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Abstract: End-to-end (E2E) automatic speech recognition (ASR) models have two desirable

properties: online and offline modes. The online ASR mode, which operates under strict latency

constraints, processes speech frames in real-time to provide transcription. Conversely, the offline

ASR mode waits for the complete utterance of speech frames before generating a transcription.

Recently, the integration of online and offline ASR for recurrent neural network transducers (RNN-

T) can be achieved through the joint training of online and offline encoders with a shared decoder.

However, this integration comes at the cost of performance degradation in the offline ASR mode,

as the shared decoder must handle features of varying contexts. Namely, with E2E integration

framework of online and offline encoders, we explore two approaches to enhance the performance

of both the ASR modes. First, we introduce separate RNN-T decoders for each ASR mode while

maintaining shared encoders, thereby effectively managing features of different contexts. Second,

we explore multiple auxiliary loss criteria to introduce additional regularization, thereby enhancing

the overall stability and performance of the framework. Overall, evaluation results show 1.8%-2.5%

relative character error rate reductions (CERR) on corpora of spontaneous Japanese (CSJ) for

online ASR, and 4.4%-6.3% relative CERRs for offline ASR within a single model compared to

separate online and offline models.

1 Introduction

End-to-end automatic speech recognition (E2E-ASR)

systems [1] strive to achieve low latency and high per-

formance for a variety of tasks, including online [2]

and offline [3] ASR. However, the creation of distinct

architectures for each task is neither scalable nor flex-

ible. Therefore, a single E2E-ASR framework, capa-

ble of handling multiple tasks with high accuracy and

adaptability, is preferable. One potential solution is

the joint training of online and offline E2E-ASR tasks

using shared weights. However, most of the existing

methods suffer from negative transfer, a phenomenon

where the performance of one task interferes with an-

other and degrades the performance of either of them.

For example, in the case of shared weights between on-

line and offline E2E-ASR, the limited contextual fea-
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tures of online encoder could lead to a conflict with

full-context offline encoder. This is because the model

might not be able to effectively differentiate between

the features relevant to each encoder, leading to the

inclusion of irrelevant negative samples. To address

this issue, we propose an E2E-ASR framework that

integrates online and offline ASR and combines the

unique capabilities of both the ASR models.

In this study, our primary objective is to optimize

both online and offline ASR modes. This framework

employs multiple encoders, with one designated for

online ASR and another for offline ASR, and sepa-

rate decoders for each. The framework extracts the

hidden states of the online encoder and uses them

as input for the offline encoder. This method allows

us to integrate the functionalities of both encoders

while maintaining separate decoders for online and

offline modes. As a general approach rather than

relying only on the cascaded integration [4] for per-

formance optimization, our method introduces sepa-
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rate online and offline recurrent neural network trans-

ducer (RNN-T) [5] decoders to leverage varying con-

textual information from both online and offline en-

coders. Additionally, we employ connectionist tempo-

ral classification (CTC) [6], attention mechanism [7],

and masked language model (MLM) [8] based auxil-

iary losses to bring more regularization and refine-

ment to the E2E-ASR framework. The CTC loss

helps in aligning the input features with the output

labels, the attention mechanism provides a dynamic

alignment between the input and output sequences,

and the MLM loss aids in predicting the masked in-

put features.

Through extensive experimentation, we have been

able to demonstrate the effectiveness of each auxiliary

loss in improving the performance of the offline ASR

model. Our results indicate a significant improvement

in the accuracy and efficiency of both online and of-

fline ASR models, validating the effectiveness of our

integrated framework and auxiliary loss techniques.

2 Related work

One of the current challenges in E2E-ASR is to de-

velop a unified model [9,10] that can handle both on-

line and offline scenarios. Online ASR is suitable for

applications that require low latency and real-time

feedback, such as voice assistants and online meet-

ings. However, online ASR can only use limited con-

text information from the past and present frames,

which may limit its accuracy and robustness. On the

other hand, offline ASR is suitable for applications

that do not have strict latency constraints, such as

offline transcription and speech analysis. Offline ASR

can exploit full context information from the whole ut-

terance, which may improve its performance and gen-

eralization. Therefore, different context information

may require different acoustic features and network

architectures, making it difficult to jointly optimize a

single model for both scenarios.

