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ABSTRACT

Noise and channel contamination acoustically degrade the
speech signal. To suppress the effects of degradation and re-
cover the original signal, speech enhancement techniques are
employed. In this paper, we focus on two simple and low-
computational methods: Wiener filtering (WF) and spectral
subtraction (SS). Conventionally, these are formulated with
no relation with automatic speech recognition (ASR). We pro-
pose to optimize the conventional speech enhancement tech-
nique in relation with likelihood of the acoustic model. We
also exploit these simple speech enhancement techniques that
are originally designed for denoising, to address reverberation
as well. In the experiment with real noisy and reverberant
environments, we have achieved significant improvement in
recognition performance using the proposed approach.

Index Terms— Robustness in ASR, Dereverberation, De-
noising, Spectral Subtraction, Wiener Filtering

1. INTRODUCTION

Acoustic degradation is a common problem in speech recog-
nition applications. There have been a lot of research in-
volving speech enhancement that are specifically designed to
suppress acoustic degradation of the speech signal caused by
channel and noise. One of the widely used approaches is
Wiener filtering (WF) [1] where short term estimates of the
noise and speech are used in defining an adaptive filter to re-
duce as much noise energy while removing little speech en-
ergy as possible. A number of variants have been proposed
and implementations in different domains such as time, fre-
quency and wavelet [1] [2] are investigated. Another popular
enhancement technique based on spectral subtraction (SS) [3]
which removes the magnitude spectrum of noise from that of
the noisy speech. The noise is assumed to be uncorrelated and
additive to the speech signal. A modification is given in [4]
where multi-band is considered to deal with different effects
of noise in different frequencies. Although these simple meth-
ods are widely used, they are formulated totally independent
of the backend ASR systems.

Another approach which is linked with ASR or acoustic
model likelihood is the feature transformation and adaptation

[5] [6] [7]. Although these methods work well, they require
a sufficient amount of adaptation data, and need some train-
ing to derive mapping parameters. These methods cannot be
easily deployed in arbitrary environments especially when in-
formation of the room acoustics is not available.

In this paper, we focus on the simple enhancement algo-
rithms: Wiener filtering (WF) and spectral subtraction (SS).
Although there exist more sophisticated approaches, the en-
hancement schemes based on WF and SS are simple and fast
to implement, which make its adoption to be effective in ASR
applications. We first extend the original formulation of WF
and SS to work in reverberant environments and then optimize
the enhancement process in relation with ASR.

The paper is organized as follows; in Section 2, we show
the method of extending both WF and SS to address rever-
berant conditions. In Section 3, we discuss the optimization
of the scaling parameters used in WF and SS in the context
of ASR followed by the RIR estimation in Section 4. Exper-
imental conditions and results are given in Section 5, and we
will conclude this paper in Section 6.

2. METHODS

The classical noisy speech model is given as,

���� � ���� � ���� (1)

where ���� and ���� are the uncorrelated speech and noise
signal respectively. To make use of the classical speech en-
hancements to work in reverberant scenario, we treat the re-
verberant signal analogous to that of Eq. (1). Thus, the rever-
berant model is given as,

���� � ����� � ����� (2)

where ����� and ����� are the uncorrelated early and late
reflections. The early reflections are composed of the direct
signal and reflections in earlier time while the latter renders
itself as coloration due to multiple reflections. In this paper,
we consider both speech ���� and noise ���� are reverber-
ant in nature. Assuming we can access the room impulse
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Fig. 1. Speech enhancement using Wiener filtering (WF)

response (RIR) ���� � ������������ and effectively iden-
tify its early and late components ������ ����� [8][9] respec-
tively, we can further rewrite Eq. (2) as,

���� � ����������������������������������� (3)

The power spectrum of the reverberant model in Eq. (2) can
be estimated as:

���	��� � ����	��
� � ����	��

� (4)

where ���	� and ���	� are the magnitude spectra of the
early and late reflections. By convention, we denote both
���	� and ���	� to contain both filtered speech and noise.
Also, when referring to reverberant data ����, we assume a
reverberant speech and reverberant noise as depicted in Eq.
(3). In dealing with reverberation (both reverberant speech
and noise), we are interested only in suppressing the effects
of the late reflection since the early reflection is sensitive to
microphone-speaker location. Moreover, the effect of early
reflection is mostly mitigated with cepstral mean normaliza-
tion (CMN) [8][9].

