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Multiwavelets come with several scaling functions. Microlocal filtering is done
with adapted orthonormal multiwavelets, which can be considered as the action of
pseudodifferential operators whose symbols are characteristic functions of disjoint
sets in Fourier space. Expansion of functions or signals in terms of an orthonormal
multiwavelet basis gives a rough estimate of their microlocal content. Prefilters,
which can be represented in terms of the n-D Hilbert transform, are designed and
a fast algorithm is considered.
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1 Wavelets and Multiwavelets

An orthonormal multiwavelet basis is usually defined as an orthonormal wavelet ba-
sis generated by means of a multiresolution analysis from several scaling functions.
By this definition, a family of wavelet functions can be divided into several groups
associated to each scaling function. Each scaling function constructs a closed sub-
space and these subspaces give a decomposition of the hole space L2(Rn) into an
orthogonal sum. This means that multiwavelets can be though as a generaliza-
tion of uniwavelets to vector valued functions. Here uniwavelets are generated by
means of a multiresolution analysis from one scaling function. Our definition of
multiwavlets extracts this structure of vectors as follows.
Definition 1 Given f ∈ L2(Rn), let fjk(x) denote the scaled and shifted function

fjk(x) = 2nj/2f(2jx− k), j ∈ Z, k ∈ Z
n.

Let D be a finite index set. A system {(ψδ)jk}δ∈D,j∈Z,k∈Zn ⊂ L2(Rn) is called an
orthonormal wavelet basis and a system {ψδ}δ∈D is called a family of orthonormal
wavelet functions if the system {(ψδ)jk}δ∈D,j∈Z,k∈Zn is an orthonormal basis for
L2(Rn). Moreover, if the cardinality of D is an integer multiple of (2n − 1), that
is, cardD = (2n − 1)d, d ∈ N, then the system {(ψδ)jk}δ∈D,j∈Z,k∈Zn is called an
orthonormal multiwavelet basis and a vector of functions Ψ = [ψδ]δ∈D is called an



orthonormal multiwavelet function.
To show our main theorem, Theorem 3, we shall use the following Theorem 1

on a characterization of functions that generate wavelets and related expansions,
which is essentially Theorem 1 in Frazier, Garrigós, Wang and Weiss1.
Theorem 1 Let L ∈ N. Suppose {ψ1, ψ2, . . . , ψL} ⊂ L2(Rn), then

‖f‖2
L2(Rn) =

∑
	∈{1,...,L}, j∈Z, k∈Zn

∣∣(f, ψ	
j,k

)∣∣2
for all f ∈ L2(Rn) if and only if the functions {ψ1, ψ2, . . . , ψL} satisfy the following
two equalities: ∑

	∈{1,...,L}, j∈Z

|ψ̂	(2jξ)|2 = 1, a.a. ξ ∈ R
n,

tq(ξ) = 0, a.a. ξ ∈ R
n, ∀q ∈ Z

n\(2Z)n,

where

tq(ξ) :=
∑

	∈{1,...,L}, j∈Z+

ψ̂	(2jξ)ψ̂	(2j(ξ + 2πq)), Z+ := N ∪ {0}.

2 Microlocal Analysis

Our approach to microlocal analysis for Schwartz distributions is based on the the-
ory of hyperfunctions, as introduced by Sato2 and exposed in Kaneko3 for the theory
of linear partial differential equations with constant coefficients. A more complete
treatment of microlocal filtering with multiwavelets can be found in Ashino, Heil,
Nagase, and Vaillancourt4.

Two important points are:

• Find directions along which a function can be continued analytically for every
point x ∈ Rn.

• A hyperfunction is defined as a sum of general boundary values of holomorphic
functions in wedges whose edges are open subsets of Rn.

2.1 Definition of n-D hyperfunctions

• A hyperfunction f(x) is defined as a sum:

f(x) =
N∑

j=1

Fj(x+ iΓj0), x ∈ Ω,

of boundary values

Fj(x+ iΓj0) = lim
y→0

y∈Γj0

Fj(x+ iy)

of holomorphic functions Fj(z) in infinitesimal wedges Γj0 with edge Ω ⊂ Rn.
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Figure 1. Infinitesimal wedge Γ0.
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Figure 2. Open cone Γ, dual cone Γ◦, and complement (Γ◦)c of dual cone.

2.2 Microanalyticity

To characterize the microanalyticity of a slowly increasing distribution f ∈ S′(Rn)
by its Fourier transform f̂ , we introduce the dual cone, Γ◦, of Γ, defined by

Γ◦ := {ξ ∈ R
n; y · ξ ≥ 0 for every y ∈ Γ}.

