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1 abstract

The basic idea of this work is to find a analogies between
clinical phenomena as Asperger Syndrome and Autism
Spectrum Disorders (ASD) and problems in state of the
art autonomous agents in dynamic environments. Autis-
tic individuals show a variety of curious behavioural and
perceptual patterns which generally seem to lack a com-
mon underlying cause. At another place [1] we propose
a theory of learning and perception which suggests that
the general impairment of the autistic brain may be a
restriction on the class of connectivity patterns (or “fea-
tures”) that can be utilised for learning perceptual and
cognitive tasks. In particular, we argue that the autistic
brain does not make proper use of features which pool
information over larger areas of the input space, which
would allow them to make use of symmetries and develop
invariants to permutations. In this work we briefly in-
troduce the basic concept of our Autism theory and then
go to cognitive problems in autonomous agents; we test
the hypothesis that these in both cases similar causes
result in certain impairments both seen in artificial au-
tonomous agents and autistic individuals.

2 Introduction

The CDC list of diagnostic criteria [2] lists a total of
8 possible symptoms of ASD with regard to social and
communication impairments, as lack of speech, ’a lack
of spontaneous seeking to share enjoyment, interests, or
achievements with other people’, and others.

However, psychological signs and symptoms exceed
problems of social interaction and communication. A
wide variety of symptoms can be seen in children with
ASD that are not directly related to those, but express
some very particular relation to objects and order in the
real world.

Here the CDC list more possible symptoms that indi-
cate ASD: Restricted repetitive and stereotyped patterns
of behaviour, interests, and activities, as manifested by
at least one of the following:

• encompassing preoccupation with one or more
stereotyped and restricted patterns of interest that
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Figure 1: Different stimulus types in a toy world. The
agent should be trained to distinguish the smile from
the non-smile face. The faces can appear at any posi-
tion in the input space. Left and middle: Stimuli used
for training, the non-smiling and smiling simley have to
be discriminated by the network. Right side: Exam-
ple for incomplete simleys. In one additional task, the
trained network performances are tested by these incom-
plete smileys.
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is abnormal either in intensity or focus

• apparently inflexible adherence to specific, non-
functional routines or rituals

• stereotyped and repetitive motor manners (e.g.,
hand or finger flapping or twisting, or complex
whole-body movements)

• persistent preoccupation with parts of objects

Causes of autism are not well understood although for
many years theories exist. One standard approach sees
autism as a combination of both behavioural and per-
ceptive problems caused by an overdose of testosterone
during some critical developmental period [3]. In that
sense autism is seen as an extremely male brain, which
means pathological low levels of empathy. For the treat-
ment the main issue is that autistic individuals lack to
some degree a theory of mind, and their social behaviour
is impaired.

Ramachandran [4] popularised the fact that one very
essential defect lays in the mirror neuron system. This
pins down the psychological problems to differences be-
tween non-autistic and autistic individuals on a physio-
logical level. Problems in the mirror neuron system have
been shown by EEG [5] experiments.

Since one can not record the auditory and visual sensa-
tions inside a human, it is hard to distinguish perceptive
impairments that result in unusual behaviours, and un-
usual behaviours while perception works impaired. Al-
ready in the 1980s it had been suggested that the be-
havioural problems are by a ”weak central coherence”
(WCC) in perception (for a review confer [6]).

Recently autism has become considered an interesting
subject for research in artificial intelligence and devel-
opmental robotics. Asada et al. [7] introduce a new
integrated framework to understand the sequential de-
velopment of sensory, sensory-motor, motor skills and
–finally– social behaviour. The hot spot of development
is also located anatomically as a process that starts in
the occipital lope and then moves frontal via the parietal
cortex, finally reaching the frontal lope. In this work,
among other things, Asada et al. propose that diseases
as ASD on one hand and Williams syndrome (extreme
socially and empathic behaviour, [8]) on the other hand
can be modelled as failures of the last stage of this type
of sequential developmental model.

We follow the WCC idea of as general theory of per-
ception that comprises but is not restricted to social
interaction or imitation and the mirror neuron system.
Thus, we focus on potential sensory deficits rather than
an initial behavioural impairment and we see the patho-
logical behaviour of ASD patients as a secondary effect
of the underlying sensory problems. Different from the
initial WCC theory we focus here particular on impair-
ments with regard to detect invariants.

In the context of this workshop we would like to
discuss similar problems that appear in intelligent au-
tonomous agents. It is almost trivial common knowledge
that tasks that appear simple to human intelligence, as

common object recognition are difficult to achieve in au-
tomated recognition systems.