2.1. Wiener Filtering

The proposed Wiener filtering in the wavelet domain is a
form of compression of the wavelet coefficients. By way
of compression, the thresholding of the wavelet coefficients
is avoided. The wavelet-based Wiener filtering [2] which is
used in suppressing additive noise requires the calculation of
Wiener gains given as,


� �
������

������ ����
�
�

� (5)

where ������ and ���
�
� are the speech and noise power re-

spectively, calculated from the wavelet coefficients at scale �.
Noise segments were detected using a voice activity detector
(VAD). For the ��� contaminated wavelet coefficient in band
� ��� , the denoised wavelet coefficient is given as,

�������������� � ��� �
�� (6)

The Wiener weighting 
� dictates the degree of suppression
of the contaminant to the observed signal. The enhanced
wavelet coefficients are used to reconstruct the speech signal
by inverse fast wavelet transform (IFWT).
This work of [2] is originally designed to suppress additive
noise only. We expand it to deal with reverberant channel by
suppressing the late reflections. Thus, the Wiener gain given
in Eq. (5) is modified to,


� �
�����

�
�

������� � Æ������
�
�

� (7)

where �����
�
� and �����

�
� are the early and late reflection

power respectively, calculated from the wavelet coefficients
at scale �. Although ����� has relatively high power values
than �����, the VAD method to select the correct segments
may not be sufficient. Thus, a scaling parameter Æ� is in-
troduced to minimize the error in calculating �����

�
� and

�����
�
�. We note that we can synthetically generate data

using the clean speech and noise database together with the
RIR [8][9]. Thus, we can calculate ÆÆÆ � �Æ����� Æ�� ���� Æ� �
that minimize the error between ������

�
�, �����

�
�� with

the VAD and ������
�
�, �����

�
�� for the synthetically gen-

erated data. This process is similar to that in [8][9]. By apply-
ing the Wiener gains to the reverberant wavelet coefficients
��� (analogous to Eq. 6), the enhanced wavelet coefficients
are given as,

�������������� � ��� ���� (8)

The enhanced wavelet coefficients are converted back to the
time domain through IFWT and we denote this as ���ÆÆÆ� to
signify that only the early reflections are retained using ÆÆÆ. Fig.
1 illustrates the implementation of the modified WF where the
reverberant and noisy speech signal is processed using a Fast
Wavelet Transform (FWT). � subbands are created through
FWT decomposition [11]. In our application we use five sub-
bands to reflect that of [8][9]. Each of these subbands outputs
a wavelet coefficient as a result of the fast wavelet structure.
Then, the Wiener gains are calculated and the contaminated
data is scaled by the Wiener gains. The early reflections (en-
hanced data) are then recovered through IFWT. Optimization
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Fig. 2. Speech enhancement using spectral subtraction (SS)
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Fig. 4. Overall block diagram of the speech enhancement utilizing
ASR-optimized scaling parameters.

of the scaling parameters based on ASR follows, which will
be discussed in Section 3.

2.2. Spectral Subtraction

We will show the expansion of the conventional SS to ad-
dress reverberation problems. As previously mentioned, we
are interested in recovering only the early reflection and sup-
pressing the late reflection. This can be done with multi-band
SS [8][9]. Thus, the �th band power spectra of ���	� is
achieved through,

����	� ��� �

����
���

���	� ���� � Æ�����	� ���
�

if ���	� ���� � Æ�����	� ���
� � �

�����	� ���
� ���������

(9)

where � the flooring coefficient, ���	� ���� and ����	� ���
�

are the power spectra of the reverberant signal and power of
the late reflection respectively, with a window period of � .
Æ� denotes the �th band scaling parameter. The multi-band
scaling factors ÆÆÆ � �Æ����� Æ�� ���� Æ� � are derived through
an offline training which minimizes the error of the estimate
����	� ��� under the MMSE criterion. The values of ÆÆÆ coef-
ficients (through offline training), and the effective identifica-
tion of the late components of the impulse response ����� are
discussed in [8] [9]. Fig. 2 shows the block diagram of the SS
implementation. First, the early reflection �� are recovered
as discussed in Eq. (9) and reverted back to ���ÆÆÆ� by IFFT.

