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Abstract—Speech based interface for interacting with smart
devices has recently gained traction due to significant improve-
ment in Machine Learning (ML) based algorithms for speech
recognition and classification. Edge computing has come into
play to make cloud-computing scalable because number of low
power Al-enabled Internet of Things (IoT) devices is increasing
rapidly. Convolutional Neural Network (CNN) has proved its
performance in image recognition and speech classification alike.
In this paper, we have proposed an edge computing solution
using System-on-Chip based device from perspective of speech-
enabled IoT applications. Speech commands classification task
is performed to demonstrate the acceleration of CNN network
on SoC edge computing device. As IoT and edge devices have
limited computational resources, ideally a smaller model with
similar performance as state-of-the-art models is required to be
deployed. We have taken a data-centric approach to elevate the
performance of CNN for audio classification task with a very
light CNN model. The comparison of proposed approach has
shown that our CNN model achieved similar performance as large
models with 6X smaller number of parameters and 14X smaller
number of Floating-Point Operations (FLOPs). We have also
implemented the acceleration for our CNN model on FPGA part
of SoC processor to reduce latency in real time implementation.
Our implementation demonstrated more than 6X acceleration
factor as compared to base implementation which is also higher
than other proposed approaches for CNN acceleration.

Index Terms—Edge Computing, Machine Learning, Internet
of Things, Hardware Accelerator, Speech Classification

I. INTRODUCTION

Efficiency of various human machine interfaces like face
expression, gestures and speech recognition has been im-
proving with advancement and innovation in Machine Learn-
ing (ML) algorithms [1]. Many State-of-the-Art (SOTA) ML
models have been proposed to improve the performance of
speech recognition as it is becoming de-facto interface in
Human Robot Interaction (HRI), which has already found its
application in assistive robots for various indoor scenarios
[2] and coworking robots in industrial environments [3]. A
Convolutional Neural network (CNN) based ML approach has
also been proposed to control the drones using different voice
commands [4]. Another ML based approach is introduced to
maneuver the airplane in a simulated setup which gives hint
in further expansion of speech-based applications in diverse
environments [5]. Currently high performing ML models are
significantly large in terms of memory and computations
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Fig. 1. Speech Interface for IoT devices enabled by Edge Computing.

and they are usually deployed on large cloud platforms with
abundant resources available for high computations. Recently,
the focus has been shifted to deploy ML models on low power
IoT devices which are increasing in demand and in numbers in
several daily life applications [6]. These low power IoT devices
due to their small footprints have increased in number and
with speech-enabled functionality they are particularly useful
for handicapped people who have some mobility restrictions
[71.

Devices with smaller footprints would have small space
for computational resources, thus the computational burden
has to be unloaded to nearby computational resource and
this is where edge computing comes into play. In addition
to that transferring personal speech data to remote cloud
is vulnerable to cyber-attacks and pose a privacy concern.
Continues integration with cloud computing would also require
a seamless internet connection and any disturbance in network
connection may lead to unwanted scenario in terms of high
latency or network interruption. Edge computing solves these
problems by bringing the computational resources from cloud
close the application node. A device enabled with speech
recognition having additional computational resource in the
local server in form of network edge is an ideal scenario
for speech-enabled IoT applications. Fig. 1 shows that how
small devices can utilize the local edge server to utilize its
computation power to run the speech enabled applications. A
multi-access edge computing approach also allows to elevate
the fault tolerance of the overall system by using multiple



devices, where one device can take over the role of other
device in case of device failure.

Edge devices are still inferior to cloud devices in terms
of available resources due to their smaller footprint; they are
basically scaled sown version of cloud nodes. ML algorithms
have to be tailored according to the resource constraints
of the targeted device in such a manner that there is not
a significant performance degradation while reducing their
computational cost and memory. Different types of devices
have been considered for Edge applications including CPU,
GPU and FPGA [8]. FPGA is one of the best candidates in
this case due to its flexibility to be a reprogrammable hardware
which allows faster delivery of the final product to the market.
System on Chip (SoC) based processor has further enhanced
the FPGA ability and performance by fabricating the CPU
and FPGA on the same chip. As illustrated in Fig.1 SoC has
two parts; in our case FPGA acts as an accelerator and CPU
hosts the Operating System to provide a platform for real time
application. Our work has made following contributions while
keeping in mind the requirements of speech application in low
power IoT devices:

« It proposed the lightest CNN model in terms of parame-
ters and computational cost while maintaining the SOTA
performance.

