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1. Introduction

Wavelets have proven to be useful decomposition tools in a wide variety of applica-
tions throughout mathematics, science, and engineering. For example, the still-image
compression standard known as JPEG2000 includes a wavelet option and the next
video compression standard, MPEG-4, will be entirely wavelet based.

Hyperfunctions, which were introduced by Sato [20] and extensively developed by
the Kyoto school of mathematics, can be considered to be sums of boundary values
of holomorphic functions defined in infinitesimal wedges. Microlocal analysis plays an
important role in the theory of hyperfunctions, partial differential operators, and many
other areas. In this theory, one can define the product of distributions and discuss the
partial regularity of multidimensional distributions with respect to any independent
variable.

In this paper, we discuss some particular wavelet frame constructions and related
multiresolution analyses which are suited for microlocal filtering. In particular, ex-
pansion of a function in terms of smooth tight frames gives a rough estimate of its
microlocal content, revealing directions of analyticity. The resolution of these smooth
tight wavelet frames in any given direction of analyticity can be made as fine as desired,
at the cost of increasing the multiplicity of the wavelet functions.

2. Preliminaries

Define the Fourier transform of a function f ∈ L1(�n) by

F [f ] = f̂(ξ) =

∫
�n

e−ixξ f(x) dx

and the inverse Fourier transform of a function g ∈ L1(�n) by

F−1[g] = ǧ(x) = (2π)−n

∫
�n

eixξ g(ξ) dξ.

The following three operators are unitary on L2(�n).

Tyf(x) = f(x− y), Translation operator,

Mξf(x) = eixξ f(x), Modulation operator,

Dρf(x) = |ρ|−n/2f(ρ−1x), ρ ∈ �\{0}, Dilation operator.
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In particular, these are surjections preserving the norm of L2(�n) :

‖Tyf‖ = ‖f‖, ‖Mξf‖ = ‖f‖, ‖Dρf‖ = ‖f‖.
and the adjoint operators of these three operators are given by their inverses, respec-
tively:

〈Tyf, g〉 = 〈f, T−yg〉, 〈Mξf, g〉 = 〈f,M−ξg〉, 〈Dρf, g〉 = 〈f,D1/ρg〉.

3. Tight Wavelet Frames

Since the dual of a tight frame is a constant multiple of the frame itself, see [1],
recovering functions from their frame coefficients does not require the computation of
the dual frame. Hereafter, we shall focus on tight wavelet frames.

Given f ∈ L2(�n), let fjk denote the scaled and shifted function

fjk := D1/2jTkf, j ∈ �, k ∈ �
n. (1)

Let � be a finite index set. A system {ψ�
jk}�∈�,j∈�,k∈�n ⊂ L2(�n) is called a tight wavelet

frame with frame bound A if

f(x) =
1

A

∑
�∈�
j∈�

k∈�n

〈f, ψ�
jk〉ψ�

jk(x), ∀f ∈ L2(�n). (2)

We recall that a system {ψ�
jk}�∈�,j∈�,k∈�n ⊂ L2(�n) is called an orthonormal wavelet

basis if it is an orthonormal basis for L2(�n). This is equivalent to saying that the
system {ψ�

jk}�∈�,j∈�,k∈�n is a tight wavelet frame with frame bound 1 and ‖ψ�‖L2(�n) = 1
for � ∈ �.

The following general theorem which is essentially Theorem 1 stated and proved in
[13] for �n , gives necessary and sufficient conditions to have a tight wavelet frame in
�

n with frame bound 1.

Theorem 1. Suppose ψ� ⊂ L2(�n) for � ∈ �, then

‖f‖2
L2(�n) =

∑
�∈�
j∈�

k∈�n

∣∣〈f, ψ�
j,k〉

∣∣2 (3)

for all f ∈ L2(�n) if and only if the set of functions {ψ�}�∈� satisfies the following two
equalities: ∑

�∈�
j∈�

∣∣∣ψ̂�(2jξ)
∣∣∣2 = 1, a.e. ξ ∈ �

n , (4)

∑
�∈�

j∈�+

ψ̂�(2jξ)ψ̂�(2j(ξ + 2πq)) = 0, a.e. ξ ∈ �
n , ∀q ∈ �

n\(2�)n, (5)

where �+ := � ∪ {0} and q ∈ �n\(2�)n means that at least one component qj is odd.



