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Abstract

Microlocal filtering is performed with adapted orthonormal multiwavelets and smooth frame
multiwavelets in �n . The values of the wavelet coefficients of a function give a rough estimate of its
microlocal content, as shown by an example. Multidirectional denoising of images is presented as
the action of a pseudodifferential operator which is the product of directional diffusion equations.
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1 Introduction

Wavelets have proven to be useful decomposition tools in a wide variety of applications throughout
mathematics, science, and engineering. For example, the still-image compression standard known
as JPEG2000 includes a wavelet option and the next video compression standard, MPEG-4, will be
entirely wavelet based.

Hyperfunctions, which were introduced by Sato [13] and extensively developed by the Kyoto school
of mathematics, can be considered to be sums of boundary values of holomorphic functions defined
in infinitesimal wedges. Microlocal analysis plays an important role in the theory of hyperfunctions,
partial differential operators, and many other areas. In this theory, one can define the product of
distributions and discuss the partial regularity of multidimensional distributions with respect to any
independent variable.

In this paper, we discuss some particular multiwavelet constructions which are suited for microlo-
cal filtering. In particular, expansion of a function in terms of these multiwavelet bases or smooth
tight frames gives a rough estimate of its microlocal content, revealing directions of analyticity. The
resolution of these multiwavelets in any given direction of analyticity can be made as fine as desired,
at the cost of increasing the multiplicity of the multiwavelet basis or frame. We discuss the numer-
ical implementation of these filters and apply them to multidirectional denoising of two-dimensional
images.
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2 Microlocal Analysis

Our approach to microlocal analysis for Schwartz distributions is based on the theory of hyperfunc-
tions, as introduced by Sato [13] and developed in [12] for the theory of linear partial differential
equations with constant coefficients. A more complete treatment of microlocal filtering with mul-
tiwavelets can be found in [2]. Other treatments are found in [1] and [3]. A main goal is to find
directions in which a function can be continued analytically for every point x ∈ �n .

2.1 Hyperfunctions in �
n

A hyperfunction is defined as a sum of general boundary values of holomorphic functions in wedges
whose edges are open subsets of �n . More precisely, a hyperfunction f : �n → � is defined to be a
sum

f(x) =
N∑

j=1

Fj(x+ iΓj0), x ∈ Ω,

of boundary values
Fj(x+ iΓj0) = lim

y→0
y∈Γj0

Fj(x+ iy)

of holomorphic functions Fj(z) in infinitesimal wedges Γj0 with edge Ω ⊂ �n (see Fig. 1).
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Figure 1: Infinitesimal wedge Γ0.

2.2 Microanalyticity

To characterize the microanalyticity of a tempered distribution f ∈ S′(�n ) by its Fourier transform,
f̂ , we introduce the dual cone, Γ◦, of Γ, defined by

Γ◦ := {ξ ∈ �
n ; y · ξ ≥ 0 for every y ∈ Γ}.

Figure 2 shows three examples of cones Γ, their dual cones Γ◦, and their complements (Γ◦)c = �n \Γ◦.
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Figure 2: Open cone Γ, dual cone Γ◦, and complement (Γ◦)c of dual cone.
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Lemma 1 Let Γ be an open convex cone. A tempered distribution f(x) can be represented as the
limit f(x+ iΓ0) of a slowly increasing holomorphic function f(z) in the infinitesimal wedge �n + iΓ0
if and only if the Fourier transform f̂ of f is exponentially decreasing in every closed proper subcone
Γ′ ⊂⊂ (Γ◦)c = �n \ Γ◦.

3 Microlocal Filtering

Given f ∈ L2(�n ), let fjk(x) denote the scaled and shifted function

fjk(x) = 2nj/2f(2jx− k), j ∈ �, k ∈ �
n.

