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ABSTRACT

This paper presents a text-independent speaker identification
system for meetings. During the meeting, all of the meeting
participants carry a microphone while a human tracker mon-
itors their movements. The human tracker is based on scan-
ning laser range finder and gives the positions of all the par-
ticipants at any time. The position information is used to track
the geometry of the distributed microphone array formed by
all of the microphones. Using the geometry of the distributed
array it is possible to cancel interfering speeches and noises
from the audio stream assigned to each of the participants.
Then, using these processed audio streams, the participants
are identified by means of Gaussian mixture models (GMM)
that were trained before hand. The proposed system is able
to perform identification of simultaneously speaking partic-
ipants and is thus a good candidate system for meeting di-
arization task. In particular, the use of laser range finders
is a novel approach that makes the position estimation im-
mune to acoustic noise and reverberation. An experiment
conducted with three subjects reproducing a meeting config-
uration demonstrates the performance of the system for iden-
tification.

1. INTRODUCTION

These last years, the speech recognition community has been
intensively working on the transcription of meetings [1, 2, 3].
An important task in meeting transcription is speaker diariza-
tion (i.e. to find ”Who spoke when”).

In a meeting, it is desirable to impose the least constraints
to the participants. For example participants should be al-
lowed to seat freely. Thus a convenient speaker diarization
system should be flexible relatively to the positioning of the
participants. For hands-free diarization, single microphone
[4] or multiple microphones [5] approaches were proposed.
Using multiple microphones, it is possible to estimate the
position of the speakers using the time differences of arrival
[6]. However, in a real environment, the accuracy of the posi-
tion estimation is reduced because of reverberation and noise.
Moreover, prior to diarization, separating the audio streams

captured by a distant microphone array requires heavy com-
putation.

For a meeting rooms equipped with a microphone array or
with distributed microphones, the observed audio streams are
usually processed to obtain one stream for each active partic-
ipant (for example with audio beamforming in [7]).

Nowadays, with the proliferation of portable devices (lap-
top computers, PDAs and smart phones), it is not rare that in
a meeting situation, each of the participants may be carrying
a device having a microphone. Thus the speaker localization
and the acquisition of the data streams may be performed us-
ing these microphones [8, 9]. Such a set of microphones is
referred to as a distributed array. These approaches usually
require the different devices to communicate together in or-
der to acquire all the audio streams, then distributed or cen-
tralized processing may be applied to perform localization,
diarization or other tasks.

As the first step in developing a multi-modal front-end for
speaker diarization exploiting a distributed array, this paper
discusses the signal processing involved in the speaker iden-
tification task (at this first step networking problems are not
treated yet). The proposed front-end exploits audio data from
the tie microphones and position information given by a hu-
man tracker system based on laser range finders (LRF) [10].
During the meeting, the positions of the different participants
are tracked using the LRF and one audio stream is obtained
for each of the participants using a tie microphone (a micro-
phone fixed in front of the torso). Then speaker identifica-
tion is performed by using Gaussian mixture models (GMM)
of the mel-frequency cepstral coefficients (MFCCs) extracted
from theses audio streams [11]. For each participant, the tie
microphone fixed on their torso is dominated by their voice
when talking. But the speech signal from the tie microphones
also contains environmental noises and interferences from the
other participant voices if they are talking. If a participant is
silent, the interfering voice of the person, or persons, talking
at that moment is likely to be the dominant signal. Thus it
is necessary to implement a accept/reject system to detect the
active channels.

With this system, the participants are able to seat freely,
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Fig. 1. Outline of the speaker identification system.

to stand and even move during the meeting because the LRFs
tracks their positions. Moreover using LRF based tracking
is preferable to using audio data for tracking as it insensitive
to the acoustic noise and to the reverberation. It is also an
interesting alternative to camera based tracking as it is very
precise. Note that the number of participants is estimated by
the human tracker independently of the fact that they are talk-
ing or not.

Experiments were conducted in a realistic meeting situa-
tion to demonstrate the capacity of the proposed front-end to
identify active participants.

2. METHOD

Fig. 1 gives an outline of the proposed front-end for speaker
identification. A presentation of the different modules fol-
lows.

2.1. Laser range finder

The motion of the participants in the meeting area is mon-
itored usingr LRFs mounted on pole around the meeting
area’s perimeter (represented by the circles in Fig. 5). The
scanning laser range finders are mounted above the obstacles,
like the table and chairs, to a height where the torso of the
participants (sitting or standing) could be easily observed. To
reduce the errors due to noise and occlusion, each person is
tracked with a particle filter using a linear motion model with
random perturbations. The likelihood is evaluated based on

the potential occupancy of each particle’s position. By com-
puting a weighted average across all particles, the{x, y} po-
sition is calculated at a frequency of approximately37 Hz.
Details of the algorithm are presented in [10].