WAVELET FRAMES AND MULTIRESOLUTION ANALYSIS 3

Corollary 1. Under the hypotheses of Theorem 1, any function f ∈ L2(�n) admits
the tight wavelet frame expansion

f(x) =
∑
�∈�
j∈�

k∈�n

〈f, ψ�
jk〉ψ�

jk(x). (6)

By using the localization property of the frame wavelet in the Fourier domain, one

can study the directions of growth of f̂(ξ) by looking at the size of the frame coefficients

〈f, ψ�
jk〉 = (2π)−n〈f̂ , ψ̂�

jk〉. (7)

Moreover, by using the localization property of the frame wavelets in x-space, one can
localize the singular support of f(x) by varying �, j and k in (7).

4. Frame Multiresolution Analysis

The notion of frame multiresolution analysis was introduced by Benedetto and Li
[9]. Let us recall that an (orthonormal) multiresolution analysis consists of a sequence
of closed subspaces {Vj}j∈�, of L2(�n) satisfying

(i) Vj ⊂ Vj+1, for all j ∈ �;
(ii) f(·) ∈ Vj if and only if f(2·) ∈ Vj+1, for all j ∈ �;
(iii)

⋂
j∈�Vj = {0};

(iv)
⋃

j∈�Vj = L2(�n);

(v) There exists a function φ ∈ V0 such that {Tkφ}k∈�n is an orthonormal basis for
V0.

The function φ ∈ L2(�n) whose existence is asserted in condition (v) is called an
(orthonormal) scaling function of the given orthonormal multiresolution analysis.

A frame multiresolution analysis consists of a sequence of closed subspaces {Vj}j∈�
of L2(�n) satisfying (i), (ii), (iii), (iv) and

(v-1) There exists a function φ ∈ V0 such that {Tkφ}k∈�n is a frame for V0.

The function φ ∈ L2(�n) whose existence is asserted in condition (v-1) is called a frame
scaling function of the given frame multiresolution analysis.

Let D be a finite index set. An (orthonormal) multiresolution analysis for multi-
wavelets consists of a sequence of closed subspaces {Vj}j∈�, of L2(�n) satisfying (i),
(ii), (iii), (iv) and

(v-2) There exists a system of functions {φδ}δ∈D ⊂ V0 such that {Tkφδ}δ∈D, k∈�n is
an orthonormal basis for V0.

The set of functions {φδ}δ∈D whose existence is asserted in condition (v-2) is called a
set of (orthonormal) multiscaling functions.

A frame multiresolution analysis for multiwavelets consists of a sequence of closed
subspaces {Vj}j∈�, of L2(�n) satisfying (i), (ii), (iii), (iv) and

(v-3) There exists a system of functions {φδ}δ∈D ⊂ V0 such that {Tkφδ}δ∈D, k∈�n is a
frame for V0.

The set of functions {φδ}δ∈D whose existence is asserted in condition (v-3) is called a
set of frame multiscaling functions.
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5. Microlocal Analysis

Our approach to microlocal analysis is based on the theory of hyperfunctions ([16],
[17], [18]). Hyperfunctions are powerful tools in several applications; for example,
vortex sheets in two-dimensional fluid dynamics are a realization of hyperfunctions of
one variable. Microlocal analysis deals with the direction along which a hyperfunction
can be extended analytically. In other words, it decomposes the “singularity” into
microlocal directions. Microlocal analysis plays an important role in the theory of hy-
perfunctions, partial differential operators, and other areas. In this theory, for example,
one can consider the product of hyperfunctions and discuss the partial regularity of
hyperfunctions with respect to any independent variable.

