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Abstract: A visualisation of the soundscape dynamics is one of the important topics in ecoacou-
sics. In this paper, We try to use robot audition techniques and ecological methods to visualize
the soundscape dynamics of forest animals for a long time. We create two false-color spectrograms
based on acoustic indices and direction of arrival of sounds to show the overall dynamics of the
soundscape of birds and cicadas in an about four-hour recording in a forest. The preliminary quan-
titative analysis of their vocal activities also implied that there might exist temporal avoidance
behaviors among them.

1 Introduction
Visualization is one of the key techniques when con-
sidering roles of sounds in ecoacoustics: the subject
to understand their own properties and functions in
environments, and the tool for the indirect measure-
ment of biodiversity or habitat quality of environ-
ments [1]. Extracting a spatio-temporal structure of
a soundscape, which is a combination of sounds that
arise from both natural and artificial environments,
is essential for both roles in order to track active in-
teractions among individuals and to grasp the overall
properties of acoustic events.

We have been proposing and discussing novel ap-
plications of robot audition techniques to visualize
soundscape dynamics in the directional or spatial do-
main by using the direction of arrival (DOA) of sound
sources obtained from HARKBird, which is a bird
song localization software based on a robot audition
software HARK (explained later) [2, 3]. Inspired by
Towsey et al. [4, 5], we created a false-color spectro-
gram that visualizes directional (DOA-based) sound-
scapes in which the color of the spectrogram reflects
the direction of arrival of sounds, expecting that we
can intuitively recognize directional variations of acous-
tic events (e.g., different vocalizing individuals or an
individual vocalizing in different positions) [2]. We
applied this to a 5 min recording with individuals of
Zebra Finch, each put in a cage around the micro-
phone array unit, and showed that the extracted vi-
sual information can reflect acoustic structures among
this simulated group of individuals in the directional
domain.

This paper further discusses an application of our
framework to a soundscape analysis of a complex sit-
uation of vocalizing animals in forests. In particu-
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lar, we focus on the acoustic dynamics of birds and
arthropods, which are major species that dominate
the soundscape in forests in early summer. It has
been reported that birds are able to adjust both the
timing and frequency of their signals to reduce over-
lap with the signals of other bird species [6, 7], other
animals[8] and abiotic noise [9]. Hart et al. showed
that birds significantly avoid temporal overlap with
cicadas by reducing and often shutting down vocal-
izations at the onset of cicada signals that utilize the
same frequency range [8].

We first illustrate the overall dynamics of the sound-
scape in about four-hour recording, by showing two
false-color spectrograms based on acoustic indices and
direction of arrival of sounds. Then, we further illus-
trate inter- and intra-specific interactions by classify-
ing localized sound sources into bird and cicada vocal-
izations by making use of a typical acoustic index used
in ecoacoustics. The preliminary analysis of their vo-
calization activities indicated that there might exist
temporal overlap avoidance behaviors between birds
and cicadas, and intra-specitic turn-taking between
cicada individuals.

2 Materials and methods

2.1 HARKBird
HARK is an open-sourced robot audition software
consisting of multiple modules for sound source lo-
calization, sound source separation, and automatic
speech recognition of separated sounds that work on
any robot with any microphone configuration [10].
See the website of HARK for detail1.

HARKBird is a collection of Python scripts that
enable us to conduct a field recording using micro-
phone arrays connected to a laptop PC and analyze

1https://hark.jp
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Figure 1: An experimental field (left) and a recording
node (right).

the recording using a network of HARK which are
designed to localize and separate bird songs in fields.
The HARKBird can estimate the existence and the di-
rection of arrival (DOA) of each sound source by using
the MUltiple SIgnal Classification (MUSIC) method
[11] based on multiple spectrograms with the short
time Fourier transformation. We can further extract
separated sounds as wave files for each localized sound
using GHDSS (Geometric High order Decorrelation
based Source Separation) method. The detailed de-
scription of HARKBird and the scripts are available
from [12] and our website2.

2.2 Recording and vocalization local-
ization

We conducted an about 4-hour recording trial in the
Inabu field, the experimental forest of Field Science
Center, Graduate School of Bioagricultural Sciences,
Nagoya University, in central Japan (Fig 1). The for-
est is mainly composed of conifer plantation (Japanese
cedar, Japanese cypress, and red pine), with small
patches of broadleaf trees (Quercus, Acer, Carpinus,
etc.). In this forest, common bird species are known
to vocalize actively during a breeding season.

