution components. With this choice, the solution curves computed with ode15s
are plausible. Because the step sizes span 15 orders of magnitude, a loglog plot is appropriate.

11.6 The chm7ode problem

CHM7ODE is the stiff problem CHM7 from [13]. This two-equation system models thermal decomposition in ozone.

11.7 The chm9ode problem

CHM9ODE is the stiff problem CHM9 from [13]. It is a scaled version of the famous Belousov oscillating chemical
system. There is a discussion of this problem and plots of the solution starting on p. 49 of Aiken [14]. Aiken provides
a plot for the interval [0, 5], an interval of rapid change in the solution. The default time interval specified here
includes two full periods and part of the next to show three periods of rapid change.

11.8 The d1ode problem

D1ODE is a stiff problem, nonlinear with real eigenvalues (problem D1 of [11]). This is a two-equation model from
nuclear reactor theory. In [11] the problem is converted to autonomous form, but here it is solved in its original
non-autonomous form. On page 151 in [15], van der Houwen provides the reference solution values

t = 400, y(1) = 22.24222011, y(2) = 27.11071335

11.9 The fem1ode problem

FEM1ODE is a stiff problem with a time-dependent mass matrix,

M(t)y′ = f(t, y).

Remark 2. FEM1ODE(T, Y) or FEM1ODE(T, Y, [ ], N) returns the derivatives vector for a finite element
discretization of a partial differential equation. The parameter N controls the discretization, and the resulting
system consists of N equations. By default, N is 9.
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FEM1ODE(T, [ ], ’mass’) or FEM1ODE(T, [ ], ’mass’, N) returns the time-dependent mass matrix M evaluated
at time T. By default, ODE15S solves systems of the form

y′ = f(t, y).

However, if the ODE solver property Mass is set to ’on’ with ODESET, the solver calls the ODE file with the flag
’mass’. The ODE file returns a mass matrix that the solver uses to solve

M(t)y′ = f(t, y).

If the mass matrix is a constant M, then the problem can be also be solved with ODE23S.
FEM1ODE also responds to the flag ’init’ (see RIGIDODE).
For example, to solve a 20× 20 system, use
[t, y] = ode15s(’fem1ode’, [ ], [ ], [ ], 20);

11.10 The fem2ode problem

FEM2ODE is a stiff problem with a time-independent mass matrix,

My′ = f(t, y).

Remark 2 applies to this example, which can also be solved by ode23s with the command
[T, Y] = ode23s(’fem2ode’, [ ], [ ], [ ], 20).

11.11 The gearode problem

GEARODE is a simple stiff problem due to Gear as quoted by van der Houwen [15] who, on page 148, provides the
reference solutionvalues

t = 50, y(1) = 0.5976546988, y(2) = 1.40234334075

11.12 The hb1ode problem

HB1ODE is the stiff problem 1 of Hindmarsh and Byrne [16]. This is the original Robertson chemical reaction
problem on a very long interval. Because the components tend to a constant limit, it tests reuse of Jacobians. The
equations themselves can be unstable for negative solution components, which is admitted by the error control. Many
codes can, therefore, go unstable on a long time interval because a solution component goes to zero and a negative
approximation is entirely possible. The default interval is the longest for which the Hindmarsh and Byrne code
EPISODE is stable. The system satisfies a conservation law which can be monitored:

y(1) + y(2) + y(3) = 1.

11.13 The hb2ode problem

HB2ODE is the stiff problem 2 of [16]. This is a non-autonomous diurnal kinetics problem that strains the step size
selection scheme. It is an example for which quite small values of the absolute error tolerance are appropriate. It is
also reasonable to impose a maximum step size so as to recognize the scale of the problem. Suitable values are an
AbsTol of 1e-20 and a MaxStep of 3600 (one hour). The time interval is 1/3; this interval is used by Kahaner, Moler,
and Nash, p. 312 in [17], who display the solution on p. 313. That graph is a semilog plot using solution values only
as small as 1e-3. A small threshold of 1e-20 specified by the absolute error control tests whether the solver will keep
the size of the solution this small during the night time. Hindmarsh and Byrne observe that their variable order
code resorts to high orders during the day (as high as 5), so it is not surprising that relatively low order codes like
ODE23S might be comparatively inefficient.

11.14 The hb3ode problem

HB3ODE is the stiff problem 3 of Hindmarsh and Byrne [16]. This is the Hindmarsh and Byrne mockup of the diurnal
variation problem. It is not nearly as realistic as HB2ODE and is quite special in that the Jacobian is constant, but
it is interesting because the solution exhibits quasi-discontinuities. It is posed here in its original non-autonomous
form. As with HB2ODE, it is reasonable to impose a maximum step size so as to recognize the scale of the problem.
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A suitable value is a MaxStep of 3600 (one hour). Because y(:,1) ranges from about 1e-27 to about 1.1e-26, a suitable
AbsTol is 1e-29.

Because of the constant Jacobian, the ODE solver property JConstant prevents the solvers from recomputing the
Jacobian, making the integration more reliable and faster.

11.15 The vdpode problem

VDPODE is a parameterizable van der Pol equation (stiff for large mu) [18]. VDPODE(T, Y) or VDPODE(T, Y, [ ],
MU) returns the derivatives vector for the van der Pol equation. By default, MU is 1, and the problem is not stiff.
Optionally, pass in the MU parameter as an additional parameter to an ODE Suite solver. The problem becomes
more stiff as MU is increased.

When MU is 1000 the equation is in relaxation oscillation, and the problem becomes very stiff. The limit cycle
has portions where the solution components change slowly and the problem is quite stiff, alternating with regions
of very sharp change where it is not stiff (quasi-discontinuities). The initial conditions are close to an area of slow
change so as to test schemes for the selection of the initial step size.

VDPODE(T, Y, ’jacobian’) or VDPODE(T, Y, ’jacobian’, MU) returns the Jacobian matrix ∂F/∂Y evaluated
analytically at (T, Y). By default, the stiff solvers of the ODE Suite approximate Jacobian matrices numerically.
However, if the ODE Solver property Jacobian is set to ’on’ with ODESET, a solver calls the ODE file with the flag
’jacobian’ to obtain ∂F/∂Y . Providing the solvers with an analytic Jacobian is not necessary, but it can improve the
reliability and efficiency of integration.

VDPODE([ ], [ ], ’init’) returns the default TSPAN, Y0, and OPTIONS values for this problem (see RIGI-
DODE). The ODE solver property Vectorized is set to ’on’ with ODESET because VDPODE is coded so that calling
VDPODE(T, [Y1 Y2 . . . ] ) returns [VDPODE(T, Y1) VDPODE(T, Y2) . . . ] for scalar time T and vectors Y1,
Y2,. . . The stiff solvers of the ODE Suite take advantage of this feature when approximating the columns of the
Jacobian numerically.

12 Concluding Remarks

Ongoing research in explicit and implicit Runge–Kutta pairs, and hybrid methods, which incorporate function eval-
uations at off-step points in order to lower the stepnumber of a linear multistep method without reducing its order
(see [19], [20], [21]), may, in the future, improve the Matlab ODE suite.
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