Here, we give only a rough sketch. A more complete treatment of microlocal filtering
can be found in R. Ashino, C. Heil, M. Nagase, and R. Vaillancourt [4]. (See also [3]).
The important point is to find directions in which a hyperfunction can be continued
analytically. Let Ω ⊂ �

n be an open set, and Γ ⊂ �
n be a convex open cone with vertex

at 0. From now on, every cone is assumed to have vertex at 0. The set Ω + iΓ ⊂ � n

is called a wedge. An infinitesimal wedge Ω + iΓ0 is an open set U ⊂ Ω + iΓ which
approaches asymptotically to Γ as the imaginary part of U tends to 0. (Figure 1.)

iΓ

x

Ω+iΓ0
Ω

Figure 1. An infinitesimal wedge Ω + iΓ0.

A hyperfunction f(x) can be defined as a sum

f(x) =

N∑
j=1

Fj(x+ iΓj0), x ∈ Ω,

of formal boundary values

Fj(x+ iΓj0) = lim
y→0

x+iy∈Ω+iΓj0

Fj(x+ iy)

of holomorphic functions Fj(z) in the infinitesimal wedges Ω + iΓj0.
A hyperfunction is said to be micro-analytic in the direction ξ0 ∈ �n−1 at x0 ∈ �n or

in short, at (x0, ξ0), if there exists a neighborhood Ω of x0 and holomorphic functions

Fj in infinitesimal wedges Ω + iΓj0 such that f =
∑N

j=1 Fj(x+ iΓj0) and

Γj ∩ {y ∈ �
n : y · ξ0 < 0} 	= ∅

for all j.
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A simple aspect of the relation between micro-analyticity and the Fourier transform
is given as follows.

Lemma 1. Let Γ ⊂ �n be a closed cone and x0 ∈ �n . For a tempered distribution f ,
if there exists a tempered distribution g such that supp ĝ ⊂ Γ and f − g is analytic in
a neighborhood of x0, then f is micro-analytic at (x0, ξ) for every ξ ∈ Γc ∩�n−1, where
Γc denotes the complement of Γ.

Our aim in this paper is to answer to the following questions:

• Is it possible to construct orthonormal or tight frame multiwavelets Ψ = {ψδ}δ∈D

corresponding to each microanalytic direction ξ ∈ �n−1?
• Is it possible to obtain information on the microlocal content of f ∈ L2(�n)

from the wavelet coefficients 〈f, ψδ
jk〉?

• Can orthonormal or tight frame multiwavelet filtering separate microlocal con-
tents?

We shall construct orthonormal multiwavelet bases or tight frames which enable us
to obtain information on the microlocal content of signals or functions. Since this
separation of microlocal contents can be considered as a filtering operation, we call it
microlocal filtering .

6. One-dimensional Orthonormal Microlocal Filtering

Our aim is to construct wavelets {φδ}δ∈D having good localization both in the base
space � and in the direction space �0 = {±1} within the limits of the uncertainty
principle. Here good localization at a point (x0, ξ0) ∈ � × �0, which is called good
microlocalization, means that φδ is essentially concentrated in a neighborhood of a

point x0 ∈ � and φ̂δ is essentially concentrated in a conic neighborhood of a point
ξ0 ∈ �0.

Define the classical Hardy spaces H2(�±) by

H2(�±) =
{
f ∈ L2(�) : f̂(ξ) = 0 a.e. ξ ≤ (≥) 0

}
.

Each function of H2(�±) has good localization in the direction space �0 = {±1}.
Hence if we construct wavelets in H2(�±) with good localization in the base space,
those wavelets have good microlocalization.

In these cases, an orthonormal wavelet function ψ+ and an orthonormal scaling
function φ+ for orthonormal wavelets of H2(�+) are defined by

ψ̂+ = χ[2π,4π], φ̂+ = χ[0,2π].

