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1. Introduction

Let us consider music. If the music is recorded from a live broadcast onto tape, we
have a signal, that is, a function f(x). The time-frequency analysis of music can be
said to be making a music note.
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Figure 1. Time-frequency analysis of music — note

If we want to change the music, first we edit the note, say, change from “do” to “re”.
Next we need to ask a music player to play the music according to the edited note.
This procedure can be translated as follows. First decompose the signal into a sum of
“time-frequency atoms”. Next change some coefficients of time-frequency atoms and
reconstruct a new signal from new coefficients. Making a music note corresponds to
decomposition of a signal into time-frequency atoms. A music player corresponds to a
reconstruction formula from time-frequency atoms.

The Fourier transform decomposes a signal into a sum of sine or cosine waves, the
windowed Fourier transform decomposes a signal into a sum of translates of localized
sine or cosine waves by multiplying a window function, and the wavelet transform
decomposes a signal into a sum of scaled and translated waves with a constant shape.
Those are illustrated in Figure 2.

In windowed Fourier analysis, the size of the window is fixed and the number of
oscillations varies. A small window is “blind” to low frequencies, which are too large
for the window. But if one uses a large window, information about a quick change will
be lost in the information concerning the entire interval corresponding to the window.
A “wavelet” is stretched or compressed to change the size of the window. This makes
it possible to analyze a signal at different scales. The wavelet transform is sometimes
called a “mathematical microscope”. Big wavelets give an approximate image of the
signal, while smaller wavelets zoom in on small details.

2. Preliminaries

Define the Fourier transform of a function f ∈ L1(�n) by

F [f ] = f̂(ξ) =

∫
�n

e−ixξ f(x) dx
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Figure 2. Fourier, windowed Fourier, and wavelet transforms.

and the inverse Fourier transform of a function g ∈ L1(�n) by

F−1[g] = ǧ(x) = (2π)−n
∫
�n

eixξ g(ξ) dξ.

There are two main principles in time-frequency analysis as follows.

• Duality:

Smoothness of f ⇐⇒ Decay at infinity of f̂ .

Differentiation of f ⇐⇒ Multiplication by polynomials to f̂ .

Translation of f ⇐⇒ Modulation of f̂ .

• Uncertainty:

It is impossible to localize both f and f̂ .

One of keys of time-frequency analysis in the Hilbert space L2(�n) is Parseval’s
formula:

〈f, g〉 = (2π)−n〈f̂ , ĝ〉.
Notation 1.

Tyf(x) = f(x− y), Translation operator,

Mξf(x) = eixξ f(x), Modulation operator,

Dρf(x) = |ρ|−n/2f(ρ−1x), ρ ∈ �\{0}, Dilation operator.
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Lemma 1. Each of these three operators Ty, Mξ, Dρ is unitary on L2(�n). That is,
it is a surjection preserving the inner product of L2(�n) :

‖Tyf‖ = ‖f‖, ‖Mξf‖ = ‖f‖, ‖Dρf‖ = ‖f‖.
Then, the adjoint operators of these three operators are given by their inverses, respec-
tively:

〈Tyf, g〉 = 〈f, T−yg〉, 〈Mξf, g〉 = 〈f,M−ξg〉, 〈Dρf, g〉 = 〈f,D1/ρg〉.
Lemma 2.

TyMξ = e−iξyMξTy, MξTy = eiξyTyMξ,

TyDρ = DρTy/ρ, DρTy = TρyDρ,

MξDρ = DρMρξ, DρMξ = Mξ/ρDρ.

Lemma 3.

F [Tyf ] = M−yF [f ], F [Mωf ] = TωF [f ], F [Dρf ] = D1/ρF [f ].

Denote �+ := {x ∈ � ; x > 0}. Since both dilation Da, a ∈ �+ and translation Tb,
b ∈ �n are unitary, the composition operator TbDa is also unitary and called time-scale
operator.

Lemma 4.
(TbDa)(TxDs) = Tax+bDas, b, x ∈ �

n , a, s ∈ �+ .

3. Windowed Fourier Transform

The uncertainty principle states that the energy spread of a function and its Fourier
transform cannot be simultaneously arbitrarily small. Using translations and modu-
lations, D. Gabor[10] defined time-frequency atoms {MξTbg} from a function g called
window function. Since translations and modulations are unitary, the composition
operator MξTb is also unitary and called a time-frequency shift.

Definition 1. Fix a function g ∈ L2(�n), which is be called a window function. The
windowed Fourier transform of f ∈ L2(�n) is defined by∫

�n

e−ixξ f(x)g(x− b) dx = 〈f(x), eixξg(x− b)〉
= 〈f(x),MξTbg(x)〉.