In recent studies [11], authors have explored the

unification of online and offline encoders by using the

same decoder for different input features, or by using

the output of the online encoder as the input of the

offline encoder [12]. However, integrating online and

offline encoders often face challenges in offline scenar-

ios, particularly when the online mode is prioritized

during optimization. A common approach involves

using a single shared decoder based on RNN-T to han-

dle features of varying contexts. However, the shared

図 1: An end-to-end architecture of online and offline

encoders integration with auxiliary losses: In black,

the original losses. In red the new auxiliary losses.

decoder may not effectively differentiate between the

limited and full context features, leading to the in-

clusion of more negative samples; thus, degrading the

ASR performance. While multitask learning strives

to enhance the performance of multiple tasks concur-

rently, the selective use of auxiliary losses [13] can

support the primary task and improve the generaliza-

tion ability of the framework. Therefore, we propose

an end-to-end integration of online and offline ASR

using separate RNN-T decoders and auxiliary losses,

such as CTC, attention, and MLM loss, each of which

brings its own strength in a single model. We expect

that our proposed model can achieve better perfor-

mance than the existing methods.

3 Framework

This section introduces the proposed end-to-end in-

tegration of online and offline ASR framework, fol-

lowed by detailed descriptions of each of our design

modules.

3.1 Online and offline encoder

We propose a joint architecture that combines an

online encoder and an offline encoder, each with its

own RNN-T decoder, to handle both online and offline

application scenarios. The online encoder is based

on block processing [2], which preserves the previous

context information using context embeddings. The

offline encoder is based on conformer [3], which cap-

tures the full context information from the whole ut-

terance. The RNN-T decoders are based on recurrent
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neural network transducer, which models the sequen-

tial nature of speech and text. Figure 1 shows the

overview of our proposed architecture. The online en-

coder consists of M encoder layers, each of which has

a context inheritance mechanism. The context inher-

itance mechanism computes a context embedding for

each block at each sublayer, and passes it to the next

sublayer. The context embedding encodes the past

and present context information of the block. The

block size and hop length are denoted by Lblock and

Lhop, respectively. The b-th block of the input audio

feature sequence Xb is defined as:

Xb = (Xt|t = (b− 1)Lhop + 1, ..., (b− 1)Lhop

+ Lblock + 1) (1)

The hidden state for each block, labeled as the b-

th block, is encoded whereas each block contains a

series of hidden states of Lblock- length, i.e., Hb =

(hb
1, . . . ,h

b
Lblock

). The encoding process is carried out

sequentially, resulting in a series of hidden states with

a length of T . These features are then input into the

offline encoder, where they are transformed into a sub-

sampled sequence of hidden states, also of length T ,

as given in the Eq.(3).

Honl = OnlineEncoder(X). (2)

Hoff = OfflineEncoder(Honl). (3)

In this study, we have the online contextual conformer

encoder functioning as an independent online encoder-

decoder module. This is linked to an offline encoder-

decoder module via an output derived from the online

encoder.

3.2 Online encoder-decoder loss

The acoustic features, denoted as X = (x1, . . . , xT )

are initially processed by the online module. This

module employs a contextual block conformer as an

encoder and the RNN-T as an online decoder, as de-

scribed in [2] . The online RNN-T decoder computes

the marginal likelihood of the output y over all pos-

sible alignments, as shown in Eq.(4):

Ponl(y | X) =
∑

o∈O(y)

Ponl(o|X) =

∑
o∈O(y)

[
T+S∏
i=1

P (oi | hti , gsi)

]
, (4)

The RNN-T model optimizes its parameters by min-

imizing the negative log-likelihood, as defined in Eq.