The recording system is composed of the follow-
ing components: a server node composed of a single
PC; a microphone node (1 (right)) which has a micro-
phone array (TAMAGO-03; System in frontier Inc.)
connected with a Rasberry Pi 4; and a Wi-Fi router.
The server and the node are connected together by the
Wi-Fi, which enables us to control the node remotely.
We placed the node in the field where there were some
songbirds and cicadas (1 (left)). A recording started
at 11:00am, June 27th, 2020 and ended at 3:20pm. In
the end, we got thirteen 20-minute recordings with a
total duration of four hours and 20 minutes.

We used the HARKBird to export the informa-
tion about localized sound sources (i.e., the begin-
ning and end time, DOA, and its separated sound
file (wave file)). In this paper, we limited the fre-
quency range for sound source localization to 2.5 -
3.5kHz, in order to localize vocalizations of birds and

2http://www.alife.cs.is.nagoya-u.ac.jp/~reiji/
HARKBird/

cicadas around this range. This is because some ma-
jor species of songbirds (Blue-and-white Flycatcher
(Cyanoptila cyanomelana), Red-billed leiothrix (Leio-
thrix lutea), Eastern-crowned Warbler (Phylloscopus
coronatus) and Japanese Bush Warbler (Horornis di-
phone)) and some cicadas (Terpnosia nigricosta) were
singing around the microphone and sharing this fre-
quency range. We adjusted the other parameters in
HARKBird to localize these vocalizations as many as
possible.

2.3 Soundscape visualization with false-
color spectrograms

2.3.1 Acoustic index-based soundscape

Following Towsey et. al. [4], we create a false-color
spectrogram based on three acoustic indices: acous-
tic complexity index (ACI) [13], temporal entropy in
frequency bins (H[t]) and acoustic cover (CVR). Each
original multi-channel recording (16 bit, 1.6 kHz) is
mixed down to a single channel and its amplitude
spectrogram (256 frequency bins for 8 kHz, 512 sam-
ples for each frame) is created using FFT, which is
further divided into 10-second segments. The three
types of the spectrum are calculated for each segment
as follows:

H[t] spectrum: The temporal entropy of each
frequency bin in the amplitude spectrogram. The am-
plitude values (overtime in a focal frequency bin) are
normalized to the unit area and treated as a proba-
bility mass function. We calculate Shannon’s entropy
of this function, which is normalized by the maximum
value. This index is useful for picking up infrequent
vocalizations.

ACI spectrum: For each frequency bin, we cal-
culate the average absolute fractional change in spec-
tral amplitude from one spectrum to the next [13].
This index is proposed to estimate the abundance of
bird vocalizations in a target soundscape.

CVR spectrum: For each frequency bin, we cal-
culate the fraction of values where the spectral power
exceeds the noise power (i.e., the average over the val-
ues in the frequency bins of 5-8 kHz).

We get a three spectrummatrix of the whole record-
ing with three acoustic indices. Then, we create a
false-color image by mapping the values of the three
indices to the brightness of the RGB components of
each pixel: red=ACI, green=1-H[t] and blue=CVR.
The scaled values were assigned to each color in order
to make the value differences clearer.

2.3.2 DOA-based soundscape

We create another false-color spectrogram that visu-
alizes DOA-based soundscapes (Fig. 2), proposed in
[2], according to the procedures as follows:

1. We generate a grayscale spectrogram of the whole
original recording, where the (brighter) grayscale
value of each pixel reflects the (higher) energy
at the corresponding time and frequency.
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Figure 2: An overview of DOA-based spectrogram.
(left) A circular color map, (top right) spectrogram,
and (bottom right) MUSIC spectrum (the likelihood
of sound existence in the space of time and DOA).

2. We generate a grayscale spectrogram of each
separated sound, and extract pixels of which
corresponding energy (dB normalized by the max-
imum value) is higher than 0.9 × the average
value over the spectrogram.

3. We pick a color in a circular color map that cor-
responds to the DOA of each separated sound.

4. We assign the picked color in (3) to those of the
pixels of the spectrogram in (1) that correspond
to the extracted pixels in (2).

2.4 Classification of bird and cicada vo-
calizations and their interaction anal-
yses

It is reported that CVR well responds to the continu-
ous cicada chorus [4]. Our preliminary observations of
the two spectrograms showed that CVR values around
the frequency ranges of vocalizations on which we
focus are significantly different between birds (low)
and cicadas (high). We classified the localized sound
sources into three classes (birds, cicadas, and noise)
as follows:

1. We calculate the CVR values of 256 frequency
bins of each separated sound file with HARK-
Bird, and normalize these values so that their
range is from 0 to 1.

2. We calculate the sum of the CVR values cor-
responding to the frequency range from 2.6 to
3.1 kHz, which is further divided by the sum of
the entire values. We call this value the relative
CVR (RCVR).

3. Each sound source is classified as a vocalization
of cicada (or bird) if its RCVR is above (or be-
low or equal to) the threshold value 0.2. The
sound is regarded as noise if its RCVR is less
than a small threshold (=0.0 in this case).