Let us consider one dimensional case n = 1. For a window function g ∈ L2(�),
denote

x∗ :=
1

‖g‖2

∫
�

x|g(x)|2 dx,
which is called the center. The energy of MωTbg is concentrated in the neighborhood
of x∗ + b over an interval of size ∆g, measured by the standard deviation of |(g/||g||)|2,
that is,

∆g :=
1

||g||
(∫

�

(x− x∗)2|g(x)|2 dx
)1/2

,

which is called the width. Since the Fourier transform of MωTbg is

F [MωTbg](ξ) = TωM−bĝ = ĝ(ξ − ω) e−ib(ξ−ω), (1)
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the energy of F [MωTbg] is therefore localized near the frequency ξ∗+ω, over an interval
of size ∆ĝ, which measures the domain where ĝ(ξ) is not negligible. In a time-frequency
plane (x, ξ), the energy spread of the atom MωTbg is symbolically represented by the
time-frequency window, which is defined as a rectangle centered at (x∗ + b, ξ∗ + ω)
having a time width ∆g and a frequency width ∆ĝ. We illustrate two time-frequency
windows in Figure 3.

x
0

ξ

x *

ξ *
g

M  T  gω b

x +b*

ξ +ω*

Figure 3. Time-frequency windows of two Gabor atoms g and MωTbg.

The uncertainty principle proves that

∆g ∆ĝ ≥ 1

2
.

The equality is satisfied if g is a Gaussian, in which case the atoms MωTbg are called
Gabor functions.

In applications, we want to look at signals in short time when they change quickly
and in long time when they change slowly. But the shapes of time-frequency windows
of MωTbg are the same, the atoms MωTbg are not enough. One way to overcome is
introduce a scale parameter, that is, to use dilations. If we replace the window function
g by Dag, a ∈ �\{0}, then the centers of Dag and its Fourier transform are ax∗ and
ξ∗/a, respectively and the widths ofDag and its Fourier transform are |a|∆g and ∆ĝ/|a|,
respectively. We illustrate two time-frequency windows in Figure 4.

Thus the windows ofMωTb(Dag) change their shapes preserving their areas and move
around in the time-frequency plane according to parameters a and (b, ω).

4. Uncertainty Principle

There are various kinds of formulations of uncertainty principles. For example, see
V. Havin and B. Jöricke[14]. Here we give a formulation by D. Donoho and P. Strak[5].

Definition 2. Let T be a measurable set of �n and denote by T c, the complement of
T in �n . For a positive ε, a function f ∈ L2(�n) is said to be ε-concentrated on T if(∫

T c

|f(x)|2 dx
)1/2

≤ ε‖f‖

is satisfied.
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Figure 4. Time-frequency windows of two window function g and Dag.

Theorem 1. Let T , Ω be measurable sets of �n . For two positive numbers εT , εΩ

satisfying εT + εΩ ≤ 1, assume that f ∈ L2(�n)\{0} is εT -concentrated on T and f̂ is
εΩ-concentrated on Ω. Then,

|T | · |Ω| ≥ (2π)n(1 − εT − εΩ)2,

where |T |, |Ω| are the measures of T , Ω.

5. Wavelet Transform

To analyze signal structures of various scales, it is necessary to use time-frequency
atoms with different time supports. As we mentioned before, we want to look at signals
in short time when they change quickly and in long time when they change slowly. The
windows of MωTbDag would be enough for time-frequency localizations, but they are
too many. One way to reduce this kind of redundancy is the wavelet transform. In the
wavelet transform, short time or long time are automatically chosen in time-frequency
localizations according to changing speed of phenomena.

Lemma 2 implies that

MωTbDag = eiωb TbMωDag = eiωb TbDaMaωg = TbDa(e
iωbMaωg).

Here, eiωbMaωg are localized waves. If we replace these localized waves by only one wave
ψ, which will be called a wavelet function or wavelet, a family of dilates and translates
TbDaψ of the function ψ may reduce the redundancy which the system of functions
MωTbDag has. These dilates and translates will be the atoms for time-frequency anal-
ysis. The wavelet transform decomposes signals over dilated and translated wavelets.

Definition 3. Fixed a function ψ ∈ L2(�n), which will be called a wavelet function.
The continuous wavelet transform of f ∈ L2(�n) by a wavelet function ψ is defined by

Wψf(b, a) := |a|−n/2
∫
�n

f(x)ψ
(x− b

a

)
dx = 〈f, TbDaψ〉.