Figure 2 shows examples of cones Γ, their dual cones Γ◦, and their complements
(Γ◦)c.
Lemma 1 Let Γ be an open convex cone. A slowly increasing distribution f(x) ∈
S′(Rn) can be represented as the limit f(x+iΓ0) of a slowly increasing holomorphic
function f(z) in the infinitesimal wedge R

n+iΓ0 if and only if the Fourier transform
f̂ of f is exponentially decreasing in the open cone (Γ◦)c, the complement of the
dual cone Γ◦, that is, f̂ is exponentially decreasing on every closed proper subcone
Γ′ ⊂⊂ (Γ◦)c.

3 Microlocal Filtering

Our problems are the followings.

• How can we construct a suitable orthonormal multiwavelet function Ψ =
[ψδ]δ∈D corresponding to each microanalytic direction Sn−1?

• Is it possible to obtain information on the microlocal content of f ∈ L2(Rn)
from the wavelet coefficients (f, (ψδ)jk)?

• Can orthonormal multiwavelet filtering separate microlocal contents?
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Figure 3. The Fourier transform of ψ±.

We shall construct a suitable orthonormal multiwavelet basis which enables us
to obtain information on the microlocal content of signals or functions. As this
separation of microlocal contents can be explained by filtering, we call it microlocal
filtering .

3.1 1-D orthonormal multiwavelets

Theorem 2 Define ψ± by ψ̂± = χ[±2π,±4π] (Fig. 3). Then Ψ := t[ψ+, ψ−] is a
multiwavelet function. Define the orthogonal projections P± by

P±f :=
∑

j,k∈Z

(f, (ψ±)jk) (ψ±)jk.

Then P±f(x) can be extended analytically to {Im z > 0} and {Im z < 0}, respec-
tively.

• This orthonormal basis is found in Daubechies, Grossmann, and Meyer5.

Define the classical Hardy spaces H2(R±) by

H2(R±) =
{
f ∈ L2(R) : f̂(ξ) = 0 a.a. ξ ≤ (≥) 0

}
.

Then

L2(R) = H2(R+)⊕H2(R−).

Each ψ± is a uniwavelet function of H2(R±), respectively.

• A tight frame similar to this orthonormal basis is known as a smooth frame
for H2(R±) in Hernández and Weiss6, section 8.4.

• In the n-dimensional case, the set of all microanalytic directions is Sn−1, which
is an infinite set.

• A generalization of Theorem 2 to the n-dimensional case will be given in The-
orem 3.

• It is possible to tell fairly well in which directions f is microanalytic.

• The price to pay to get good angular resolution in Sn−1 is the need for many
multiwavelets.



3.2 n-D orthonormal multiwavelets

Notation 1 We shall use the following notation in Rn.

• η = (η1, . . . , ηn) ∈ H := {±1}n, parametrization of 2n orthants in R
n.

• ε = (ε1, . . . , εn) ∈ E := {0, 1}n \ {0}, 2n − 1 vertices of unit cube, less the
origin.

• ε. ∗ η := (ε1η1, . . . , εnηn).

• Qη :=
∏n

k=1 [0, ηk], unit cube, where [0,−1] means [−1, 0].

• Qj,ε,η :=
{∏n

k=1 [ηk(�k−1), ηk�k]+2j(ε.∗η) : 1 ≤ �1, . . . , �n ≤ 2j, �1, . . . , �n ∈
N, j ∈ Z+

}
.

• Q := {Qk}k∈K , ι (Q) :=
⋃

k∈K Qk.

• 2πQj,ε,η := {2πQ ; Q ∈ Qj,ε,η}.
• Z

E×H
+ is the set of all functions from E ×H to Z+.

Theorem 3 Let j ∈ Z+, ε ∈ E, η ∈ H. For Q ∈ Qj,ε,η, define ψQ by

ψ̂Q = χ2πQ,

where χ2πQ is the characteristic function of the cube 2πQ. For ρ ∈ Z
E×H
+ , let

Qρ :=
⋃

(ε,η)∈E×H

2πQρ(ε,η),ε,η .

Then, Ψ := [ψQ]Q∈Qρ
is an orthonormal wavelet function.

In particular, if ρ is a constant function, then Ψ := [ψQ]Q∈Qρ
is an orthonormal

multiwavelet function.