(5):

Lrnn-t
onl = −

∑
(X→Honl,y)

logPonl(y | Honl). (5)

This loss ensures that the model is continually opti-

mized to learn the online contextual features during

training.

3.3 Offline encoder-decoder loss

The offline encoder-decoder modules receives the

processed hidden sequences from the online encoder

and employs full-context conformer as an encoder and

separate RNN-T as an offline decoder. Here, the of-

fline RNN-T decoder computes the marginal likeli-

hood of the output y over all possible alignments, as

shown in Eq.(6):

Poff(y | Honl) =
∑

a∈A(y)

Poff(a|Honl) =

∑
a∈A(y)

[
T+S∏
i=1

P (ai | hti , gsi)

]
, (6)

where the offline RNN-T loss refines the model pa-

rameters by minimizing the negative log-likelihood,

as shown below:

Lrnn-t
off = −

∑
(Honl→Hoff,y)

logPoff(y | Hoff), (7)

3.4 Auxiliary losses

In this study, we enhance the performance of the

offline ASR by optimizing the offline encoder-decoder

module. This optimization is achieved through a multi-

task approach, where a full-context Conformer en-

coder is shared with the CTC, attention, and MLM-

based auxiliary losses. The offline encoder, which re-

lies on the limited context hidden state features pro-

cessed by the online encoder, often experiences per-

formance degradation due to the restricted context

information. Our approach mitigates this issue and

enhances the robustness of the framework by incorpo-

rating additional auxiliary losses into the offline RNN-

T decoder. The inclusion of these losses serves a dual

purpose. Firstly, they contribute to the regularization

of the framework, ensuring stability during the learn-

ing process. Secondly, they aid in the optimization

of the model by providing additional signals for error

correction during training.
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3.4.1 CTC loss

The likelihood of the CTC is given in Eq.(8):

Pctc(y | Hoff) =
∑

z∈Z(y)

P(z | Hoff) =

∑
z∈Z(y)

[
T∏

t=1

P (zt | ht)

]
, (8)

where it serves as an auxiliary loss to refine the model

parameters by minimizing the negative log-likelihood,

as shown in the Eq.(9) below:

Lctc = −
∑

(Honl→Hoff,y)

logPctc(y | Hoff), (9)

3.4.2 Auxiliary attention loss

The likelihood of an attention mechanism is de-

scribed as in Eq.(10):

Patt(y | Honl) =
S∏

s=1

P (ys | ys−1,Hoff) , (10)

The auxiliary attention loss provides an alignment

between the input and output sequences and brings

model regularization by optimizing the corresponding

negative log-likelihood, as shown below:

Latt = −
∑

(Honl→Hoff,y)

logPatt(y | Hoff). (11)

3.4.3 Auxiliary MLM loss

The MLM auxiliary loss in our framework estimates

the token sequence using the full sequence given by

Hoff as shown in Eq.(3), similar to the attention mech-

anism. However, during the training phase, MLM dis-

tinguishes itself from attention by masking randomly

selected tokens, denoted as ymask, with a special to-

ken.

Subsequently, ymask is predicted based on the re-

maining unmasked tokens, yobs, as Pmlm(ymask|yobs,Hoff).

Here, the MLM refines the model parameters by min-

imizing the negative log-likelihood as outlined in the

equation below:

Lmlm
off = −

∑
(Honl→Hoff,y)

logPmlm(ymask|yobs,Hoff).

(12)

This approach allows the MLM to contribute to the

refinement of the model parameters, enhancing the

overall performance of the system.

Finally, the offline loss (Loff) is computed using the

weighted sum of individual loss objectives as defined

in Eqs.(7), (9), (11) and (12):

Loff = λctcLctc
off + λrnntLrnnt

off + λattLatt
off + λmlmLmlm

off ,

(13)

where λctc, λrnnt, λatt and λmlm are tunable hyperpa-

rameters and are determined experimentally. How-

ever, for this work we used the hyperparameters as

reported in [14] and obtained optimal results.