Table 1. System specification used in evaluating the system
Sampling frequency 16 kHz
Frame length 25 ms
Frame period 10 ms
Pre-emphasis 	� ��
����

Feature vectors 12-order MFCC,
12-order �MFCCs
1-order �E

HMM 8000 Gaussian pdfs

3. OPTIMIZATION BASED ON ACOUSTIC
LIKELIHOOD

In Section 2, the multi-band scaling parameters ÆÆÆ are all set
to initial MMSE-based values and in effect serve as a global
weighting. In this section, we will discuss the optimization
of ÆÆÆ, fine-tuning both WF and SS to be directly linked with
ASR.

In Fig. 3, we show the ASR-based optimization of ÆÆÆ
where the scaling parameters in each band is sequentially op-
timized from band �=1 to �=M. The band coefficient to be
optimized is allowed to change within a close neighborhood
�� from its initial ���� value, where � � �	���� and
� � ���. The reverberant data ��� is enhanced using either
multi-band WF/SS. Initially, we fix the rest of the scaling pa-
rameters to MMSE-based estimates except for the band to
be optimized. Thus, for optimizing band � � 	, we gen-
erate ÆÆÆ������ � � Æ� ���� � ��� �� Æ� ���� � Æ� ����

� ���� Æ� ���� �, and execute WF/SS using the generated co-
efficients. The resulting enhanced data ���ÆÆÆ������� are evalu-
ated using the HMM-based acoustic model which is trained
with data processed with MMSE-based WF/SS parameters,
denoted as  �  ���� . A likelihood score is computed
for each of the data processed with different WF/SS condi-
tions. Based on this result, Æ�	�	
� that has the correspond-
ing highest likelihood score is selected. Right after Æ�	�	
�
is found, the acoustic model is updated with data processed
by WF/SS using Æ�	�	
�. The newly updated model  � is
then used in calculating the likelihood score for the next band
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Fig. 5. Robust RIR Estimation.

and the process is repeated until the complete set of param-
eters Æ�	
�,...,Æ�	
� are optimized. After the optimization,
the reverberant data are processed with the proposed ASR-
optimized WF/SS as shown in Fig. 4.

4. ROBUST RIR ESTIMATION

Since we need the RIR, we implement an automatic estima-
tion of the RIR as opposed to physically measure it [8][9]. We
have shown that due to the low resolution characterization of
HMM to the speech signal compared to the RIR, rough esti-
mate of the RIR is sufficient in HMM applications. The RIR
can be modeled as having a decaying exponential energy,

����� � ��� ln ��������� � (10)

where ! is the discrete time sample, and "�� is the reverbera-
tion time. To effectively identify "�� in the presence of both
convolutive speech and noise, we designed a GMM-based " ��

classifier as shown in Fig. 5 (top). Reverberant speech and
noise are synthetically generated ����� with variable "��� to
train GMMs #���� . To attain robustness, we employed the
following; first, reverberant noise-only frames (occur in block
segments during silence part of the clean speech) are used
to train the GMM. This avoids the variability caused by the
convolutive speech. From these reverberant noise-only block
segments, we select only the frames that have low power to
capture only the late reflection of the reverberant noise signal.
We note that the late reflection renders itself as coloration in
frequency due to multiple overlapping. This results in less
sensitivity to noise types and SNR since noise information
is smeared by the coloration effect. Finally, we use a larger
mixture for the GMM (i.e. 256 mix). The use of a large num-
ber of mixture components makes the GMM sensitive to the
higher resolution RIR. Fig. 5 (bottom) shows the actual iden-
tification of "��. The reverberant speech and noise input is
processed to classify noise-only frames. Then, likelihood is
calculated given all of the GMMs with different "��� . The
corresponding "�� that results in the highest likelihood score
is selected and from this, the RIR is estimated using Eq. (10).

5. EXPERIMENTAL EVALUATION

5.1. Training and Testing Data

The training database is from the Japanese Newspaper Arti-
cle Sentence (JNAS) corpus. The open test set is composed
of 200 utterances. Recognition experiments are carried out
on the Japanese dictation task with 20K vocabulary. The lan-
guage model is a standard word trigram model. The acoustic
model is a triphone HMMs of 8000 Gaussian pdfs. A sum-
mary of the system specification is shown in Table 1.

