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Abstract

In this paper, we consider the human/machine
hands-free speech interface where the user voice
is picked at a distance with a microphone array.
The proposed method aims at suppressing the
diffuse background noise efficiently without dis-
torting the speech estimate. This method is a
modification of a method combining frequency
domain blind signal separation (FD-BSS) and
Wiener filter based post-processing. Contrary
to the conventional approach, the Wiener post
filter is only applied to a selected number of
the components separated by FD-BSS. Simula-
tion results show that the proposed approach
can achieve a better speech enhancement, mea-
sured in term of word recognition in a speech
recognition task, than the conventional Wiener
filter based post-processing.

1 Introduction

In hands-free speech recognition, microphone array tech-
niques are used to improve the captured speech by reduc-
ing the effect of noise and reverberation ([7, 4]). Among
these techniques, in recent years, frequency domain blind
signal separation (FD-BSS) has been used with success
for recovering the speech by separating the observed sig-
nals in their different components (see review paper [13]).
FD-BSS is efficient for speech/speech separation [11].
But in the human/machine communication where the
user’s voice has to be extracted from a diffuse back-
ground noise, FD-BSS gives a better estimate of the
diffuse background noise than of the target speech.
Consequently FD-BSS has to be combined with some
nonlinear post-filtering techniques in order to improve
the quality of the captured speech [18, 11, 16, 17,
9]. An efficient approach suppresses the diffuse back-
ground noise estimated by FD-BSS via Wiener filtering
[16].

In this paper, our goal is to improve the speech recog-
nition performance for the human/machine hands-free
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Figure 1: Equivalent mixtures in frequency domain.

speech interface. The user is assumed to be close to the
microphone array and thus is modeled as a point source
whereas the other sources create a diffuse background
noise. We use a similar approach as in [16] where the
noise estimate is obtained by FD-BSS and noise suppres-
sion is performed via Wiener filtering. But we propose a
modified noise estimate and we do not apply the Wiener
filtering directly to the observations.

The main idea is that if some of the sources from the
diffuse background noise are efficiently canceled by the
FD-BSS (linear processing), it is better not to include
them in the noise estimate used by the post-filter (non
linear processing) in order to keep the distortion of the
estimated speech low. This is particularly important for
speech recognition tasks where the the post-filter should
give a good trade-off between high SNR and low dis-
tortion [16]. In the proposed approach, after the FD-
BSS, we exclude from the noise estimate the estimated
noise components that are the least correlated with the
speech estimate. Using this modified noise estimate in
the Wiener filter based post-filter also requires the mod-
ification of the observation before filtering.

Experimental results show the impact of the pro-
posed method on the quality of the speech estimate in
a speech recognition task. In particular, the proposed
method achieves better performance than the conven-
tional Wiener filter based post-processing.

2 Preliminaries

2.1 Frequency Domain Blind Signal Separation

In blind signal separation of acoustic signals, the prop-
agation of the sounds from their locations of emission
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Figure 2: BSS at frequency bin f.

to the microphone array is modeled by a convolutive
mixture. After applying a F' points short time Fourier
transform (STFT) to the observed signals, the convolu-
tive mixture is equivalent to F' instantaneous mixtures in
the frequency domain (see Fig. 1). At the fth frequency
bin, the observed signals are

V(f:t) = A(H)S(f,1)

where the n x n complex valued matrix A(f) represents
the instantaneous mixture received by the n microphone
array and

S(f>t) = [Sl(.ﬂt):"';sn(f:t)]T

are the emitted signal components at the fth frequency
bin. ¢ denotes the frame index.

In each frequency bin, the blind estimation of the emit-
ted signal components is possible using BSS [15]. The
estimates

Y(f)t) = [yl(f>t)7"'7yn(f7t)]T

are obtained by applying an unmixing matrices B(f) to
the observed signals (see Fig.2)

Y(f.t) = B()X(f,t) = BINAHS(F0)- (1)

If the components of S(f,t) are statistically independent
(and at most one is Gaussian) then it is possible to re-
cover the components of S(f,t) up to scale and permu-
tation indeterminacy by finding the separation matrix
B(f) such that the components of Y (f,t) are statisti-
cally independent [3]. Namely B(f) is such that

Y(f,t) = P(f)A(f)S(F,1)

where P(f) is a n x n permutation matrix and A(f) is
a diagonal n X n matrix.