The function Wψf(b, a) or its value at a point (b, a) is called a wavelet coefficient.
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Remark 1. The continuous wavelet transform can be represented as

〈f, TbDaψ〉 = 〈f,DaTb/aψ〉.
Theorem 2. Let ψ ∈ L2(�n) satisfy∫

�+

|ψ̂(aω)|2 da|a| < +∞, a.e. ω ∈ �
n−1 (2)

and there exists a positive constant K independent of ω ∈ �n−1 such that∫
�+

|ψ̂(aω)|2 da|a| = K, a.e. ω ∈ �
n−1 := {ω ∈ �

n ; |ω| = 1}. (3)

Then, for each f ∈ L2(�n),

f = K−1

∫
�+

(∫
�n

Wψf(b, a)TbDaψ db

)
da

|a|n+1
. (4)

Definition 4. The condition (2) and (3) on a function ψ is called an admissibility
condition. The equality (4) is called the inverse continuous wavelet transform.

Let us consider one dimensional case n = 1. A function ψ ∈ L2(�) with a zero
average: ∫

�

ψ(x) dx = 0 (5)

satisfies the condition (2) if ψ̂(ξ) is continuous near ξ = 0, because

ψ̂(0) =

∫
�

ψ(x) dx = 0,

which removes the singurality at the origin in the integral of (2).
In time, TbDaψ is centered at ax∗ + b with a spread proportional to |a|. Its Fourier

transform is
F [TbDaψ](ξ) = M−bD1/aψ̂(ξ) = e−ibξ

√
|s| ψ̂(aξ),

where ψ̂ is the Fourier transform of ψ. In the time-frequency plane, a wavelet atom
TbDaψ is symbolically represented by a rectangle centered at (ax∗ + b, ξ∗/a). The time
and frequency spread are respectively proportional to |a| and 1/|a|. When a varies, the
height and width of the rectangle change but its area remains constant, as illustrated
by Figure 5.

6. Discrete Wavelet Transform

For numerical computations, let discretize a and b as aj , j ∈ � and bk, k ∈ �n in
(4). Since the integration can be approximated by its Riemann sum, we may expect

f(x) =
∑

j∈�,k∈�n

〈f, TbkDaj
ψ〉 TbkDaj

ψ̃(x), (6)

with a properly chosen ψ̃. Put c = b/a and reorder {bk/aj}j∈�,k∈�n as {c�}�∈�n. Since
TbDa = DaTc, (6) can be represented as

f(x) =
∑

j∈�,k∈�n

〈f,Daj
Tc�ψ〉Daj

Tc�ψ̃(x). (7)
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Figure 5. Time-frequency windows of two wavelets ψ and TbDaψ.

If we put

ψj,� := Daj
Tc�ψ, ψ̃j,� := Daj

Tc�ψ̃,

then we have

f(x) =
∑

j∈�,k∈�n

〈f, ψj,�〉 ψ̃j,�, (8)

which is a kind of reconstruction formula of f using two families
{
ψj,�

}
j∈�,k∈�n and{

ψ̃j,�
}
j∈�,k∈�n. This is a special case of frames which will be defined below.

Frame theory was originally developed by R. Duffin and A. Schaeffer[6] to reconstruct
band-limited signals f from irregularly spaced samples {f(tn)}n∈�. A function f is said
to be band limited if its Fourier transform is supported in a finite interval [−π/T, π/T ],
they were motivated by the classical Shannon sampling theorem, which asserts that

f(tn) =
1

T
〈f(t), hT (t− tn)〉, hT (t) =

sin(πt/T )

πt/T
.

They discussed general conditions under which one can recover a vector f in a separable
Hilbert space H from its inner products 〈f, φn〉 with a family of vectors {φn}n∈�, where
the index set � is a countable set, for example, � , �, or a finite set.

Definition 5. A sequence {φn}n∈� is called a frame of H if there exist two constants
A > 0 and B > 0 such that for any f ∈ H

A ‖f‖2 ≤
∑
n∈�

|〈f, φn〉|2 ≤ B ‖f‖2.

The constants A and B are called frame bounds. A frame is said to be tight if A = B.
A tight frame is said to be Parseval if A = B = 1. The operator L : H 
→ H defined
by

Lf =
∑
n∈�

〈f, φn〉φn, ∀f ∈ H,

is called the frame operator.
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Denote
�2(�) := {x : ‖x‖2

�2(�) :=
∑
n∈�

|x[n]|2 < +∞}.

The definition of frame gives an energy equivalence to invert the operator U : H 
→ �2(�)
defined by

Uf [n] = 〈f, φn〉, ∀n ∈ �.

Denote by U∗ the adjoint of U : 〈Uf, x〉 = 〈f, U∗x〉. Then the frame operator L can be
represented as

Lf = U∗Uf =
∑
n∈�

〈f, φn〉φn.