Let D be a finite index set with card(D) = (2n − 1)d, d ∈ �. A system

{ψδ
jk}δ∈D,j∈�,k∈�n ⊂ L2(�n )

is called a multiwavelet tight frame with frame bound A, and in this case Ψ = {ψδ}δ∈D is called a set
of tight frame multiwavelets, if

f =
1
A

∑
δ∈D,

j∈�,k∈�n

〈f, ψδ
jk〉ψδ

jk, ∀ f ∈ L2(�n ). (1)

If {ψδ
jk}δ∈D,j∈�,k∈�n ⊂ L2(�n ) is an orthonormal basis for L2(�n ) then it is called an orthonormal

multiwavelet basis, and in this case Ψ = {ψδ}δ∈D is called a set of orthonormal multiwavelets.
Although a tight frame allows the basis-like representations in equation (1), a frame need not be

an orthonormal or even independent sequence. Frames provide a useful model for obtaining signal
decompositions in cases where redundancy, robustness, oversampling, and irregular sampling play a
role. We refer to [4], [10], or [11] for basic information on frames and wavelets. It can be shown that
Ψ is a set of orthonormal multiwavelets if and only if {ψδ

jk}δ∈D,j∈�,k∈�n is a multiwavelet tight frame
with frame bound A = 1 and ‖ψδ‖L2(�n) = 1 for δ ∈ D.

Problems

• Is it possible to construct orthonormal or tight frame multiwavelets Ψ = {ψδ}δ∈D corresponding
to each microanalytic direction ξ ∈ �n−1?

• Is it possible to obtain information on the microlocal content of f ∈ L2(�n ) from the wavelet
coefficients 〈f, ψδ

jk〉?
• Can orthonormal or tight frame multiwavelet filtering separate microlocal contents?

We shall construct orthonormal multiwavelet bases or tight frames which enable us to obtain
information on the microlocal content of signals or functions. Since this separation of microlocal
contents can be considered as a filtering operation, we call it microlocal filtering.

3.1 Orthonormal multiwavelets in �

The one-dimensional case is summarized in the following theorem, where [−2π,−4π] means [−4π,−2π],
and similarly later.

Theorem 1 Define ψ± by ψ̂± = χ[±2π,±4π] (Fig. 3). Then Ψ := {ψ+, ψ−} is a set of orthonormal
multiwavelets. Define the orthogonal projections P± by

P±f :=
∑

j,k∈�
〈f, ψ±

jk〉ψ±
jk.

Then P±f(x) can be extended analytically to {Im z > 0} and {Im z < 0}, respectively.



MICROLOCAL ANALYSIS, SMOOTH FRAMES AND DENOISING 4

0

1

— 4π

ψ+
^ψ_^

— 2π 2π 4π

Figure 3: The Fourier transform of ψ±.

Taken individually, ψ± generates an orthonormal wavelet basis for the classical Hardy space
H2(�± ) defined by

H2(�± ) =
{
f ∈ L2(�) ; f̂(ξ) = 0 a.e. ξ ≤ (≥) 0

}
.

This orthonormal multiwavelet basis was discussed in [5], and smooth tight multiwavelet frames
were also constructed there (see also the discussion in [11, Section 8.4]). In the one-dimensional case,
there are only two directions of analyticity, while in the n-dimensional case, the set of all microanalytic
directions is �n−1, which is an infinite set. In Theorem 2, we shall generalize Theorem 1 to the n-
dimensional case. An n-dimensional smooth multiwavelet tight frame will be given in Theorem 3.
Using an expansion into these bases or frames, it is possible to tell fairly well in which directions f is
microanalytic. The price for good angular resolution in �n−1 is the need for many multiwavelets.

3.2 Orthonormal multiwavelets in �
n

The following notation will be used.

• η = (η1, . . . , ηn) ∈ H := {±1}n.

• ε = (ε1, . . . , εn) ∈ E := {0, 1}n \ {0}, j ∈ �+.

• ε. ∗ η := (ε1η1, . . . , εnηn).