At a given timet, the estimated number of participants
in the meeting isn(t) and their estimated positions are
{xi(t), yi(t)}i∈[1,n(t)].

2.2. Noise cancellation

Each of the participants is wearing a tie microphone attached
in the front of their torso. The position of these microphones
are given by the LRF based tracking system that tracks the
position of the torso of all the participants. In this paper, we
assume for simplicity that the correspondence between a mi-
crophone and a given position is known. Thus the set of tie
microphones defines a distributed microphone array whose
geometry is known.

The goal of the noise cancellation module is to provide
an audio stream for each of then(t) detected participants
that contains less interference from the other participants and
fewer environmental noise than the unprocessed streams from
the tie microphones (the observed signals). These streams are
obtained by filtering the observed signals in the frequency do-
main. After performing aF bins short time Fourier transform
(STFT), the vector of observation in thef th frequency bin is

X(f, k) =





X1(f, k)
X2(f, k)

...
Xn(f, k)





wherek denotes the frame index.
Let us define

S(f, k) =





S1(f, k)
S2(f, k)

...
Sn(f, k)





the vector containing the speech of all participants at frame
index k and frequency binf . Considering only direct path
propagation we can write the mixing process as

X(f, k) = Â(f, k)S(f, k)

whereÂ(f, k) is the matrix of general term

Aij(f, k) =
1

4πrij(k)
e−j2πfrij(k)/c

with c is the celerity of sound andrij(k) the distance between
the jth speech source (the mouth of thejth participant) and
theith microphone (fixed to theith participant).

The distancerij(k) is decomposed in two termsdi, the
distance between the mouth of theith participant and the
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Fig. 2. Noise suppression.

microphone fixed to his/her torso (assumed constant), and
dij(k), the distance between the microphonesi and j. We
have

rij(k) =
√

d2
i + d2

ij(k).

The distancesdij(k) are obtained using the positions given
by the human tracker whereas the distancesdi are assumed to
be known.

A separation matrix is obtained by taking the inverse of
the mixing matrix

B(f, k) = Â
−1(f, k).

Then the separated audio streams for then participants are

Y(f, k) = B(f, k)X(f, k).

Rather than using these separated streams, better results
were obtained by applying a post-filter approach as the ones
in [12, 13] (see Fig. 2 wheren = 3).

Let us define the noise estimate

Ni(f, k) = Â(f, k)DiY(f, k)

whereDi is a diagonal matrix with all entries set to one ex-
cept theith entry which is null.Ni(f, k) is the estimate of the
contribution in the observed signals of all the signals except
the ith participant speech. Then an estimate of the contribu-
tion of the ith participant speech is obtained by using spec-
tral shaping (We use a post-filter similar to the one used in
[12, 13]) The gain for theith signal is

G
(j)
i (f, k) =

|X(j)(f, k)|2

|X(j)(f, k)|2 + α|N
(j)
i (f, k)|2

where the superscript(j) denotes thejth component andα is
a parameter controlling the noise reduction. Theith compo-
nent of the filtered target speech is

Ẑ
(j)
i (f, k) =

√
G

(j)
i (f, k)|X(j)(f, k)|2

X(j)(f, k)

|X(j)(f, k)|
.

Finally the speech estimatêSi(f, k) is obtained by taking

Ŝi(f, k) = B
i(f, k)Ẑi(f, k)

whereB
i(f, k) is theith row of the matrixB(f, k) (the row

corresponding to theith participant).

2.3. Corpus and GMM

Text-independent speaker identification is performed by scor-
ing the MFCCs (12MFCCs and the energy, their derivatives
and their accelerations) extracted from the audio streams of
each participant by means of GMMs corresponding to the tar-
get speakers [11]. In this experiment, nine speakers were con-
sidered (5 females and 4 males). In the remainder of the pa-
per, the speakers are designated by the letters{a, b, c, · · · , i}.
For each speaker a common training set of100 Japanese sen-
tences from the JNAS database [14] was recorded using a tie
microphone while sitting at the table in the experiment room.
Then a GMM was trained for each of the speakers using the
100 utterances. The GMM for all the speakers are designated
by {λa, λb, · · · , λi}. A general GMM was also trained us-
ing the900 utterances (referred to as GGMM in Fig. 1). The
general GMM is designated byλG.