Finally, we define the total multi-task learning ob-

jective for end-to-end integration of online and offline

encoders as:

Lmtl = λonlLonl
rnn-t + λoffLoff (14)

where λonl and λoff are the weighting terms and Lonl

is the online loss obtained from Eq.(5) and Loff is the

offline loss obtained from Eq.(13).

4 Experiments

4.1 Dataset

In this study, we primarily focus on a specific sub-

set, referred to as subset A, of the Corpus of Spon-

taneous Japanese (CSJ) [15]. This subset consists of

academic lecture-based ASR tasks and comprises 236

hours of speech data.

For evaluation purposes, we have divided the dataset

into three distinct tasks: eval 1, eval 2, and eval 3.

These tasks contain 1.9 hours, 2.0 hours, and 1.3

hours of speech data respectively, providing a com-

prehensive and diverse set of data for our analysis.

4.2 Experimental setup

In our study, we utilized the ESPnet2 toolkit [16]

as a foundation to build our baseline models and the

proposed E2E framework. This framework is based on

the concept of multi-task learning for ASR task. We

integrated additional modules for encoder, decoder,

and auxiliary losses into this framework, capitalizing

on existing specialized architectures. Our online en-

coder is composed of twelve layers of 256-dimensional

contextual block conformer, each layer having 1024

feed-forward dimensions and 4 attention heads. We

apply a dropout rate of 0.1 to each layer. For block-

processing [2], we configure the block size to 40 and

maintain a look-ahead and hop size of 16 to opti-

mize online streaming performance. Our offline en-

coder comprises of twelve layers of 256-dimensional
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表 1: On Corpus of Spontaneous Japanese (CSJ) : Absolute (abs.) character error rate (CER) and relative

(rel.) CERR numbers on CSJ data for i) single baseline models (B1, B3, B5, B6, & B7), ii) a baseline cascaded

encoder with shared decoder models (B2 & B4) [12], iii) proposed end-to-end integration of online and offline

encoders with separate RNN-T decoders (P1 & P2) and auxiliary losses (P3, P4 & P5). All the results are

decoded with a beam size of 10.

CSJ (SUBSET A)

Mode ID Method eval1 eval2 eval3

abs.↓ rel.(%)↑ abs.↓ rel.(%) ↑ abs.↓ rel.(%)↑

Online B1 Context-Transducer (baseline) 6.84 4.95 11.72

B2 Cascaded [12] (baseline) 6.81 (0.44) 5.07 (-2.42) 11.89 (-1.45)

P1 Online-Transducer (ours) 6.67 (2.49) 4.86 (1.81) 11.79 (-0.60)

Offline B3 Conformer-Transducer (baseline) 5.78 4.15 9.94

B4 Cascaded [12] (baseline) 5.60 (3.11) 4.04 (2.65) 9.68 (2.61)

P2 Offline-Transducer (ours) 5.48 (5.19) 3.89 (6.27) 9.50 (4.42)

Offline B5 Conformer-CTC (baseline) 5.50 3.88 9.76

P3 Conformer+Lctc
off (ours) 5.51 (-0.18) 3.72 (4.12) 9.62 (1.43)

Offline B6 Conformer-Transformer (baseline) 5.16 3.87 9.90

P4 Conformer+Latt
off (ours) 5.29 (-2.46) 3.71 (4.13) 9.55 (3.54)