• Qj,ε,η :=
{∏n

k=1 [ηk(�k − 1), ηk�k] + 2j(ε. ∗ η) : 1 ≤ �1, . . . , �n ≤ 2j , �1, . . . , �n ∈ �
}
.

• 2πQj,ε,η := {2πQ ; Q ∈ Qj,ε,η}.
• �

E×H
+ is the set of all functions from E ×H to �+.

Theorem 2 Fix j ∈ �+, ε ∈ E, η ∈ H. For a cube Q ∈ Qj,ε,η, define ψQ by

ψ̂Q = χ2πQ,

where χ2πQ is the characteristic function of the cube 2πQ. For ρ ∈ �
E×H
+ , let

Qρ :=
⋃

(ε,η)∈E×H

2πQρ(ε,η),ε,η.

Then Ψ := {ψQ}Q∈Qρ
is a set of orthonormal multiwavelets.

Figure 4 illustrates the 2-D multiwavelets constructed in Theorem 2. Multiwavelets are masks in
Fourier space — they are characteristic functions of cubes 2πQ. The left part of Fig. 4 shows 12 mul-
tiwavelet functions. For finer resolution in Fourier space, we need a greater number of multiwavelets.
The right part of Fig. 4 shows 27 multiwavelet functions.
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Figure 4: 2-D orthonormal multiwavelet functions in Fourier space.

3.3 Smooth tight wavelet frames in �
n

Smooth tight multiwavelet frames are obtained by convolving characteristic functions of cubes πQ
so that the support of the smoothed functions have support inside cubes 2πQ. This is achieved by
considering the next inside annulus of cubes πQ in the left part of Fig. 4.

Let ϑ(t) be a C∞
0 (�)-function of one variable satisfying

ϑ(t) ≥ 0, ϑ(t) = ϑ(−t),
∫
�

ϑ(t) dt = 1, ϑ(t) =

{
1, |t| ≤ 1

3 ;
0, |t| ≥ 2

3 .

For α > 0 and ξ = (ξ1, ξ2, . . . , ξn) ∈ �n , let

ϑα(ξ) =
1
αn

n∏
j=1

ϑ
(ξj
α

)
.

Theorem 3 Fix j ∈ �+, ε ∈ E, η ∈ H, and α ∈ (0, 1/2). Define

λQ(ξ) := (ϑα ∗ χπQ)(ξ) =
∫
�n

ϑα(ξ − ζ)χπQ(ζ) dζ, Q ∈ Qj,ε,η,

where χπQ is the characteristic function of the cube πQ. For ρ ∈ �
E×H
+ , let

Q̃ρ :=
⋃

(ε,η)∈E×H

πQρ(ε,η),ε,η , τρ(ξ) :=
∑

j∈�,Q∈�Qρ

|λQ(2jξ)|2,

and, for Q ∈ Q̃ρ, define ψQ(x) by

ψ̂Q(ξ) := τρ(ξ)−1/2 λQ(ξ).

Then Ψ := {ψQ}Q∈ �Qρ
is a set of tight frame multiwavelets.

Theorem 3 follows from Theorem 4, which is essentially [9, Theorem 1].

Theorem 4 Ψ = {ψδ}δ∈D is a set of tight frame multiwavelets with frame bound A = 1 if and only
if the following two equalities are satisfied:∑

δ∈D
j∈�

|ψ̂δ(2jξ)|2 = 1, a.e. ξ ∈ �
n , (2)
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and
tq(ξ) = 0, a.e. ξ ∈ �

n , ∀ q ∈ �
n\(2�)n, (3)

where
tq(ξ) :=

∑
δ∈D
j∈�+

ψ̂δ(2jξ) ψ̂δ(2j(ξ + 2πq)), �+ := � ∪ {0}. (4)

Note that q ∈ �n\(2�)n means that at least one component qj of q is an odd integer.