We experimented using "��=200 msec reverberation time.
Reverberant training data are synthetically produced with the
automatically generated RIR discussed in Section 4. The test
data were recorded in a room with known reverberation time
: "��=200 msec. Thus, we used actual reverberant data for
evaluation. Three types of noise are considered; office, vac-
uum cleaner, and white Gaussian noise. The signal-to-noise
ratio (SNR) are 15 dB, 20 dB and 25 dB. The microphone-
to-speaker distance is approximately 1.5 m. The noise source
is also placed 1.5 m from the microphone with a 30 degrees
angle relative to the microphone-to-speaker distance. In the
experiments we use a total number of bands � � � which is
consistent that of the former work [8][9].

5.2. Acoustic Model Training

We have shown the incremental optimization of the multi-
band scale parameters in Section 3. This process selects the
optimal scale factors ÆÆÆ	
� � �Æ�	�	
�� ���Æ���	
�� ���� Æ���	
��.
The acoustic model training is carried out as,

 	
� � ������
�
�

��
���

$ ����ÆÆÆ���� ����� 
�
��

where  	
� is the desired acoustic model to be trained and
later used by the ASR.  � is the � th updated model which
is the last model update in a series of model re-estimation as
part of the optimization process discussed in Section 3. ���Æ

ÆÆ���
�

is the enhanced utterance processed by WF/SS using the opti-
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Table 2. Recognition Results in Word Accuracy
office noise vacuum cleaner noise white gaussian noise

Methods 15dB 20dB 25dB 15dB 20dB 25dB 15dB 20dB 25dB
"�����%: Unprocessed
"������%: clean 23.4% 34.6% 40.3% 19.3% 32.2% 37.5% 25.6% 38.7% 42.0%
"�����%: Unprocessed
"������%: Unprocessed 37.1% 43.5% 48.6% 35.4% 38.7% 42.6% 39.4% 45.1% 50.3%
"�����%: SS
"������%: SS 51.8% 58.6% 63.2% 49.1% 57.3% 60.1% 52.8% 59.9% 64.7%
"�����%: ASR-optimized SS
"������%: ASR-optimized SS 61.4%61.4%61.4% 72.1%72.1%72.1% 75.9%75.9%75.9% 58.3%58.3%58.3% 70.1%70.1%70.1% 73.6%73.6%73.6% 63.4%63.4%63.4% 73.2%73.2%73.2% 77.1%77.1%77.1%
"�����%: WF
"������%: WF 52.3% 57.4% 61.8% 50.6% 56.4% 58.2% 53.6% 58.7% 62.9%
"�����%: ASR-optimized WF
"������%: ASR-optimized WF 62.5%62.5%62.5% 71.4%71.4%71.4% 74.1%74.1%74.1% 59.4%59.4%59.4% 68.368.368.3% 70.3%70.3%70.3% 64.7%64.7%64.7% 72.8%72.8%72.8% 76.5%76.5%76.5%

mal scale parameters while��� refers to its transcription. The
training database has a total � � & training utterances.

5.3. Recognition Performance

In Table 1, we show the recognition performance of the dif-
ferent methods. It is observed that enhancing the reverberant
data using WF and SS is better than not processing the rever-
berant data at all. However, when WF and SS are optimized
in relation with the ASR, further improvement in recognition
performance is achieved. This is attributed to the fact that the
ASR-optimized variants are capable of improving the model
likelihood used by the ASR. The superior performance of the
proposed method is consistent to all of the different SNRs and
noise types in our experiment. We note that we test using real
recording noisy and reverberant data.

6. CONCLUSION

We have extended two popular denoising techniques (WF
and SS) to address reverberant speech and noise, and opti-
mize each of these to be effectively used in ASR applica-
tions. Moreover, we have shown the process of embedding
optimized enhancement in the acoustic model training. Im-
provement in performance is achieved as the enhancement
procedure is closely linked to the improvement of the acous-
tic model likelihood. We have shown that the this concept
works in both frequency and wavelet domain. In general, the
optimization in relation to ASR is applicable to any speech
enhancement algorithms and in any domains.
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