Proof. Let {ψ1, ψ2, . . . , ψL} = {ψQ}Q∈Qρ
and write Ψ := [ψQ]Q∈Qρ

. Since it is
easy to show the two equalities, we have

‖f‖2 =
∑

(Q,j,k)∈Qρ×Z×Zn

∣∣(f, (ψQ)j,k
)∣∣2,

for all f ∈ L2(Rn). Substitute f by ψ
eQ, Q̃ ∈ Qρ, then

‖ψ
eQ‖2 =

∑
(Q,j,k)∈Qρ×Z×Zn

∣∣(ψ
eQ, (ψQ)j,k

)∣∣2,
that is,

‖ψ
eQ‖2(1− ‖ψ

eQ‖2) =
∑

(Q,j,k) �=( eQ,0,0)

∣∣(ψ
eQ, (ψQ)j,k

)∣∣2 = 0,

which follows from the normality:

‖ (ψQ)j,k ‖2 = 1, (Q, j, k) ∈ Qρ × Z × Z
n.

This completes the proof. �
Figure 4 shows how to get finer resolution in Fourier space.
Figure 5 illustrates 2-D multiwavelets given in Theorem 3.
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Figure 4. Technique for finer resolution in Fourier space.
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Figure 5. 2-D orthonormal multiwavelet functions in the Fourier space.



3.3 Pseudodifferential representation

Our microlocal filters can be represented by pseudodifferential operators. Let us
explain the 2-D case corresponding to images.

Given an image f(x, y) and a mask p(ξ, η) = χQ(ξ, η), filtering of f by p is
represented by the pseudodifferential operator

Pf(x, y) =
1

4π2

∫
R2
ei(xξ+yη)p(ξ, η)f̂(ξ, η) dξ dη

=
1

4π2

∫
Q

ei(xξ+yη)f̂(ξ, η) dξ dη.

Pseudodifferential operators, P : f �→ Pf are pseudolocal operators, that is, they
are not local operators but they do not spread or displace the singular support of
f .

Micro-elliptic operators are studied in Hörmander7. Nonlinear heat operators,
which are hypoelliptic operators, are used to denoise images in Mallat8, Alvarez,
Lions, and Morel9.

4 Implementation of Microlocal Filtering

To implement the multiwavelet transform of f we need the scaling coefficients
at high resolution. Recall that in the uniwavelet case, at very high resolution,
the scaling functions are usually close to the delta function; hence the samples
of the function f are used as scaling coefficients. However, for multiwavelets we
need expansion coefficients for d scaling functions. Simply using nearby samples
as scaling coefficients may be a bad choice. Data samples need to be preprocessed
(prefiltered) to produce reasonable values for the expansion coefficients of scaling
functions at the highest scale.

4.1 Prefilter design

Since our twelve multiwavelet functions are generated by four scaling functions
(and other multiwavelet functions, such as the forty-eight multiwavelet functions
in Figure 5), are generated by the basic twelve multiwavelet functions, these four
scaling functions which generate the basic twelve multiwavelet functions can be
used as prefilters for all our multiwavelets.

Our design of prefilter is the following. Define ϕη, η ∈ H by ϕ̂η = χ2πQη . Then,
ϕη, η ∈ H are the scaling functions for the twelve multiwavelet functions. Our
prefilters are defined by

Pη = F−1 ◦ 2−nj0χ2π2j0Qη
◦ F , η ∈ H,

for sufficiently large j0. Here F and F−1 denote the Fourier transform and its
inverse, respectively, and 2−nj0χ2π2j0Qη

denotes the multiplication operator by the
function 2−nj0χ2π2j0Qη

.
Our prefilters can be represented in terms of the n-D Hilbert transform, see

Pandey and Singh10.
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Figure 6. Multiwavelet masks of the fourth quadrant.

4.2 Two-dimensional masks

Figures 6 and 7 illustrate the prefiltering and filtering process of images in Fourier
space.

4.3 Numerical example

Here is a numerical example of separation of singularities and reduction of noise.
In a gray scale from 0 to 1, zero is white and 1 is black.

Figure 8 shows a “square flake” of height 1 rotated by 45 degrees and its discrete
Fourier transform.

Figure 9 shows the “square flake” of height 1 with centered Gaussian of height
0.8 and the flake almost without the Gaussian obtained by adding the 4 diagonal
parts of the Fourier transform less the 4 scaling functions. The Gaussian without
the flake can be obtained by taking the 4 scaling functions and the 8 closest multi-
wavelets (the 4 corner wavelets are not included), that is, the corresponding pixels
in the center of the Fourier transform.

Figure 10 shows the “square flake” with random noise of level 0.23 in the scale 0
to 1 and the partially denoised flake obtained by adding the 4 diagonal parts of the
Fourier transform less the 4 scaling functions. Two-thirds of the noise have been
removed.



 Pre-filtered image

Microlocal filtered
            image

Figure 7. The twelve multiwavelet masks.

Figure 8. Original image of flake and Fourier transform.

Figure 9. Flake with centered Gaussian (left) and sum of diagonal parts less scaling functions
(right).



Figure 10. Noisy flake (left) and sum of diagonal parts less scaling functions (right).
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