Note that used the normalized value in order to ex-
clude the misclassification of cicadas due to other in-

sect noises, and we adopted this threshold value be-
cause there were two peaks on both sides of the thresh-
old in the frequency distribution of RCVR. While it
is inevitable that this automatic but rough procedure
can lead to misclassifications, we think that the re-
sults are enough to illustrate the basic tendency of
their acoustic behaviors.

In order to investigate inter-specific interactions
between birds and cicadas, we compared the tempo-
ral changes in vocal activities of birds and cicadas.
Their activity in each 300-second time segment is cal-
culated as the total duration of localized sounds in the
segment, which is normalized by the maximum value
overall segments.

3 Preliminary results

3.1 Soundscape analysis
Fig 3 shows (a) acoustic index-based and (b) DOA-
based soundscapes. Each panel corresponds to a 13-
minute recording. In (a), we can see regions colored
with yellow (a mixture of red and blue) in the interme-
diate frequency range around 2.5-3 kHz. This means
that ACI and 1-H[t] reflected similar sound events.
These regions indicate bird vocalizations because high
values of both indices reflect large temporal changes
in the amplitude within short time periods. Actu-
ally, we see repetitions of short and high-frequency
vocalizations around the corresponding time periods
in (b). For example, we see some songs of Blue-and-
white Flycatcher (purple), Red-billed leiothrix (or-
ange), and Japanese Bush Warbler (green) in Fig. 4
(bottom, 14:16-14:19). The vocalizations were colored
with similar colors among vocalizations of each species
but they tended to be different between species. This
implies that a single individual might be singing in
a different direction for each species. However, their
song colors tended to be biased strongly by simultane-
ously vocalizing songs of cicadas in other time periods,
and thus the method needs further improvement.

We also see in (a) that there exist blue (CVR)
narrow regions around 3 kHz. They reflect songs of
cicadas as expected, and the corresponding clusters
of songs were indicated with quite different colors in
(b). This means that multiple individuals of cicada
were expected to be singing in different directions al-
ternately in this recording as illustrated in an example
situation in Fig 4 (top, 13:49-13:52).

3.2 Vocal activity analysis
Fig. 5 shows the distribution of vocalizations in the
space of time and direction of arrival, which were clas-
sified into bird and cicada vocalizations. The red and
blue bars represent vocalizations of birds and cicadas,
respectively. We found that multiple individuals of
both birds and cicadas were vocalizing during the
recording since their vocalizations were localized in
various directions. We also see that there were time
durations tended to be dominated by cicadas (e.g.
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Figure 3: The acoustic index-based (left) and DOA-based (right) spectrograms for an about 4-hour recording.
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Figure 4: Examples of DOA-based spectrograms showing songs of birds (bottom) and cicadas (top).
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Figure 5: The directional distribution of localized vocalizations of birds (red) and cicadas (blue).

1000-2000 seconds) and one tended to be dominated
by birds (e.g. 11000-12000 seconds).

Fig. 6 shows the changes in the vocal activity
of birds and cicadas defined in Section 2.4. In the
first half of the recording, the cicadas vocalized ac-
tively but the birds were relatively quiet, except for
the first 900 seconds. On the other hand, the birds
vocalized actively and the cicadas were gradually get-
ting quiet in the latter half of the recording. In addi-
tion, it is suggested that there were vocal turn-taking
between birds and cicadas at intervals of 5 to 15 min-
utes in that their activities repeated increased alter-
nately. This could be an overlap avoidance of vocal-
izations between them because the frequency bands
of vocalizations uttered by the birds and cicadas in
this recording were relatively close. However, we need
detailed analyses based on more sophisticated vocal-
ization classification procedures.

We also observed intra-specific turn-takings be-
tween cicada individuals. Figure 7 shows an example
of turn-taking situation. In this duration, multiple
cicadas vocalized in some directions. The cicadas vo-
calized at -50 degrees and -100 degrees alternately in
the first half. The cicada vocalized at -100 degrees
and the positive directions (100 and 150) alternately.
Both of them imply the occurrences of turn-takings
among multiple individuals.

4 Conclusion
This paper discussed an application of robot audition
techniques to a soundscape analysis of a complex situ-

ation of vocalizing birds and cicadas in early summer.
We showed that two types of false-color spectrograms
based on acoustic indices and direction of arrival can
illustrate the overall dynamics of their acoustic behav-
iors. While the methods still need improvement, the
preliminary quantitative analysis of their vocal activ-
ities implied that there might exist temporal avoid-
ance behaviors among these birds and cicadas. We
also found that there might also exist intra-specific
turn-takings between cicada individuals.
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