Offline B7 Conformer-MLM (baseline) 5.53 4.00 9.51

P5 Conformer+Lmlm
off (ours) 5.58 (-0.90) 3.81 (4.75) 9.88 (-3.74)

full-context conformer [3], each layer having 1024 feed-

forward dimensions and 4 attention heads. The out-

put from the online contextual block conformer is

channeled into the offline conformer block, resulting

in a cascaded architecture. For the online encoder,

we employ a separate RNN-T decoder with a 256-

dimensional embedding prediction network and a 320-

dimensional joint network. Conversely, for the offline

encoder, we utilized a distinct RNN-T decoder with a

256-dimensional embedding prediction network and a

320-dimensional joint network. To augment the reg-

ularization of the offline encoder-decoder, we intro-

duced auxiliary losses based on CTC, attention, and

MLM mechanisms. We train this end-to-end architec-

ture for 50 epochs with a learning rate of 0.0015 and

warmup steps of 1500. We employ a training weight of

1 to the online encoder to maximize the performance

capacity of the online ASR mode. However, for the of-

fline mode and auxiliary losses, we adopt the training

weights for λrnnt, λctc, λatt, λmlm as proposed in [14],

i.e., 0.10, 0.15, 0.30, and 0.45 respectively.

4.3 Main results

In this work, we evaluate the performance of our

proposed E2E framework with several baseline mod-

els. These include the standalone online contextual

block conformer transducer (Context-Transducer), the

offline full-context conformer transducer (Conformer-

Transducer), and a cascaded architecture with a shared

RNN-T decoder, as proposed in a previous study [12].

To ensure a fair comparison, we maintained the same

number of encoder layers (twelve) for both online and

offline modes in all models, including the Context-T

and Conformer-T.

For our first primary analysis, we perform an abla-

tion study conducted on the Corpus of Spontaneous

Japanese (CSJ) dataset, and is presented in Table 1.

In this table, the standalone online and offline trans-

ducer baseline models are represented by Context-

Transducer (B1) and Conformer-Transducer (B3), re-

spectively. We also developed a baseline cascaded ar-

chitecture with shared decoders (B2& B4) as proposed

in the referenced study [12]. These models are com-

pared against our proposed framework (P1& P2). The
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character error rates (CER) listed in Table 1 are ob-

tained using a beam width of 10 for both online and

offline RNN-T modules. Our findings indicate that

the proposed framework improved the performance of

the online ASR path compared to the standalone on-

line model. We observed a relative CER (CERR) im-

provement ranging from 1.81% to 2.49% across mul-

tiple evaluation sets. Moreover, our proposed frame-

work also demonstrates substantial performance im-

provement for the offline ASR path, with a CERR

between 4.4% and 6.3%. These results highlight the

effectiveness of our proposed E2E framework in im-

proving the performance of both online and offline

ASR modules.

Next, we compare our auxiliary tasks Lctc
off (P3), Latt

off

(P4) and Lmlm
off (P5) against the separately trained

Conformer-CTC (B5), Conformer-Transformer (B6),

and Conformer-MLM (B7) models. Table 1 summa-

rizes our experiments to understand how each task

improved or degrades the performance on CSJ evalu-

ation sets compared to the standalone models. Over-

all, most auxiliary tasks show improved performance

on eval2 and eval3 test sets with an exception for test

set eval1 which shows performance degradation. This

degradation can be attributed to the fact that train-

ing weights in this study are optimized to improve

the overall performance of the online and offline trans-

ducer modes. The performance for each auxiliary task

can potentially be improved by assigning more opti-

mal weights to the individual task. It will allow the

model to focus more on optimizing the performance of

each auxiliary task, rather than prioritizing the over-

all performance of the transducer modes.

5 Conclusion

In this study, we propose a novel approach to in-

tegrate online and offline ASR modules in an end-to-

end manner, utilizing auxiliary losses. This frame-

work is designed to optimize the combination of on-

line and offline RNN-T decoders, leveraging the power

of multi-task learning. The primary objective is to

enhance the learning of contextual representations,

thereby offering increased flexibility in the E2E-ASR

framework. Our approach demonstrates a significant

improvement in CERR for the CSJ corpus, compared

to traditional cascaded architectures [12]. This im-

provement is particularly noticeable with the intro-

duction of auxiliary losses, which provide additional

regularization and refinement to the framework.
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