Autonomous agents tent to have similar problems as
autistic individuals in real world environments. Weak-
nesses but also strengths of autistic individuals seem to
be some extend surprisingly congruent to artificial intel-
ligent machines. While it is no problem to reproduce
photo-realistic impressions it is much harder to detect
objects on a table, to grab things, to imitate. We want
to emphasise the role of the detection of invariants. Ba-
sically, the phenomenon is well known to the community,
in some sense this also has let to the foundation of the
RoboCup [9], which suggests soccer as a more realis-
tic benchmark, because demands in soccer a similar to
real world environments. The purpose of this work is to
find analogies between our autonomous agents and the
autism and so find a new perspective to a set of well
known problems in our community.

As mentioned above we focus here on face recogni-
tion. Many computer vision algorithms make use of care-
fully crafted translational invariant features, or instead
use weight-sharing convolutional or bag of words mod-
els in order to enforce strong translation invariance con-
straints. David Lowe [10], and more recently Serre, Wolf,
and Poggio [11], have drawn on neuroscience evidence to
back up the claims from their models that various kinds
of local pooling which result in translational, scale, and
rotational invariants are a common feature throughout
primate visual cortex.

We speculate that, if these translational invariance
mechanisms are taken away, then an autonomous system
will start to make mistakes similar to autistic mistakes.
On the other hand we see potentially great advantages
if the detection of invariants can be further improved, in
fact this could potentially close the gap between artificial
and natural intelligent agents.

In detail, real world invariants are a hard to detect,
because they are covered behind of several stages of pro-
cessing. We focus here on the relative simple lateral in-
variants. These are probably the simplest examples. The
problem is essence is identical to dimensionality reduc-
tion in machine learning: The knowledge of invariants
is the tool to reduce the search space for imagination
and planning tasks, it is such a very essential problem in
real world intelligent agents, which has been addressed
at many occasions [12].

In some sense mirror neurons and imitation also fit
into the context of invariants. The knowledge of which
actions of others are equivalent to one’s own actions (that
is an invariance) is necessary to do so and thus deal with
a much more complicated invariants of perception. In
consequence, body parts of the other persons have to
identified with own body parts. Nonetheless, the detec-
tion of these invariants seems to work to some extend at
the time of birth [13].

As an example that we relate to our toy model are ex-
periments [14], that show that in spite of having a lower
over all recognition rate for faces autistic individuals tent
to have relative high recognition rates from parts of faces
in comparison to non-autistic persons.
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Figure 2: Receptive fields for the model for the autistic (left) and non-autistic individual (right).

3 Feature Invariants

An important part of the “art” of pattern recognition re-
search is the construction of features that are invariant
to the aspects of the world that are unimportant for solv-
ing the task at hand. An early example of this approach
in computer vision was the idea of first extracting edges,
and then discarding the rest of the information on the
assumption that smooth gradients, color, or the overall
intensity of light on either side of an edge, are generally
irrelevant for the task of recognising shape. Research
involving edge or local gradient type features has since
since evolved to the use of collections of edges at multiple
scales, for instance Gabor jets [15], or the SIFT features
of Lowe [10] which consist of histograms of gradient ori-
entations in a grid of cells in image patches. Provided
powerful enough features, problems of interest then be-
come quite trivial in the transformed feature space, lead-
ing one leading computer vision researcher to argue that
the single most important thing for future computer vi-
sion research will be the development of better features
[16]. Also in the field of robotics invariants have often
been applied (see for example [17]).

4 Toy model

The toy model illustrates advantages of a build in lat-
eral symmetry constraint. We want to compare in this
model that computational costs in the case when the
symmetry constraint is implemented (non-autistic) and
when the symmetry constraint is implemented (autistic).
As a measurement for the computational cost serves the
number of neurons that are necessary to fulfil a discrim-
ination task.

The basic model consists of a two layer neuronal
model. The interpretation of the ’neurons’ would not
be real biological neurons but rather functional entities
that serve our task. In the first layer we have set of
model neurons with fixed random receptive fields. Each
neuron i has the activation function:

Ai,t = tanh(It ·Ri), (1)

where It represents the stimulus, t is the number of the
trial, that is either a smiling or non-smiling smiley (see
Fig. 1) at a random position in the visual field. In

our model the receptive field has the size 30 × 30 pixel.
The receptive field of each neuron Ri is individual for
each neuron and chosen random with the following con-
straints:

• Unspecific receptive field type: Each pixel has a dif-
ferent random value equally distributed in the range
−0.5 to 0.5. In the following we call this model
autistic. Each pixel is multiplied with a 2 dimen-
sional Gaussian distribution with one pixel standard
deviation and a random position in the visual field.

• Lateral specific receptive fields: All pixel within one
line have the same value in the range −0.5 to 0.5
(see Fig. 2). In the following non-autistic receptive
fields.