−− 0

1

2π 4π2π4π

ψ̂+ψ̂-

Figure 2. The Fourier transform of the orthonormal wavelet functions
ψ+ and ψ−.
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From the two-scale relation

2φ̂+(2ξ) = m0(ξ)φ̂+(ξ)

it is found that the corresponding lowpass filter is

m0(ξ) = 2χ[0,π](ξ) = 2φ̂+(2ξ)

on [0, 2π), and extended 2π-periodically. From the two-scale relation

2ψ̂+(2ξ) = eiξ m0(ξ + π)φ̂+(ξ) = m1(ξ)φ̂+(ξ)

it is found that the corresponding highpass filter is

m1(ξ) = eiξ m0(ξ + π) = 2ψ̂+(2ξ)

on [0, 2π), and extended 2π-periodically.
By the same argument, we have an orthonormal wavelet function ψ− and an or-

thonormal scaling function φ− for orthonormal wavelets of H2(�−). Since

L2(�) = H2(�+) ⊕H2(�−),

{ψ+, ψ−} and {φ+, φ−} can be regarded as sets of orthonormal multiwavelet functions
and orthonormal multiscaling functions, respectively, of L2(�). This decomposition of
L2(�) into the orthogonal sum of the classical Hardy spaces H2(�±) corresponds to
the intuitive definition of hyperfunction:

f(x) = F+(x+ i0) − F−(x− i0),

where F+(z) and F−(z) are holomorphic in the upper half plane and in the lower half
plane, respectively.

Auscher [8] essentially proved that there is no smooth orthonormal wavelet ψ in the
classical Hardy space H2(�+), that is, there is no orthonormal wavelet ψ whose Fourier

transform ψ̂ is continuous on � and satisfies the regularity condition:

∃α > 0; |ψ̂(ξ)| = O
(
(1 + |ξ|)−α−1/2

)
at ∞.

The decay of a function at infinity in x space corresponds to the smoothness of its
Fourier transform in ξ space. Hence the non-existence of smooth wavelets implies that
it is impossible to have any smooth orthonormal wavelet having good microlocalization.
Thus our aim is to construct smooth tight frame wavelets with good microlocalization
properties.

7. Multi-dimensional Orthonormal Microlocal Filtering

The following notation will be used.

• η = (η1, . . . , ηn) ∈ H := {±1}n.
• ε = (ε1, . . . , εn) ∈ E := {0, 1}n \ {0}, j ∈ �+.
• Qη :=

∏n
k=1 [0, ηk], ε. ∗ η := (ε1η1, . . . , εnηn).

• Qj,ε,η :=
{∏n

k=1 [ηk(�k − 1), ηk�k] + 2j(ε. ∗ η) : 1 ≤ �1, . . . , �n ≤ 2j , �1, . . . , �n ∈
�
}
.

• �
E×H
+ is the set of all functions from E ×H to �+.
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Theorem 2. Fix j ∈ �+, ε ∈ E, η ∈ H. For a cube Q ∈ Qj,ε,η, define ψQ by

ψ̂Q = χ2πQ,

where χ2πQ is the characteristic function of the cube 2πQ. For ρ ∈ �
E×H
+ , let

Qρ :=
⋃

(ε,η)∈E×H

Qρ(ε,η),ε,η.

Then Ψ := {ψQ}Q∈Qρ
is a set of orthonormal wavelets. Define φη by

φ̂η := χ2πQη .

Then {φη}η∈H is a set of frame scaling functions for these wavelets.
In particular, when ρ(ε, η) is constant, Ψ is a set of multiwavelets.

Figure 3 illustrates the 2-D multiwavelets constructed in Theorem 2. Multiwavelets
are masks in Fourier space — they are characteristic functions of cubes 2πQ. The left
part of Fig. 3 shows 12 multiwavelet functions. For finer resolution in Fourier space, we
need a greater number of multiwavelets. The right part of Fig. 3 shows 27 multiwavelet
functions.

00

Q2π

Figure 3. 2-D orthonormal multiwavelet functions in Fourier space.

8. Multi-dimensional Frame Microlocal Filtering

Smooth tight multiwavelet frames are obtained by convolving characteristic functions
of cubes πQ so that the support of the smoothed functions have support inside cubes
2πQ. This is achieved by considering the next inside annulus of cubes πQ in the left
part of Fig. 3.

Let ϑ(t) be a C∞
0 (�)-function of one variable satisfying

ϑ(t) ≥ 0, ϑ(t) = ϑ(−t),
∫
�

ϑ(t) dt = 1, ϑ(t) =

{
1, |t| ≤ 1

3
;

0, |t| ≥ 2
3
.