Consequently several FD-BSS methods adapt the ma-
trices B(f) in order to minimize a cost function measur-
ing the statistical dependence between the components
of the estimate Y (f,t) (see [13]).

Because of the unknown order of the estimated compo-
nents y;(f,t), in order to achieve separation in the time
domain , it is necessary to match the components from
the same signal in all the frequency bins before trans-
forming back the signals in time. This is referred to as
permutation resolution. After resolving the permutation,
the estimated signals are still filtered by an indetermi-
nate filter because of the scaling indeterminacy A(f). A
solution is to project back the estimated signals to the
microphone array [12]. The projection back of the ith
estimate is a n component signal defined by

Zi(f,t) B(f)"'DiY (f,1)
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where D; is a matrix having only one non null entry
di; = 1. If we assume perfect separation B(f)A(f)
P(f)A(f) and the estimated signal is s;(f,t) then P(f)
is such that

P(f)"'DiP(f) = D:

and ‘
Zi(f,1) = A(f, 1)) s;(f,1)

where A(f,t)9) is the j* column of A(f,t). Namely
Z;(f,t) is equal to the contribution of the jth estimated
signal at the microphone array because the projection
back replaces the indeterminate filtering of the estimated
signal by the estimate of the room impulse response be-
tween the location of the jth signal and the microphone
array (represented by A(f,t)¢7)). Note that the obser-
vation is the sum of all the projected back components

3 Proposed method

The block diagram in Fig 3 shows the proposed process-
ing in the frequency domain. The different blocks are
explained in the following sections.

3.1 Speech and Diffuse Background Noise
Blind Separation

In [14], the authors showed that for speech/speech sep-
aration (cocktail party model) FD-BSS is equivalent to
a set of adaptive null beamformers (ANBF) each having
its null toward different speakers. Thus the separation is
achieved because FD-BSS is able to cancel the speeches
that are point sources. In our case, FD-BSS gives a good
estimate of the diffuse background noise by placing a null
in the direction of the speech. But it is not possible to
get a good speech estimate since with a limited number
of microphones it is not possible to cancel the diffuse
background noise [18].

Another problem of the separation of speech and dif-
fuse background noise is the permutation resolution.
The methods developed for the speech/speech separa-
tion are often not efficient for the case of speech in dif-
fuse background noise [5]. Here, in order to find the
speech component in each of the frequency bins, we rely
on the fact that the speech distribution is spikier than
that of the diffuse background noise. To measure the
‘spikedness’ of the distribution, we use the average of
the modulus of the y;(f,t)

ai(f) = EL{lyi(f, DI}

under the constraint

E{lw(f, 0P} =1

where £ {-} denotes the expectation operator. The com-
ponent with the smallest parameter is selected as the
target speech (for details see [6]). After this first step of
permutation resolution, we assume that the components
are permuted such that y; (f, ) is the speech component
in the fth bin.
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Figure 3: Overview of the proposed architecture.

3.2 Modified Noise Estimate and Modified
Observation

Assuming that the FD-BSS method achieved the best
possible separation, the estimated noise components
y2(f,t), - ,yn(f,t) contain no speech however the
speech estimate yi(f,t) is still contaminated by the
noise.

The noise estimate for the conventional Wiener filter
based post-processing is obtained by projecting back the
n—1 components ys(f,t), -, yn(f,t) to the microphone
array [16]. But in our approach we do not project back
the n — 1 noise components.

The noise estimate is composed of several components
and these components may contribute at different levels
in the noise still present in the speech estimate. In par-
ticular some of these estimated noise components may
have a very small contribution in the noise contaminat-
ing the speech estimate. Meaning that FD-BSS sup-
pressed some part of the diffuse background noise (the
diffuse background noise may contain contributions of
point sources for example). In such case, we propose to
exclude these components from the noise estimate used
by the Wiener filter post-processing. The reason is that
it is better in term of speech distortion to suppress these
components with the FD-BSS filter that is linear than
with the nonlinear post-processing.