The outputs of neurons in the first layer form a sub-
space of Hilbert space on I. The task is now to conduct a
supervised discrimination task between smiling and non-
smiling smileys independent from their position in visual
field. The teaching signal st is -1 for a smiling smiley and
1 for a non-smiling smiley. The task is now to learn this
identification task. The easiest to achieve this is to do a
linear regression of the output signals of the neurons in
order to separate the 2 outputs. The method is in this
way similar to the principle in kernel methods and sup-
port vector machines. Technically the problem is solved
by testing all possible positions of the smiley within the
visual field. We record for each trial the vector Ai,t and
the training signal st. By calculating the pseudo-inverse
of A we can get the connectivity with mean square error
for solving task with

W = s× pinv(A). (2)

And the quality of the processing is tested by measuring
the

corr =< stestsgn(W ·Atest) >, (3)

where stest is the type of the stimulus that has been
presented during the test phase, whereas Atest is the re-
sponse of the neurons to the particular stimulus. In the
test set the stimulus is chosen from a random position
in both the x and y direction. Obviously, increasing
the numbers of neurons in the first layer increases the
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Figure 3: Results of simulation 1 and 2: Depicted are results of simulations with different numbers of neurons: The
y-axes of the graphs depict the square error, x-axes the number of neurons in the first layer of network. Left side:
One can see simulation 1, the network was trained and tested for the whole visual field. Right side: Simulation 2, the
network was trained only for stimuli where the position of the smiley was varied only by 5 pixels in the horizontal
and vertical direction the test. In both simulations the full line depicts the non-autistic version of the model, the
dashed version shows the model with the autistic receptive fields.

number of dimensions in the Hilbert space and thus, in-
creases in that way the accuracy of the response, i.e. the
probability that the neural networks gives the correct
response.

The only difference between the non-autistic approach
and the autistic approach is the shape of receptive fields
Ri. The non-autistic model is not able to detect lateral
shifts of the stimulus in the visual field. This could be
interpreted as a handicap of the non-autistic individual,
since she/he is not able to perceive certain aspects of the
stimulus. However, this build in handicap helps as we
see later in the result part, to reduce the computational
cost (i.e. the necessary number of neurons) to process
the information in a proper way. Below one can see
that the impairment pays off due to the lateral vertical
invariance of the receptive fields. In order to get a better
statistics, the simulations are repeated several times, the
average is depicted in the figures.

This concept of ”weight sharing” has often been used,
for example in Yann LeCun’s convolutional neural net-
works [18]. Technically even more useful are the con-
nectionist style neural-network based face detector, from
Rowley, Beluja, and Kanade [19], found it was bene-
ficial to have multiple receptive fields that pooled in-
formation from different regions, such as patches of
different sizes and shapes which also include horizon-
tal bar receptive fields. Another recent approach by
Serre, Wolf and Poggio’s [11], and in the recent NIPS
and ICML conferences Lee et al (with Andrew Ng)
have introduced convolutional deep belief networks [20,
21]. Finally, many researchers in vision use bag of words
models in which various features in an image are ex-
tracted and then pooled together into a single summary
statistic, such as a histogram. This results in consid-
erable translation and some scale invariance. Butko
and Movellan (2009 CVPR) even built a convolutional

POMDP controller for modeling robot eye movements,
as did Fasel, Ruvolo, Wu, and Movellan [22].

5 Results of the toy model

In the following three numerical experiments have been
conducted:
Simulations 1 The value of E depends on the dif-

ferent shape of receptive fields and the number of neu-
rons in the first layer that has been used Fig. 3) de-
picts results from the following simulation: The training
was conducted by teaching both the laughing and non-
laughing test smiley at all possible positions in the visual
field (14×14 different positions). The resulting network
was tested with the 100 test samples that use either the
laughing and non-laughing smiley with equal probability.
The response error E was sampled. In order to smooth
out the statistics of the result the numerical experiment
was repeated 100 times with different, randomly chosen
autistic and non-autistic receptive fields.

We see for all tested number of neurons a better per-
formance of the non-autistic model than of the autistic
model (see Fig. 3 left). . In both cases the performance
of the network improves with the number of neurons.
Already 50 neurons are sufficient to almost perfectly ful-
fil the task in the case of the non-autistic, horizontally
homogeneous receptive fields.

In the autistic model more than 200 neurons are not
sufficient to achieve a similar performance as the non-
autistic model in the case of only 50 neurons. Thus,
the blindness of the non-autistic case towards horizontal
differences reduces significantly the computational costs
and makes the network invariant against positional shifts
in the horizontal direction.
Simulation 2: The next numerical experiment was

that only a small part of the visual field (only 5×5 dif-
ferent positions instead of 14×14). This means the hor-
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Figure 4: The figure depicts a simulation in which during
the training the stimulus is only presented in a smaller
range in the horizontal direction. In the test phase the
network has to discriminate laughing and non-laughing
stimuli in the whole area. As expected different from the
autistic version of the model; due to the receptive field
shape the non-autistic version can discriminate stimuli
even if they are presented in the untrained range (Axes
labels, line definitions same as in Fig. 3).

izontal positions of the smiley are only varied 5 pixels
during learning. This has been done to test if the autis-
tic version of the model is able to learn the discrimination
at all. The results show that the although the autistic
version of the model is able to learn the discrimination
task, a much higher number of neurons is required to
fulfil the task.