For α > 0 and ξ = (ξ1, ξ2, . . . , ξn) ∈ �
n , let

ϑα(ξ) =
1

αn

n∏
j=1

ϑ
(ξj
α

)
.



8 R. ASHINO, S. J. DESJARDINS, M. NAGASE AND R. VAILLANCOURT

We have the following theorem.

Theorem 3. Fix j ∈ �+, ε ∈ E, η ∈ H, and α ∈ (0, 1/2). Define

λQ(ξ) := (ϑα ∗ χπQ)(ξ) =

∫
�n

ϑα(ξ − ζ)χπQ(ζ) dζ, Q ∈ Qj,ε,η,

where χπQ is the characteristic function of the cube πQ. For ρ ∈ �
E×H
+ , let

τρ(ξ) :=
∑

j∈�,Q∈Qρ

|λQ(2jξ)|2,

and, for Q ∈ Qρ, define ψQ(x) by

ψ̂Q(ξ) := τρ(ξ)
−1/2 λQ(ξ).

Then Ψ := {ψQ}Q∈Qρ is a set of tight frame wavelets.

Theorem 3 follows from Theorem 1.

9. Numerical Restoration of Images

In this section, we apply the above theory to the restoration of finite images repre-
sented by matrices. Since the Fourier transform of a finite region gives rise to oscilla-
tions of the type of cardinal sine, care must be taken in the restoration process.

The restoration process involves the following steps.

• The figure A to be restored is Fourier transformed into B.
• B is filtered by multiplication with a tapered characteristic function with sup-

port far from the origin and at right angle with the singularity to be localized.
This produces C.

• In view of the Plancherel theorem, the wavelet coefficients of C, in (7),

〈f̂ , ψ̂�
jk〉 = (2π)2〈f, ψ�

jk〉,
are constructed in the Fourier domain and used in the x domain, to produce D
which is the wavelet frame expansion (6) of Corollary 1.

• The extra width ofD, caused by the side lobes in the support of ψ�
jk, is narrowed

to eliminate oscillations due the cardinal sine effect when transforming functions
with finite support.

• A tuned multiple of D is subtracted from A to restore the original image.

In Fig. 4, the scarred woman image is restored. One notices in the top right part of
the figure the wide width of the negative of the Fourier transform of the one-bit wide
short scar. The frame expansion of the inverse Fourier transform of the top right part
produced a five-bit wide segment. The width of this segment was reduced to one bit
shown as a negative in the bottom left part of the figure. A multiple of the bottom left
part of the figure, as a positive, was subtracted from the top left part to produce the
restored woman figure shown in the bottom right part. In this case, only one frame
wavelet was used as highpass filter in the top right part of the figure in the Fourier
domain. Using a second filter in the lower left part of the Fourier domain does not
seem to modify the final result.

In Fig. 5, the boy image with a diagonal line is restored. One notices in the top
right part of the figure the narrow width of the negative of the Fourier transform of the
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Figure 4. Top left: positive scarred woman figure. Top right: framed
negative filtered Fourier transform of top left figure. Bottom left: framed
negative frame expansion of the inverse Fourier transform of top right
figure. Bottom right: positive restored woman figure.

one-bit wide long diagonal line. The frame expansion of the inverse Fourier transform
of the top right part produced an eight-bit wide segment. The width of this segment
was reduced to one bit. Moreover, fine tuning required that the fourth root of this
segment be taken. The result is shown as a negative in the bottom left part of the
figure. A multiple of the bottom left part of the figure, as a positive, was subtracted
from the top left part to produce the restored boy figure shown in the bottom right
part. In this case, two frame wavelets were used as highpass filters in the top right
and bottom left parts of the figure in the Fourier domain. Using only one filter in the
upper right or lower left part in the Fourier domain does not seem to modify the final
result.
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Figure 5. Top left: positive boy figure with diagonal line. Top right:
framed negative filtered Fourier transform of top left figure. Bottom left:
framed negative frame expansion of the inverse Fourier transform of top
right figure. Bottom right: positive restored boy figure.
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