It shows how taking a data-centric approach can help
in achieving high performance as large models with a
significantly smaller model.

It demonstrates the deployment of FPGA accelerator for
CNN for speech classification on Edge devices.

II. RELATED WORK

A plethora of Recurrent Neural Network (RNN) and CNN
based ML approaches have been proposed for speech com-
mands classification, which are summarized in Table 1. An
attention based RNN technique is also proposed for similar
task [9-10], showing significant improvement in classification
accuracy performance. But as seen from the Table 1, RNN
models are large in terms of number of parameters which
makes it harder to deploy them on small memory devices.
CNN models on the other hands deliver good performance
with comparatively less number of parameters. EdgeSpeech-
Net which is a CNN based approach [11] achieves similar
performance as RNN based approaches with smaller number
of parameters, but Floating-Point Operations (FLOPs) are very
large. RES15 has also delivered a reasonable performance but
number of parameters and FLOPs increase even further [14].

Depth wise Separable CNN (DS-CNN) approach [15] main-
tains good performance by exploiting depth wise convolution
operations and achieves 95.4% accuracy for speech commands
classification. CNN network can learn better from training data
if the size of network is increased significantly but it leads to
very high number of operations and parameters [16] making it
impossible to be deployed on small devices. Type of network
affects performance but efficiently utilizing useful information
in the training data also leads to better performance with
smaller network size.

In this paper, we have also shed some light on data-centric
approach by demonstrating the high accuracy performance
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TABLE I
PERFORMANCE METRICS OF DIFFERENT MODELS ON GOOGLE
SPEECH-COMMANDS DATASET V1

Model Model Accuracy | Params. | FLOPS
Type Name (%) (K) (W7Y)
MHAtt-RNN [9] 97.2 743 -
RNN EdgeRNN [10] 96.62 830 26.96
EdgeRNN-G [10] 96.82 830 2.96
EdgeSpeechNetA[11] 96.8 107 343
EdgeSpeechNetD[11] 95.8 80.3 24.5
RESI15 [14] 95.8 238 894
DS-CNN [15] 95.4 161 56.9
CNN CNN [16] 96.19 T.488 -
CNNv1 (Ours) 96.45 224 23.7
CNNvI-L (Ours) 95.4 67.7 6.5
CNNv2 (Ours) 95.11 93.2 3.7
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Fig. 2. CNN architecture of CNNv2.

with a significantly smaller model having small number of
parameters and FLOPs. In second part of the paper, we
have demonstrated the deployment of accelerator for CNN
which achieved better acceleration factor as compared to
proposed approaches so far. The following sections explain
about the dataset used for this task, CNN network architecture,
introduction of hardware and network deployment.

III. DATASET & INPUT FEATURES

The dataset being used in this work is named as Speech
Commands, developed by Google [23]. There are ten most
common speech commands in first version of the dataset e.g.,
“Yes”, “No”, “Up”, “Down”, “Left”, “Right”, “On”, “Off”,
“Stop” and “Go”. For developing speech-based applications,
this data is a very reasonable starting point. The complete
dataset is divided into two parts as 80% training data and 20%
as validation data. Increasing the amount of training examples
using data augmentation improves the overall performance
of ML model [13]. In our work we have used random time
shifting of audio signal as our data augmentation technique.

Speech commands audio files are sampled at 16kHz fre-
quency. First of all we have taken Frequency Cepstral Coeffi-
cients (MFCC) of the signal which has 13 frequencies in one
time bin equivalent to 25ms. MFFCs provide rich information
of speech signal in lower dimension by extracting most of
the phoneme information as speech signal is basically the
continuous sequence of phonemes. In speech signal amplitude
of consecutive phonemes vary significantly so we take the
difference of amplitude of power spectrum for consecutive
phonemes.