The test set was recorded in the same room while monitor-
ing the speaker movement with the LRF based human tracker
system. Only three{a, b, c} of the nine speakers were sit-
ting around the table and were not constrained of any manner
(see Fig. 5). Three different sets of50 sentences from the
JNAS database were prepared and each speaker was assigned
one of these sets. Using these sets,350 test utterances were
recorded. First each of the speaker was reading alone its test
set (the two other persons are sitting around the table but are
remaining silent). These are the test setsTa, Tb andTc. Then
the three combinations of two speakers simultaneously read-
ing were recorded (test setsTab, Tac andTbc). Finally, the
three speakers were reading simultaneously (test setTabc).

Training and scoring were performed with Htk 3.41 [15]
using the whole test utterances.

2.4. Activity detection

The GMMs are used to determine for each utterance which
of the participants are active. For decision based on likeli-
hood, it is usual to apply some sort of normalization [16, 17].
In this paper, for a given stream̂Sk of a given test utterance
the likelihood given by the GMMs are normalized using the
following likelihood ration

p̄(Ŝk|λi) = log p(Ŝk|λi) − log p(Ŝk|λG).
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Then the accept/reject procedure is conducted by comparing
the largest normalized likelihood

p̄(Ŝk|λj) = maxip̄(Ŝk|λi)

to a thresholdǫ

• if p̄(Ŝk|λj) ≥ ǫ then speakerj is active in stream̂Sk.

• if p̄(Ŝk|λj) < ǫ then no speaker is active in stream̂Sk.

For each utterance, this test is conducted for all the audio
streams.

3. EXPERIMENTS
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Fig. 3. Deletion (blue), insertion (red) and substitution
(green) versus thresholdǫ for single speaker (top row), two
speakers (second row), three speakers (third row) and all cases
(bottom) for unprocessed (left) and processed audio streams
(right).

The experiment setup is described in Fig. 5. The four cir-
cles in the corners represent the pole mounted LRFs used by
the human tracker, the cross gives the position origin and the
probability densities of the positions of the three speakers dur-
ing the experiment also appear. In this first step, the tie mi-
crophones are still wired microphones connected to the same
computer.

Note that for all test sets except the test setTabc, at least
one of the speakers is silent. The results of the speaker iden-
tification experiment are given in terms of deletion, insertion
and substitution errors:

• An insertion error occurs when the largest normalized
likelihood associated to the audio stream of a silent
speaker is larger than the thresholdǫ,
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Fig. 4. Spectra of unprocessed audio streams (left) and pro-
cessed audio streams (right) when speakersa andb are talk-
ing.
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Fig. 5. Pole mounted LRFs (circles), table (rectangle), posi-
tion origin (cross) and probability densities of the three speak-
ers position (distances are in mm)

• A deletion error occurs when the largest normalized
likelihood associated to the audio stream of an active
speaker is smaller than the thresholdǫ,

• A substitution error occurs when the largest normalized
likelihood associated to the audio stream of an active
speaker is larger than the thresholdǫ but is not the cor-
rect one (for examplēp(Ŝk|λa) is the largest normal-
ized likelihood but the audiôSk is associated to the
speakerb).

Two different cases were compared where the audio
stream of each speaker is obtained by

• her or his own tie microphone (unprocessed),

• the processed stream̂Sk she or he is assigned (pro-
cessed withα = 17).
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Table 1. Deletion percentage for selected threshold.
unprocessed processed

one speaker 2.67 0
two speakers 3.33 0.67
three speakers 0 0

all 8.83 2.5

Table 2. Insertion percentage for selected threshold.
unprocessed processed

one speaker 2 0
two speakers 4 0.67
three speakers 0 0

all 10 2

The insertion, deletion and substitution percentages are
plotted for different values of the thresholdǫ in Fig. 3. First,
we can see that no substitution occurred for this experiment.
In all figures, the black circle represent the threshold for
which a trade off between insertion and deletion errors is
obtained. The percentages for these thresholds are given in
Tables 1 and 2. In particular, the processed audio streams give
a better performance when considering one unique threshold
for all the test sets (bottom of fig 3 and last rows of tables 1
and 2), which is the operating condition.

The spectra of the audio streams are given in Fig. 4 for
the test setTab. The channel assigned to speakera (top) and
b (middle) contain less noise and fewer interference after pro-
cessing. The processing also reduces the amount of speech
that leaks in the bottom channel assigned to the silent speaker
c.

4. DISCUSSION

The human tracker is a fast and accurate way of obtain the
position of the speakers in the{x, y} plane but we have no
access to thez coordinate of the mouth or the tie microphone.
In this paper, we assumed that all the tie microphones were
at the same height and also used an approximation of the dis-
tance between a speaker mouth and tie microphone. But dur-
ing the test recording, the three subjects fixed the tie micro-
phone as they desired. Despite this mismatch, the proposed
approach was able to improve significantly the performance
for the considered task.