The system {φ̃n}n∈� defined by

φ̃n = L−1φn = (U∗U)−1φn

is called the dual frame of {φn}n∈�. If the frame is tight (i.e., A = B), then φ̃n = A−1 φn.
The dual frame satisfies the inequalities

1

B
‖f‖2 ≤

∑
n∈�

|〈f, φ̃n〉|2 ≤ 1

A
‖f‖2, ∀f ∈ H.

Let ranU denote the range of U , that is, the space of all Uf with f ∈ H. If {φn}n∈�
is a frame whose vectors are linearly dependent, then ranU is strictly included in �2(�)
and U admits an infinite number of left inverses Ū−1:

Ū−1Uf = f, ∀f ∈ H.
The left inverse that is zero on ranU⊥ is called the pseudo-inverse of U and is denoted

by Ũ−1:

Ũ−1x = 0, ∀x ∈ ranU⊥.

In infinite dimensional spaces, the pseudo-inverse Ũ−1 of an injective operator is not
necessarily bounded. This induces numerical instabilities when trying to reconstruct f
from Uf . The pseudo-inverse can be expressed in the form

Ũ−1 = (U∗U)−1U∗

and
f = Ũ−1Uf =

∑
n∈�

〈f, φn〉 φ̃n =
∑
n∈�

〈f, φ̃n〉φn.

When the frame is tight (i.e., A = B), as φ̃n = A−1 φn,

f = Ũ−1Uf =
1

A

∑
n∈�

〈f, φn〉φn.

In this case, replacing φn by φn/
√
A, without loss of generality we may assume that

the frame bound is one, that is, A = 1.
Since the dual of a tight frame is a constant multiple of the frame itself, recovering

functions from their frame coefficients does not require the computation of the dual
frame. Hereafter, we shall focus on tight wavelet frames.

Given f ∈ L2(�n), let fjk(x) denote the scaled and shifted function

fjk(x) := D1/2jTkf = 2nj/2f(2jx− k), j ∈ �, k ∈ �
n. (9)
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In the case of general n dimension, the frequency ξ is n variables, on the contrary, the
scale j is one variable. By this disagree, the time-frequency localization of

{
ψj,�

}
j∈�,k∈�n

of (8) is not enough accurate in frequency because the Fourier transform of wavelet

function ψ̂ can localize only certain direction. To overcome this difficulty, we will use
several wavelet functions which have different localizations in frequency.

Let � be a finite index set. A system {ψ�jk}�∈�,j∈�,k∈�n ⊂ L2(�n) is called a tight
wavelet frame with frame bound A if

f(x) =
1

A

∑
�∈�,j∈�,k∈�n

〈f, ψ�jk〉ψ�jk(x), ∀f ∈ L2(�n). (10)

We recall that a system {ψ�jk}�∈�,j∈�,k∈�n ⊂ L2(�n) is called an orthonormal wavelet

basis if it is an orthonormal basis for L2(�n). This is equivalent to saying that the
system {ψ�jk}�∈�,j∈�,k∈�n is a tight wavelet frame with frame bound 1 and ‖ψ�‖L2(�n) = 1
for � ∈ �.

The following general theorem which is essentially Theorem 1 stated and proved in
M. Frazier, G. Garrigós, K. Wang and G. Weiss[7] for �n , gives necessary and sufficient
conditions to have a tight wavelet frame in �n with frame bound 1.

Theorem 3. Suppose ψ� ⊂ L2(�n) for � ∈ �, then

‖f‖2
L2(�n) =

∑
�∈�,j∈�,k∈�n

∣∣〈f, ψ�j,k〉∣∣2 (11)

for all f ∈ L2(�n) if and only if the set of functions {ψ�}�∈� satisfies the following two
equalities: ∑

�∈�,j∈�

∣∣∣ψ̂�(2jξ)∣∣∣2 = 1, a.e. ξ ∈ �
n , (12)

∑
�∈�,j∈�+

ψ̂�(2jξ)ψ̂�(2j(ξ + 2πq)) = 0, a.e. ξ ∈ �
n , ∀q ∈ �

n\(2�)n, (13)

where �+ := � ∪ {0} and q ∈ �n\(2�)n means that at least one component qj is odd.

Corollary 1. Under the hypotheses of Theorem 3, any function f ∈ L2(�n) admits
the tight wavelet frame expansion

f(x) =
∑

�∈�,j∈�,k∈�n

〈f, ψ�jk〉ψ�jk(x). (14)

By using the localization property of the frame wavelet in the Fourier domain, one

can study the directions of growth of f̂(ξ) by looking at the size of the frame coefficients

〈f, ψ�jk〉 = (2π)−n〈f̂ , ψ̂�jk〉. (15)

Moreover, by using the localization property of the frame wavelets in x-space, one can
localize the singular support of f(x) by varying �, j and k in (15).
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