These features are known as delta features, which have
same effect as derivative of the signal. After taking 13 delta
features of the signal, we take another 13 double delta features



by taking the difference once again [24]. These features
inherently make the features robust to white noise because
it is suppressed by taking difference of signal. Lastly, the
final feature of the signal is spectrogram power for each
frame, making the final shape of features matrix to be 40x40.
The CNN architecture, its accelerator design and hardware
introduction are explained in the following sections.

TABLE II
OUR CNN PERFORMANCE WITH DIFFERENT INPUT FEATURES
Features Type Features Dimension | Accuracy (%)
MFCC 13x40 94.11
MFCC, Delta (13+13)x40 94.89
MEFCC, Delta,
Double-Delta, Delta-Energy (13+13+13+1)x40 95.11

IV. OUR CNN ARCHITECTURE AND ITS COMPARISON
WITH STATE OF THE ART

CNN along with its many variations has proved very high
performance for image recognition task due to its ability to
recognize local patterns. CNN can also perform equally well
for sound classification task, given the speech data is first
converted into a two-dimensional matrix like an image. In
image recognition task, optimizing the network architecture for
the given task is mostly the only way to improve performance,
but in speech classification, we have another task to focus on,
that is to efficiently extract the information from audio data.
After efficient data extraction our CNN model has achieved
good performance even though it is smaller in size.

TABLE III
CNN HYPERPARAMETERS COUNT
Layer Parameters CNNvl | CNNv2 | CNNvl-L
Conv.1 Channels 64 32 32
Kernel 5x5 5x5 5x5
Conv.2 Channels 128 16 64
' Kernel 3x3 5x5 3x3
Conv.3 Channels 64 - 32
- Kernel 3x3 - 3x3
Dense Nodes 128 100 100
Total No. of Parameters | 224,576 93,158 67,702

The model being used in this work is CNN with convolu-
tional layers followed by a fully connected layer and classifi-
cation layer. The input shape of spectrogram is a symmetric
2-dimensional matrix; hence first layer of the network is 2-
dimensional convolution layer. First convolutional layer for
both CNNvl and CNNv2 has same size of symmetric kernel
i.e. 5x5. The stride length of 1 for convolutional layer and 2 for
pooling layers is used throughout the network. Hyperparame-
ters like number of output channels, number of convolutional
layers, kernel-size for following layers and number of nodes
in fully-connected layer are varied in three versions of CNN
models. Rectified Linear Unit (ReLU) activation function is
used after each pooling layer. Activation function is relatively
simpler to model in High Level Synthesis (HLS) as it only
requires to change negative values to zero. Three variations
of CNN model have been used in our experiment with differ-
ent hyperparameters. The detail of hyperparameters for each
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Fig. 3. Parallelization by loop unrolling followed by pipelining.

version of the model are listed in Table 3. Largest model
is decided according to the constraints of the edge device
which we have use in this experiment. For network training
Adam optimizer is used with cross entropy loss. Training is
performed for 300 epochs where validation loss and accuracy
are stabilized.

CNNv1 which is the largest model in our case achieves
SOTA performance with 6X smaller number of parameters
than another CNN approach for a similar task [16]. In a similar
way, our largest model has achieved better performance than
RES15 []14] with enormously low number of operations e.g.
40X. We performed another experiment by reducing the size
of CNNvl up to 3X while maintaining performance up to
95%, and lighter version of the model is named as CNNvl1-
L. This model achieves similar performance as DS-CNN
[15] with 2X smaller number of parameters and 9X smaller
number of FLOPs. This model also has 9X smaller FLOPs
than EdgeSpeechNetD [11] while achieving almost similar
accuracy. We also tried to investigate the effect on accuracy
by changing the number of convolutional layers and used a
network with two convolutional layers, named as CNNv2.
This model has large number of parameters than CNNv1-L
still has lower accuracy. This clearly shows the supremacy
of convolutional layers, which delivers better performance by
doing more operations with less parameters. This also implies
that deeper CNNs has better performance than shallow CNN
networks.