To determine the noise components that have few con-
tribution in the noise contaminating the speech esti-
mate, we compute the correlation between the speech
estimate y1(f,t) and the estimated noise components

y2(f, 1), - ,yn(f,t). This correlation is denoted by
where * denotes the complex conjugation.

The noise components are sorted according to the ab-
solute value of these correlations. In the remainder, the
components are permuted such that Cy > --- > C,,. The
p components with smallest correlation are not projected
back (see the p components set to 0 in Fig. 3).

Thus the noise estimate Xn(f,t) is only composed of

the projection back of ya2(f,t), -+, yn—p(f,t)
n—p
i=2

where Dy is a matrix selecting yo(f,t),---
(the Noise PB block in Fig. 3).

ayn—p(.ﬂ t)
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Since the last p components are not projected back
the Wiener filtering has to be applied to the modified
observation Xo(f,t) obtained by projecting back all the
components except these p last ones

Xo(f,t) = B(f)"' DoY (f,1) }:Z (f,1)

where Do is a matrix selecting vy (f, 1), --
(the Mod. obs PB block in Fig. 3).

) y’n—p(f’ t)

3.3 Wiener post-filter and delay and sum
beamformer

The modified noise estimate Xy (f,t) and the modi-
fied observation Xo(f,t) both have n components. The
Wiener filtering is applied component wise and the
Wiener gain for the ith component is

_IX§Unr
X5 (£, 1)1 + NXQ (£, 1))

where the subscript (i) denotes the ith component and ~y
is a parameter controlling the noise reduction. The ith
component of the filtered target speech is
XU (£t
(0] (f: )

GO (f, 0
= Ve X8 (f,1)]

finally the n components of the Wiener filtered speech
estimate are merged into one by applying a delay and
sum (DS) beamformer in the direction 6y4yge¢ of the tar-
get speech

GO(f,t) =

SO (£, 1) XS (f,1)]2

ZGDSH £.O8D(f,1)

where Gl(al)se( f,t) the gain of the DS beamformer at the
ith microphone (the target DOA is estimated during the
permutation resolution step. It is an average over all
bins of the estimated DOA of the separated speech com-
ponent).

4 Experimental Results

To demonstrate the effectiveness of the proposed post-
processing based on selective projection back, we com-
pare it to the conventional Wiener filter based post-
processing, to the FD-BSS with no post-processing and
to a delay and sum beamformer (DS).



A four (n = 4) microphone array (inter microphone
spacing of 2.15cm) was used to record a diffuse back-
ground noise (a vacuum cleaner at two meters from the
array and —60°), the impulse responses at one meter
from the array in front of the array and at an angle of
60° (see Fig. 4). The recorded noise is mixed with the
convolution of the impulse response at an angle of 60°
with a recorded fan noise. The SNR of this mixture is
0dB. Then this mixture of noises is mixed with the con-
volution of the impulse responses and a clean speech (100
signals from the JNAS database of Japanese sentences
[8]). A second set of data is obtain by mixing only the
diffuse background noise with the filtered speeches. The
first data set is referred to by ‘fan’ whereas the second
is referred to by ‘no fan’. The SNR values between noise
and speech are adjusted to be the same for both datasets.

For the frequency domain processing, the short time
Fourier transform uses a 512 point hamming window
with 50% overlap. The separation is performed by 300 it-
erations of a BSS method with adaptation step of 0.1 di-
vided by two every 100 iterations (the method is adapted
from [2, 19]).

The proposed approach is tested with two modified
noise estimates corresponding to p = 1 and p = 2. The
result are compared to the delay and sum beamformer
in front of the array (DS), the FD-BSS with no post
processing (BSS) and the conventional Wiener filter p =
0 (note: the FD-BSS with no post processing can be seen
as discarding all the noise components p = 3). Several
values of the coefficient v of the Wiener filter were tested
for each method: v € {1, 5, 10,15, 20,25}.