The experiment in this paper was conducted using tie
microphones connected to the same computer in order to
deal with the signal processing part only. In a real situation,
the participants are likely to use microphones connected to
devices that communicate using a wireless network. Then
for usual approaches one of the most important problem is
to synchronize the audio data in order to perform collabo-
rative array processing (like beamforming for estimating the

positions)[9]. But with the proposed approach, the localiza-
tion is performed by the human tracker thus synchronization
may be a less sensitive issue.

5. CONCLUSION

In this paper, we proposed an experiment to test the use of
LRF based human tracker in a multi-modal front-end for
speaker diarization in a meeting situation. Since the positions
of all the participants are known at each instant, it is possible
to use this information for monitoring a set of tie micro-
phones worn by the participants. Then applying appropriate
array processing techniques to this distributed microphone
array, it was possible to improve the accuracy in a speaker
detection and identification task.

6. ACKNOWLEDGEMENTS

This work was supported by the Ministry of Internal Affairs
and Communication.

7. REFERENCES

[1] A. Waibel, H. Yu, M. Westphal, H. Soltau, T. Schultz,
T. Schaaf, Y. Pan, F. Metze, and M. Bett, “Advances
in meeting recognition,”HLT ’01: Proceedings of the
first international conference on Human language tech-
nology research, pp. 1–3, 2001.

[2] J. Carletta, “Unleashing the killer corpus: experiences in
creating a multi-everything ami meeting corpus,”Lan-
guage ressource and evaluation journal, vol. 41, no. 2,
pp. 181–190, 2007.

[3] J.G. Fiscus, J. Ajot, and J.S. Garofolo, “The rich tran-
scription 2007 meeting recognition evaluation,”Lecture
note in computer science, vol. 4625, pp. 373–389, 2008.

[4] H. Sun et al., “Speaker diarization system for rt07 and
rt09 meeting room audio,” ICASSP 2010, pp. 4982–
4985, 2010.

[5] H. Sun et al., “Speaker diarization for meeting room
audio,” INTERSPEECH 2009, pp. 900–903, 2009.

[6] M.S. Brandstein and H.F. Silverman, “A robust method
for speech signal time-delay estimation in reverberant
rooms,” ICASSP 1997, pp. 375–378, 1997.

[7] A. Stolcke, G. Friedland, and D. Imseng, “Leveraging
speaker diarization for meeting recognition from distant
microphones,”ICASSP 2010, pp. 4390–4393, 2010.

[8] T.S. Wada, E. Robledo-arnuncio, G. Yue, and B.H.
Juang, “Immersive acoustic signal processing for intelli-
gent collaboration,”Proc. 9th Western Pacific Acoustics
Conference, p. 653, 2006.

34



[9] Y. Jia, Y. Luo, Y Lin, and I. Kozintsev, “Distributed mi-
crophones arrays for digital home and office,”ICASSP
2006, pp. 1065–1068, 2006.

[10] D.F. Glas et al., “Laser tracking of human body mo-
tion using adaptive shape modeling,”Proceedings of
2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 602–608, 2007.

[11] D.A. Reynolds and R.C. Rose, “Robust text-
independent speaker identification using gaussian mix-
ture speaker models,”IEEE transaction on speech and
audio processing, vol. 3, no. 1, pp. 72–82, 1995.

[12] Y. Takahashi, Y. Uemura, H. Saruwatari, K. Shikano,
and K. Kondo, “Structure selection algorithm for
less musical-noise generation in integration systems of
beamforming and spectral subtraction,”2009 IEEE
Workshop on Statistical Signal Processing SSP2009,
Cardiff, Wales, UK, pp. 701–704, 2009.

[13] J. Even, H. Saruwatari, K. Shikano, and T. Takatani,
“Speech enhancement in presence of diffuse back-
ground noise: Why using blind signal extraction?,”In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing ICASSP 2010, Dallas, USA, pp. 4770–
4773, 2010.

[14] K. Ito, M. Yamamoto, K. Takeda, T. Takezawa, T. Mat-
suoka, T. Kobayashi, K. Shikano, and S. Itahashi, “Jnas:
Japanese speech corpus for large vocabulary continuous
speech recognition research,”The Journal of Acoustical
Society of Japan, vol. 20, pp. 196–206, 1999.

[15] S.J. Young, D. Kershaw, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland,The HTK Book Version
3.4, Cambridge University Press, 2006.

[16] A. Rosenberg, J. DeLong, C. Lee, B.H. Juang, and
F. Soong, “The use of cohort normalized scores for
speaker verification,”Proc. ICSLP, pp. 599–602, 1992.

[17] T. Matsui and S. Furui, “Likelihood normalization
for speaker verification using a phoneme- and speaker-
independent model,”Speech communication, vol. 17,
no. 1-2, pp. 109–116, 1995.

35