Even our largest model CNNv1 has 7X smaller number of
parameters than CNN [14] but still achieves higher perfor-
mance. Similar, CNNv1 has 4X smaller size than EdgeSpeech-
NetD [I8] but still achives 0.65% better accuracy.

V. HARDWARE INTRODUCTION

The device used in this research is a custom-built Multiac-
cess Edge Computing (MEC) device named as M-KUBOS
[18] which acts as edge server in our case. It has Xilinx
Zynq Ultrascale+ XCZU19 System on Chip (SoC) processor
on board. SoC on M-KUBOS has FPGA as programmable
hardware and ARM processor as processing unit fabricated



on the same chip. Moreover, SoC has on-chip memory for
storing weights of the neural network logic which cuts short
the reading and writing time of data into a separate memory
while computations take place. SoC delivers high end perfor-
mance by leveraging the synergistic usage of processing unit
and programable hardware which communicate to each other
through Advanced eXtensible Interface (AXI) as illustrated in
Fig. 4. In addition to the on-chip memory, M-KUBOS has
additional Ultra-RAM on board for storing large data which
can be accessed by ARM processor and FPGA through Direct
Memory Access (DMA). M-KUBOS has Linux operating
system with Python production for Zynq devices (PYNQ)
functionality [22]. PYNQ framework in Linux enables easy
development of applications based on Zynq devices by flexibly
using developed hardware components in Python program. M-
KUBOS acts as shh server and can be seamlessly accessed
remotely.

High Level Synthesis (HLS) tool by Vivado is used to
design the CNN Logic in C language. Neural network logic
can be synthesized and exported as Intellectual Property (IP)
core to be flexibly used in hardware integration on Vivado
Design Suite. Vivado Design Suite provides immense amount
of customization for SoC based boards like M-KUBOS, where
available hardware resources can be flexibly put together
using Function Block Diagram (FBD) based programming
[17]. Finally integrated hardware design is synthesized and
bitstream file is burned into FPGA through Python-based
application program in Linux operating system. Weights from
trained ML model are also transferred to on-chip memory and
processing system uses FPGA as an accelerator for inference
as shown in Fig. 3.

VI. ACCELERATOR IMPLEMENTATION

A convolutional layer in neural network has six loops to
compute activations for next layer from input channels. As
described in Algorithm 1, two inner most loops compute
output for one kernel operation. The loop on top of kernel
operation iterates over each channel of input layer. Looping
over these kernel operations for every input channel followed
by a summation returns a value corresponding to one output
channel as shown in Fig. 3. These kernel operations in convo-
Iutional network provides enormous amount of opportunity for
parallelization. As each channel in output layer has different
weights for all input channels, computations corresponding
to output values for each output channel can be performed
concurrently.

Convolutional operations in CNN network can be par-
allelized by first unrolling the loops and then performing
pipelining. For example, in Fig. 3, three inner most loops are
unrolled into a long vector which is responsible for outputting
one value in an output channel. If the output channels are
three, conventional approach would compute output activation
corresponding to each channel in series manner. The simplest
operation in CNN takes 3 clock cycles i.e., reading, multiply-
ing or adding and writing. If computing a single value in one
output channel takes x number of clock cycles, then three
output values corresponding to each output channel would

Algorithm 1: Convolutional Function

Input: input, weight, bias

Output: activation output
1 Convolution(input, weight, bias, output)
2 for w € {1, ..., output_channel_width} do
for h € {1,..., output_channel_height} do
#pragma HLS PIPELINE
for n € {1,..., output_channels} do
#pragma HLS UNROLL
for i € {1,...,input_channels} do

for j € {1,..., kernel_width} do
for k € {1,...,kernel_height} do

10 L output yhn+ =Wijk * iNPul;j
1

+bia8¢jk
12 Above three loops unrolled into a vector.

e % N AW

13 | Above loop is pipelined for parallel processing.

14 end Convolution

take 3x cycles. However, these independent operations can be
scheduled to be executed in parallel with just one cycle delay
for scheduling them as illustrated in Fig. 3.