Since our goal is speech recognition, a 20K-word
Japanese dictation task from JNAS is used as perfor-
mance measure. The word accuracy achieved by the
recognizer is function of both the SNR and the amount
of distortion of the speech estimate. The recognizer
is JULIUS [1] using Phonetically Tied Mixture (PTM)
model [10]. The open test set is composed of 100 utter-
ances (female speakers). The conditions used in recog-
nition are given in Table 1. The acoustic model is a
clean model with super-imposed noise (office noise 25dB
SNR).

Figure 5 shows the word accuracy achieved by the dif-
ferent methods on the two data sets (‘fan’ and ‘nofan’)
for the different SNR values. For each case the result
is the one obtain with the parameter v giving the best

point noise source

1im
60° ::
User m—b 215cm
-60° o

(T60=200mSs)

diffuse noise source

Figure 4: Experimental setup.
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Table 1: System specifications.

Sampling frequency | 16 kHz
Frame length 25 ms
Frame period 10 ms
Pre-emphasis 1-0.97z71

Feature vectors 12-order MFCC,
12-order AMFCCs

l-order AE

HMM PTM , 2000 states
Training data Adult and Senior (JNAS)
Test data Adult and Senior female (JNAS)

word accuracy (also see first row of Table 2).

We can see that, at the same SNR, the performances
are better for the ‘fan’ dataset that contains a point
source in addition to the diffuse background noise. In
particular for the lower SNRs (5dB and 10dB), the
improvement of the word accuracy with the proposed
method over the conventional method is better for the
‘fan’ dataset. This shows that if some components of
the noise are canceled by the FD-BSS (the point source
fan noise), modifying the noise estimate improves the
performance.

There is also a performance gain on the ‘nofan’ dataset
showing that some of the noise components of the diffuse
background noise contributed less to the noise contam-
inating the speech estimate given by FD-BSS. We can
also notice that for p = 2 the performance is better than
for p = 1. Meaning that discarding more noise compo-
nents lead to better results on these datasets.

These results also show the necessity of the nonlinear
post-processing as in all cases there is an improvement
over the FD-BSS.

The effect of the coefficient v is depicted in Fig. 6 (the
three plots share same color scale). For the proposed
post-processing, like for the conventional Wiener filter
there is a trade-off between SNR and distortion, the word
accuracy is better with a larger v at low SNR and a
smaller v at high SNR.

Table 2 shows the difference of word accuracy between
the proposed method with p = 2 and the conventional
method p = 0 for different choice of v ()A positive value
indicates that the proposed method is superior to the
conventional method). The row ‘best 7’ is obtained by
selecting for each method at each SNR the parameter
v from the list {1,5,10,15,20,25} that gives the best
word accuracy. This row shows the improvement for the
proposed method for p = 2 over conventional method
(p =0) in Fig. 5. The other rows show the improvement
for fixed values of . Note that for larger 7 there is
no performance improvement on the ‘fan’ dataset as the
proposed method perform best with small v (see bottom
of Fig. 6). This shows that at high SNR it is important
to choose a smaller v for the proposed method. We can
also notice that for the ‘nofan’ dataset the performance
difference is larger than for the ‘fan’ dataset at high SNR.



‘fan’ dataset ‘nofan’ dataset
5dB | 10dB | 15dB | 20dB | 5dB | 10dB | 15dB | 20dB
best v | 492 | 5.1 2.74 091 | 218 | 2.28 | 3.53 | 1.36
v=1 | 13.3 | 15.03 | 6.79 0.91 9.3 | 1247 | 7.13 4
v=15|6.19 | 5.08 | 0.77 | —0.63 | 0.72 | 4.12 | 3.71 | 2.18
vy=25|181| 426 | —1.3 | —1.77 | 3.58 | 3.98 | 1.74 | 2.44

Table 2: Word Accuracy differences for p = 2 and p = 0 versus v
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Figure 5: Word accuracy for different SNR values with
the different methods for both datasets.

5 Conclusion

In this paper, we consider the suppression of the diffuse
background noise in the human/machine communication
scenario. We proposed a modification of the noise esti-
mation given by FD-BSS. This modification leads to a
more efficient Wiener filter based post-processing of the
speech estimate. Some experimental results showed that
this approach increases the word accuracy in a dictation
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Figure 6: Effect of Wiener coefficient on word accuracy
for the different methods (‘fan’ dataset only).

task.
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