4 Numerical applications

Smooth frame wavelets {ψ�
j,k} can locate the singularity of a figure f by filtering f̂ away from the

origin, since singularities are associated with high frequencies. Numerically, figures are discretized
over rectangular matrices. In the left part of Fig. 5, the boy is shown behind a fine zigzag grid. Since
the smooth filters consisting of tapered characteristic functions of squares cover a 287 × 287 matrix
[6], the boy image is embedded into the central part of a 287 × 287 matrix.

Figure 5: Left: Positive figure of boy behind an almost invisible zigzag grid. Right: Negative figure
localizing the zigzag grid downward singularities.

The smooth filters consist of tapered characteristic functions of squares covering a 287×287 matrix.
By filtering along the secondary diagonal with a smooth frame wavelet with support in the upper right
corner of f̂ , at a right angle with the downward parts of the grid, these downward parts are localized
by means of the frame coefficients

〈f, ψ�
j,k〉 =

1
2π

〈f̂ , ψ̂�
j,k〉,

as can be seen in the right part of Fig. 5. The upward parts of the grid can be localized by filtering
along the main diagonal in the upper left corner of f̂ .

4.1 Multidirectional denoising

Multidirectional filtering by a product filter [7] consists in applying the one-dimensional diffusion
operator in several directions with a small step size in Fourier space. This operation removes some
random and Gaussian noise without oversmearing edges. Once the filter is constructed for images of
a given size, its application on a sequence of noisy images of the same size is very fast.

Diffusion in the x-direction is governed by ut = uxx, and in the y-direction by ut = uyy. To diffuse
in the direction of a line that makes an angle of θ with the x-axis, the governing equation is

ut = cos2 θ uxx + 2 sin θ cos θ uxy + sin2 θ uyy.
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Applying the two-dimensional Fourier transform

û(ξ, η) =
∫ ∞

−∞

∫ ∞

−∞
u(x, y) e−i(ξx+ηy) dx dy

to the diffusion equation, we obtain the equation

ût = −ξ2 cos2 θ û− 2 ξ η sin θ cos θ û− η2 sin2 θ û

= −[ξ cos θ + η sin θ]2 û,

whose solution is
û(ξ, η, t) = û(ξ, η, 0) exp(−[ξ cos θ + η sin θ]2 t).

One can diffuse noise in many directions, specified by angles θk, by means of the equation

ut =
∑

k

[cos2 θk uxx + 2 sin θk cos θk uxy + sin2 θk uyy].

In the Fourier domain, this equation becomes

ût = −
(∑

k

[ξ cos θk + η sin θk]2
)
û,

with solution

û(ξ, η, t) = û(ξ, η, 0) exp
(
−

∑
k

[ξ cos θk + η sin θk]2 t
)

:= û(ξ, η, 0) g(ξ, η, t).

The denoised image is given by the pseudodifferential operator

u(x, y, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ei(ξx+ηy) g(ξ, η, t) û(ξ, η, 0) dξ dη.

Therefore, if û(ξ, η, 0) is the Fourier transform of a noisy image, then applying the multidirectional
operator in the Fourier domain reduces to matrix multiplication with an appropriately chosen value
of t.

Signal-to-noise ratio (SNR) is defined by the formula

SNR =

∑m
i=1

∑n
j=1 u(i, j)

2∑m
i=1

∑n
j=1 [u(i, j) − U(i, j)]2

=
‖u‖2

F

‖u− U‖2
F

, (5)

where [u(i, j)] and [U(i, j)] represent the original and noisy images, respectively, as matrices and ‖ ·‖F

is the Frobenius matrix norm. Ideally, if noise were perfectly removed from a noisy image, the result
would be u = U and SNR is infinite. In general, a higher SNR value signifies a better result, though
visual observation is the true measurement, as two matrices may have the same norm and yet appear
completely different when viewed as images.

The boy figure with added random noise of intensity 50, with signal to noise ratio SNR = 12.7213,
is shown in the left part of Fig. 6. This noisy image is denoised with the multidirectional filter with
256 directions and t = 0.0003. The result, with SNR = 15.5816, is shown in the right part of Fig. 6.
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