Vivado HLS tool allows to flexibly select the loops to be
unrolled and parallelized. Algorithm 1 shows that we have
unrolled three inner most loops of convolution function. The
loop on top of three unrolled loops is pipelined and will
execute its operation in parallel. Similarly, more number of
loops can be unrolled and pipelining operation can be used
for even higher loops. As we can on unrolling the loops,
the size of one operations will increase i.e. multiplication and
as we do pipelining size of parallel operations will increase
i.e. number of operations. Hence total resource utilization
will increase after optimization. Theoretically all loops in
convolution layer can be parallelized, given that there is no
limitation on available resources. However, finding the optimal
balance between amount of parallelization and meeting the
resource constraints is an important task [17]. Given the
availability of computational resources in M-KUBOS, three
to four loops are unrolled followed by pipelining in different
convolutional layers of CNN network.

VII. EXPERIMENTAL SETUP & RESULTS

Firstly, optimized CNN network i.e. CNNv is trained on
Google Speech-Commands training dataset in Pytorch frame-
work, and weights are obtained to transfer to chip memory
before execution on M-KUBOS. Then HLS logic is synthe-
sized on Vivado HLS and a hardware bitstream file of neural
network logic is transferred to M-KUBOS device for program-
ming the FPGA hardware. PYNQ programming framework
is used for making and executing application program on
peocessing system part of SoC device. After programming
FPGA hardware and transferring network weights to on-chip
memory Python-based application program sequentially takes
the inputs and computes them by utilizing the on-chip FPGA
accelerator. End-to-end latency is measured by executing base
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Fig. 4. Application framework for sound classification on edge device.

implementation of our CNN logic followed by its optimized
version for CNNvl1-L and CNNv2. Improvement in latency
after using optimized version is illustrated in Fig. 5. We used
Python-based time library to measure the end-to-end execution
latency for speech classification inference.

In addition to our approach, some other works are being
proposed for CNN acceleration on image classification tasks,
where CNN implementation remains the same but audio
features input matrix is replaced by image matrix. Fune [19],
a CNN accelerator tool achieves up to 2.14X speed-up of
CNN by providing optimal parameters search for hardware
synthesis. ALAMO [20] is another approach which also ex-
plores CNN acceleration for image recognition task by using
an approach of loop unrolling followed by sequential compu-
tation, resulting in 1.9X speed-up factor. Another proposal of
CNN acceleration, Angle-Eye [21] achieved 6X as their best
speed-up factor by exploiting the potential of parallelization
in CNN. Our approach in case of CNNvl-L has achieved
an acceleration factor of 6.7X, which is higher than the
previously mentioned approaches. An important observation
in our experiment is that CNNv2 has lower latency without
parallelization but still achieves lower acceleration factor than
CNNvl. The reason is that 3 Convolutional Layers in CNNv1
provide more opportunity of parallelization than two convo-
Iutions in CNNv2. As convolution reduces size of input, so
lesser number of convolutional layers in network means more
parameters before fully connected layer which has relatively
lower potential of parallelization.

VIII. CONCLUSION & FUTURE WORK

This work is focused on implementing a CNN accelerator on
SoC based edge device for classification of speech commands.
The CNN proposed in this paper is a very light network
which delivered SOTA accuracy performance while keeping
the computational cost and memory significantly lower. We
demonstrated that how keeping data centric approach helps
to achieve high performance with small model by efficiently
extracting useful information from training data. The com-
parison of our model shows that it delivers high performace
same as large SOTA models. Second half of the paper focused
on accelerator design for CNN network which is deployed
on FPGA part of SoC processor. After using the accelerated
design, the end-to-end latency of the speech coammand clas-
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sification was reduced by 6X. The future work related to this
on-going research is as follows:

o To extend the implementation to Automatic Speech
Recognition (ASR) from speech commands classification.
To make an integrated framework for sound sepration,
source localization and speech recognition.

To measure and improve the power consumption of
FPGA based device and compare it with GPU and CPU.
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