Simulation 3: In simulation 3 both networks are
trained only using smileys that vary in the area 3×5;
the test is then conducted in the area 5×5. Due to the
symmetry hints the model related to the non-autistic
individual can recognise stimuli even if they appear at
positions which have never been seen before. This is
reflected at the results (cf. 4 right). The non-autistic
model achieves a performance of about the same level as
the if whole area would be trained. The reason is that
the non-autistic model is not able to distinguish the stim-
ulus with respect to its horizontal position. Thus, a two
different stimuli with the same vertical position and a
different horizontal position result in the same response
in the first layer. Thus, the response of the second layer
is the same too.

Simulation 4: Finally results from simulation 1 were
tested with incomplete stimuli (Fig. 1 right). The re-
sults show that in this case the autistic model shows
a better performance than the non-autistic model. Al-
though both stimuli and information processing in the
model in much simpler than the according processes in
the brain, we see here parallels to findings that autistic
children show a better performance in recognising faces
from parts of faces than non-autistic children [14].

6 Discussion

In conclusion, we look at ASD as the result of a broken
version of a highly advanced and complicated cognition
machine, that makes use of invariants in our real world
environment. One important point is to look at possi-
ble genetic causes of autism and Asperger Syndrome.
It is known that several genetic mutations can cause
autism [23] in comparison to for example Williams Syn-
drome, where the syndrome is linked to a unique muta-
tion on a single chromosome [8]. This could be a hint
that autism is a phenomenon that is caused by the de-
fect of highly advanced and complicated cognition ma-
chine, rather than just a wrong tuned parameter in a
behavioural system.

Instead of wondering about the deficits in autistic indi-
viduals, designers of autonomous intelligent agents prob-
ably wonder more, why for non-autistic individuals it
seems so easy to detect objects, recognise faces, find in-
variants in temporal sequences of task executions, be-
cause the very same tasks are relatively difficult to im-
plement into robots.

• Ability draw sketches: As outlined before some
autistic children show the ability to draw near photo
realistic, at least naturalist stile, sketches of animals
[24]. The explanation of here would be that in the
autistic brain the representation of parts of a scene
are not filtered away. During the drawing process it
is necessary to reproduce details. In order to repro-
duce these details it is necessary to have an individ-
ual representation of each of these details. In the
non-autistic version of the model we can see that
these representations are reduced in favour of a in-
variance. We see here a potential analogy to the
situation in the real non-autistic and autistic brain.

• Perfect reproduction of the sounds: In addi-
tion, there are reports that autistic children voice
authentic reproductions of stopping trains, and oth-
ers. We see here an analogy to the above mentioned
ability drawing of sketches; the same arguments ap-
ply.

• Interest in series: Very well known is the interest
of autistic children in temporal and spatial series
of events and objects. Thus, children make perfect
lines of objects. For example they are interested in
every wheel of a toy locomotive. This can be also
interpreted as a result from non-functioning filters
that let pop up spots of interest that would be sup-
pressed otherwise.

• Increased ability to recognise the face from
parts of the face: We related the abilities [14]

to a broken filter of translational invariance in our
model. But: In our model we show only one way in
which this ability can relate to in some way damaged
filters.

• Sticking to the temporal series in procee-
dures: Autistic children tend to stick to temporal
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series of proceedures, as for example dressing. Thus,
some insist to dress on the socks always before the
trousers, etc.. In the context of the model is could
be interpreted in that way, that the invariant of this
temporal sequence cannot be detected, or for some
reason it is not understood as important.

• Impairments in imitation: To imitate an action
it is required to understand in what way the action
has to be done invariant from the person, who is
undertaking the action.

The experiment 3 shows also that the autistic model
is not able extrapolate along the direction of the invari-
ance. One example where this is important could be sit-
uations where certain experiences are linked to touching,
and from there a relation to a person can be established.
Since the person is experienced differently from far, the
autistic individual cannot learn the emotional relation
independent from the sight. This could affect for exam-
ple bimodal receptive field (as presented in[25]).

Finally, we see similar issues in our intelligent au-
tonomous agents. Although, in recent years very good
software on face, object recognition, speech recognition
have been developed we see several aspects that bring to-
gether the autonomous agent issues and models related
to ASD. First of all see a real autonomous agent as a
perfect model to verify WCC theory, and the concept of
impairments of the recognition of invariants. In addition,
we think these kind of models can improve our under-
standing of the recognition of invariants and to develop
a general theory there.
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